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Refrigeration and liquefaction

• Refrigeration - Cooling of an object and maintenance 
of its temperature below that of surroundings

• Application

– Air conditioning of buildings, transportation, and 
preservation of foods and beverages

– Manufacture of ice

– Dehydration of gases

– Petroleum industry include lubrication-oil purification

– Low-temperature reactions

– Separation of volatile hydrocarbons

• Continuous absorption of heat at a low temperature 
level, usually accomplished by evaporation of liquid in 
a steady-state flow process.



REFRIGERATOR

High 

Temperature,  TH

Low Temperature, 

TC

W

QH

QC

Heat Engine

High 

Temperature,  TH

Low Temperature, 

TC

W

QH

QC



Refrigerator Heat Engine (e.g. Steam Power Plant)



The Carnot Refrigerator

• The ideal refrigerator, like the ideal heat engine, 

operates on a Carnot cycle, consisting of two 

isothermal steps in which heat |QC| is absorbed at 

the lower temperature TC and heat |QH| is rejected 

at the higher temperature TH and two adiabatic 

steps.

• The coefficient of performance:
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The vapor-compression cycle

• 1→2: liquid (absorb heat) evaporating at constant 

pressure

• 2→3: isentropic compression to a higher pressure

• 3→4: cooled and condensed with rejection of heat 

at a higher temperature level

• 4→1: expansion throttling process

Fig 9.1
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On the basis of a unit mass of fluid

12|| HHQC The heat absorbed in the evaporator:
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Define the rate of circulation of refrigerant:
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A refrigerated space is maintained at -20oC and cooling water is available at 21°C. 

Refrigeration capacity is 120.000 kJ/hr. The evaporator and condenser are of 

sufficient size that a 5°C minimum-temperature difference for heat transfer can be 

realized in each. The refrigerant is 1,1,1,2-tetrafluoreothane (HFC – 134a), for which 

data are given in Table 9.1 and Fig F.2 (App. F). (1) what is the value of ω for a 

Carnot refrigerator? (2) Calculate ω and ṁ for the vapor-compression cycle of Fig 9.1 

if the compressor efficiency is 0.80.

For a Carnot refrigerator:
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(1)   Temperature difference = 5oC

The evaporator temperature is :      TC = -20oC - 5oC = -25oC = 248.15 K  

The condenser temperature is :         TH = 21oC + 5oC = 26oC =  



(2) At -25°C, HFC – 134a vaporizes at 1.064 bar: 2 383.45
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The choice of refrigerant

• Dependence?

– The efficiency of a Carnot heat engine is independent 

of the working medium of the engine.

– The coefficient of performance of a Carnot refrigerator 

is independent of the refrigerant.

– Vapor-compression cycle cause the coefficient of 

performance to dependent to some extent on the 

refrigerant.

• Other factors:

– toxicity, flammability, cost, corrosion properties, vapor 

pressure in relation to temperature, etc.



• Two requirement:

– The vapor pressure of the refrigerant at the evaporator 

temperature should be greater than atmospheric 

pressure to avoid air leaking.

– The vapor pressure at the condenser temperature should 

not be unduly high, because of the initial cost and 

operating expense of high-pressure equipment.

• Refrigerants

– Ammonia, methyl chloride, carbon dioxide, propane 

and other hydrocarbons

– Halogenated hydrocarbons

• common in 1930s (e.g. CCl3F, CCl2F2) and now mostly end

• stable molecules causing severe ozone depletion

• replacements are certain hydrochlorofluorocarbons, less than 

fully halogenated  hydrocarbons, and hydrofluorocarbons 

which contains no chlorine (e.g., CHCl2CF3, CF3CH2F).



Two-state cascade: (with TH fixed by the temperature of the surroundings, a lower 

limit is placed  on the temperature level of refrigeration).

The two cycles operate so that the heat absorbed in the interchanger by the 

refrigerant of the higher-temperature cycle 2 serves to condense the refrigerant in 

the lower temperature cycle 1.

Fig 9.3
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Absorption refrigeration

• Absorption refrigeration: the direct use of heat as 
the energy source for refrigeration (not from an 
electric motor).

– The essential difference between a vapor-compression 
and an absorption refrigerator is in the different means 
employed for compression.

– The most commonly used absorption-refrigeration 
system operates with water as the refrigerant and a 
lithium bromide solution as the absorbent.

– Low-pressure steam is the usual source of heat for the 
regenerator. 



The work required by a Carnot refrigerator: || C
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The heat pump

• for heating houses in winter:

– Refrigerant evaporates in coils placed underground or 

in the outside air; vapor compression is followed by 

condensation, heat being transferred to air or water, 

which is used to heat the building.

• and cooling them in summer:

– The flow of refrigerant is reversed, and heat is absorbed 

from the building and rejected through underground 

coils or to the outside air.
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A house has a winter heating requirement of 30 kJ/s and a summer cooling 

requirement of 60 kJ/s. Consider a heat-pump installation to maintain the house 

temperature at 20°C in winter and 25°C in summer. This requires circulation of the 

refrigerant through interior exchanger coils at 30°C in winter and 5°C in summer. 

Underground coils provide the heat source in winter and the heat sink in summer. 

For a year-round ground temperature of 15°C, the heat-transfer characteristics of the 

coils necessitate refrigerant temperatures of 10°C in winter and 25°C in summer. 

What are the minimum power requirements for winter heating and summer cooling?

The minimum power requirements are provided by a Carnot heat pump:

For winter heating, the heat absorbed in the ground coils:
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For summer cooling, the house coils are at the lower temperature TC :
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Liquefaction processes

• Common use for:

– Liquid propane as a domestic foil

– Liquid oxygen in rocket

– Liquid natural gas for ocean transport

– Liquid nitrogen for low temperature refrigeration

– Gas mixture are liquefied for separation

• Cooled to a temperature in the two-phase region:

– By heat exchanger at constant pressure

– By an expansion process from which work is obtained

– By a throttling process



• By heat exchanger at constant pressure - path 1

• By an (isentropic) expansion process - path 2

• By a throttling process – the initial state must be at a high enough 
pressure and low enough temperature prior to throttling - path 3’:

– The change of state from A to A’: compression of the gas to B, followed by 
constant-pressure cooling

– Then, isentropic expansion 3’ results in the formation of liquid

Fig 9.5



The Linde liquefaction process

• Depends solely on throttling expansion:

– Compression – cooling to ambient temperature (even 

further by refrigeration) – throttling and liquefaction. 
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The Claude liquefaction process

• Replace the throttle valve by an expander:

– Gas – expander – saturated or slightly superheated vapor –

cooled and throttled to produce liquefaction (as in the Linde 

process) – unliquefied portion mixes with the expander 

exhaust and returns for recycle.
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Natural gas, assumed here to be pure methane, is liquefied in a Claude process. 

Compression is to 60 bar and precooling is to 300 K. The expander and throttle 

exhaust to a pressure of 1 bar. Recycle methane at this pressure leaves the 

exchanger system at 295 K. Assume no heat leaks into the system from the 

surroundings, an expander efficiency of 75%, and an expander exhaust of 

saturated vapor. For a draw-off to the expander of 25% of the methane entering 

the exchanger system, what fraction of the methane is liquefied, and what is the 

temperature of the high-pressure steam entering the throttle valve?
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An energy balance on the right of the dashed vertical line: outWHmHmHm   44151599

The expander operates adiabatically: )( 51212 HHmWout  
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11.3 % of the methane entering the exchanger system is liquefied!



An energy balance on the exchanger I: 0)()( 141515454  HHmHHm 
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An energy balance on the exchanger II: 0)()( 121414577  HHmHHm 
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5.41 % of the methane entering the throttle valve emerges as liquid!
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Eventually approaching the saturation temperature in the separator 

and requiring an exchanger of infinite area! (i.e., cost increases)


