
+

William Stallings

Computer Organization

and Architecture

10th Edition

© 2016 Pearson Education, Inc., Hoboken,

NJ. All rights reserved.

+ Chapter 7
Input/Output

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

I/O Module

Figure 7.1 Generic Model of an I/O Module

Links to

peripheral

devices

Control Lines

Data Lines

Address Lines

System

Bus

+
External Devices

◼ Provide a means of

exchanging data between the

external environment and the

computer

◼ Attach to the computer by a

link to an I/O module

◼ The link is used to exchange

control, status, and data

between the I/O module and

the external device

◼ Peripheral device

◼ An external device connected

to an I/O module

Three
categories:

◼ Human readable

◼ Suitable for communicating with
the computer user

◼ Video display terminals (VDTs),
printers

◼ Machine readable

◼ Suitable for communicating with
equipment

◼ Magnetic disk and tape systems,
sensors and actuators

◼ Communication

◼ Suitable for communicating with
remote devices such as a terminal,
a machine readable device, or
another computer

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Buffer

Transducer

Figure 7.2 Block Diagram of an External Device

Control

Logic

Control

signals from

I/O module

Status

signals to

I/O module

Data bits

to and from

I/O module

Data (device-unique)

to and from

environment

+ Keyboard/Monitor

◼ Basic unit of exchange is the character

◼ Associated with each character is a code

◼ Each character in this code is
represented by a unique 7-bit binary
code

◼ 128 different characters can be
represented

◼ Characters are of two types:

◼ Printable

◼ Alphabetic, numeric, and special
characters that can be printed on
paper or displayed on a screen

◼ Control

◼ Have to do with controlling the
printing or displaying of characters

◼ Example is carriage return

◼ Other control characters are
concerned with communications
procedures

◼ When the user depresses a key it

generates an electronic signal that is

interpreted by the transducer in the

keyboard and translated into the bit

pattern of the corresponding IRA code

◼ This bit pattern is transmitted to the I/O

module in the computer

◼ On output, IRA code characters are

transmitted to an external device from the

I/O module

◼ The transducer interprets the code and

sends the required electronic signals to

the output device either to display the

indicated character or perform the

requested control function

International Reference Alphabet

(IRA)

Keyboard Codes

Most common means of

computer/user interaction

User provides input through the

keyboard

The monitor displays data

provided by the computer

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

The major functions for an I/O module
fall into the following categories:

The major functions for an I/O module
fall into the following categories:

Control and timing

• Coordinates the flow of traffic between internal resources and external devices

Control and timing

• Coordinates the flow of traffic between internal resources and external devices

Processor communication

• Involves command decoding, data, status reporting, address recognition

Processor communication

• Involves command decoding, data, status reporting, address recognition

Device communication

• Involves commands, status information, and data

Device communication

• Involves commands, status information, and data

Data buffering

• Performs the needed buffering operation to balance device and memory speeds

Data buffering

• Performs the needed buffering operation to balance device and memory speeds

Error detection

• Detects and reports transmission errors

Error detection

• Detects and reports transmission errors

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Status/Control Registers

Data Registers

Interface to

System Bus

Figure 7.3 Block Diagram of an I/O Module

I/O

Logic

Control

Lines

Address

Lines

Data

Lines

External

Device

Interface

Logic

Data

Status

Control

External

Device

Interface

Logic

Data

Status

Control

Interface to

External Device

+ Programmed I/O

Three techniques are possible for I/O
operations:
◼ Programmed I/O

◼ Data are exchanged between the processor and the I/O module

◼ Processor executes a program that gives it direct control of the I/O
operation

◼ When the processor issues a command it must wait until the I/O
operation is complete

◼ If the processor is faster than the I/O module this is wasteful of
processor time

◼ Interrupt-driven I/O

◼ Processor issues an I/O command, continues to execute other
instructions, and is interrupted by the I/O module when the latter has
completed its work

◼ Direct memory access (DMA)

◼ The I/O module and main memory exchange data directly without
processor involvement

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 No Interrupts Use of Interrupts

I/O-to-memory transfer
through processor

Programmed I/O Interrupt-driven I/O

Direct I/O-to-memory

transfer

 Direct memory access (DMA)

Table 7.1

I/O Techniques

+
I/O Commands

◼ There are four types of I/O commands that an I/O module may
receive when it is addressed by a processor:

1) Control

- used to activate a peripheral and tell it what to do

2) Test

- used to test various status conditions associated with an I/O
module and its peripherals

3) Read

- causes the I/O module to obtain an item of data from the
peripheral and place it in an internal buffer

4) Write

- causes the I/O module to take an item of data from the data bus
and subsequently transmit that data item to the peripheral

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 7.4 Three Techniques for Input of a Block of Data

Issue Read

command to

I/O module

Read status

of I/O

module

Check

status

Read word

from I/O

Module

Write word

into memory

Done?

Next instruction

(a) Programmed I/O

CPU I/O

CPU memory

I/O CPU

I/O CPU

Error

condition

Ready Ready

Yes Yes

No

Not

ready

Issue Read

command to

I/O module

Do something

else

InterruptRead status

of I/O

module

Check

status

Read word

from I/O

Module

Write word

into memory

Done?

Next instruction

(b) Interrupt-driven I/O

CPU memory

Do something

else

Interrupt

CPU DMA

DMA CPU

I/O CPU

Error

condition

No

Issue Read

block command

to I/O module

Read status

of DMA

module

Next instruction

(c) Direct memory access

CPU I/O

I/O CPU

I/O Instructions

With programmed I/O there is a close correspondence between the I/O-related
instructions that the processor fetches from memory and the I/O commands that
the processor issues to an I/O module to execute the instructions

With programmed I/O there is a close correspondence between the I/O-related
instructions that the processor fetches from memory and the I/O commands that
the processor issues to an I/O module to execute the instructions

The form of the
instruction depends
on the way in which
external devices are

addressed

Each I/O device connected through I/O modules is given a
unique identifier or address
Each I/O device connected through I/O modules is given a
unique identifier or address

When the processor
issues an I/O

command, the
command contains the
address of the desired

device

Thus each I/O module
must interpret the
address lines to
determine if the

command is for itself

Memory-mapped I/OMemory-mapped I/O

There is a single address space for
memory locations and I/O devices

A single read line and a single write
line are needed on the bus

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
I/O Mapping Summary

◼ Memory mapped I/O

◼ Devices and memory share an address space

◼ I/O looks just like memory read/write

◼ No special commands for I/O

◼ Large selection of memory access commands available

◼ Isolated I/O

◼ Separate address spaces

◼ Need I/O or memory select lines

◼ Special commands for I/O

◼ Limited set

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

7 6 5

516 Keyboard input data register

4 3 2 1 0

7 6 5

517

(a) Memory-mapped I/O

Keyboard input status

and control register

1 = ready

0 = busy

4 3 2 1 0

Set to 1 to

start read

 ADDRESS INSTRUCTION OPERAND COMMENT

 200 Load AC "1" Load accumulator

 Store AC 517 Initiate keyboard read

 202 Load AC 517 Get status byte

 Branch if Sign = 0 202 Loop until ready

 Load AC 516 Load data byte

Figure 7.5 Memory-Mapped and Isolated I/O

(b) Isolated I/O

 ADDRESS INSTRUCTION OPERAND COMMENT

 200 Load I/O 5 Initiate keyboard read

 201 Test I/O 5 Check for completion

 Branch Not Ready 201 Loop until complete

 In 5 Load data byte

Interrupt-Driven I/O

The problem with programmed I/O is that the
processor has to wait a long time for the I/O module
to be ready for either reception or transmission of
data

The problem with programmed I/O is that the
processor has to wait a long time for the I/O module
to be ready for either reception or transmission of
data

An alternative is for the processor to issue an I/O
command to a module and then go on to do some
other useful work

An alternative is for the processor to issue an I/O
command to a module and then go on to do some
other useful work

The I/O module will then interrupt the processor to
request service when it is ready to exchange data
with the processor

The I/O module will then interrupt the processor to
request service when it is ready to exchange data
with the processor

The processor executes the data transfer and
resumes its former processing
The processor executes the data transfer and
resumes its former processing

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Device controller or

other system hardware

issues an interrupt

Processor finishes

execution of current

instruction

Processor signals

acknowledgment

of interrupt

Processor pushes PSW

and PC onto control

stack

Processor loads new

PC value based on

interrupt

Save remainder of

process state

information

Process interrupt

Restore process state

information

Restore old PSW

and PC

Hardware Software

Figure 7.6 Simple Interrupt Processing

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Start

N + 1

Y + L

N

Y

Y

T

Return

User's

Program

Main

Memory

Processor

General

Registers

Program

Counter

Stack

Pointer

N + 1

T – M

T – M

T

Control

Stack

Interrupt

Service

Routine

User's

Program

Interrupt

Service

Routine

(a) Interrupt occurs after instruction

at location N
(b) Return from interrupt

Figure 7.7 Changes in Memory and Registers for an Interrupt

Start

N + 1

Y + L

N

Y

T

Return

Main

Memory

Processor

General

Registers

Program

Counter

Stack

Pointer

Y + L

T – M

T – M

T

Control

Stack

N + 1

Two design
issues arise in
implementing
interrupt I/O:

• Because there will
be multiple I/O
modules how does
the processor
determine which
device issued the
interrupt?

• If multiple
interrupts have
occurred how
does the
processor decide
which one to
process?

Design Issues

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+ Device Identification

◼ Multiple interrupt lines

◼ Between the processor and the I/O modules

◼ Most straightforward approach to the problem

◼ Consequently even if multiple lines are used, it is likely that each line will have multiple I/O modules
attached to it

◼ Software poll

◼ When processor detects an interrupt it branches to an interrupt-service routine whose job is to poll
each I/O module to determine which module caused the interrupt

◼ Time consuming

◼ Daisy chain (hardware poll, vectored)

◼ The interrupt acknowledge line is daisy chained through the modules

◼ Vector – address of the I/O module or some other unique identifier

◼ Vectored interrupt – processor uses the vector as a pointer to the appropriate device-service routine,
avoiding the need to execute a general interrupt-service routine first

◼ Bus arbitration (vectored)

◼ An I/O module must first gain control of the bus before it can raise the interrupt request line

◼ When the processor detects the interrupt it responds on the interrupt acknowledge line

◼ Then the requesting module places its vector on the data lines

Four general categories of techniques are in

common use:

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

External device 00

Slave

82C59A

interrupt

controller

External device 07

IR0

IR1 INT

IR2

IR3

IR4

IR5

IR6

IR7

External device 01

External device 08

Slave

82C59A

interrupt

controller

External device 15

IR0

IR1 INT

IR2

IR3

IR4

IR5

IR6

IR7

Master

82C59A

interrupt

controller

IR0

IR1 INT

IR2

IR3

IR4

IR5

IR6

IR7

External device 09

80386

processor

INTR

External device 56

Slave

82C59A

interrupt

controller

External device 63

Figure 7.8 Use of the 82C59A Interrupt Controller

IR0

IR1 INT

IR2

IR3

IR4

IR5

IR6

IR7

External device 57

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

PA41PA3 40

(b) Pin layout

Figure 7.9 The Intel 8255A Programmable Peripheral Interface

PA52PA2 39

PA63PA1 38

PA74PA0 37

WR5RD 36

Reset6CS 35

D07GND 34

D18A1 33

D29A0 32

D310PC7 31

D411PC6

8255A

30

D512PC5 29

D613PC4 28

D714PC3 27

V15PC2 26

PB716PC1 25

PB617PC0 24

PB518PB0 23

PB419PB1 22

PB320PB2 21

Data

bus

buffer

Power

supplies

Bi-directional

data bus

8-bit

internal

data bus

D7 - D0

I/O

PA7 - PA0

I/O

PC7 - PC4

I/O

PC3 - PC0

I/O

PB7 - PB0

RD

WR

A1

A0

Reset

CS

Group

A

control

Group A

Port A

(8)

Group B

Port B

(8)

Group A

Port C

upper (4)

Group B

Port C

Lower(4)

Group

B

control

Read/

write

control

logic

(a) Block diagram

+5 V

GND

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

A0

A1

A2

A3

A4

A5

A6

A7

C3

Interrupt

request

Interrupt

request

C0

Figure 7.11 Keyboard/Display Interface to 82C55A

INPUT

PORT

KEYBOARD

OUTPUT

PORT

82C55A

B0

B1

B2

B3

B4

B5

B6

B7

C1

C2

C6

C7

C4

C5

R0

R1

R2

R3

R4

R5

Shift

Control

Data ready

Acknowledge

DISPLAY

S0

S1

S2

S3

S4

S5

Backspace

Clear

Data ready

Acknowledge

Blanking

Clear line

+

Drawbacks of Programmed and

Interrupt-Driven I/O

◼ Both forms of I/O suffer from two inherent

drawbacks:

1) The I/O transfer rate is limited by the speed

with which the processor can test and service

a device

2) The processor is tied up in managing an I/O

transfer; a number of instructions must be

executed for each I/O transfer

◼ When large volumes of data are to be moved a more

efficient technique is direct memory access (DMA)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Address

register

Control

logic

Data

register

Figure 7.12 Typical DMA Block Diagram

Data

count

Data lines

Address lines

Request to DMA

Acknowledge from DMA

Interrupt

Read

Write

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Processor

Cycle

Fetch

Instruction

Processor

Cycle

Decode

Instruction

Processor

Cycle

Instruction Cycle

Time

DMA

Breakpoints

Figure 7.13 DMA and Interrupt Breakpoints During an Instruction Cycle

Interrupt

Breakpoint

Fetch

Operand

Processor

Cycle

Execute

Instruction

Processor

Cycle

Store

Result

Processor

Cycle

Process

Interrupt

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Processor DMA

(a) Single-bus, detached DMA

(b) Single-bus, Integrated DMA-I/O

(c) I/O bus

Figure 7.14 Alternative DMA Configurations

I/O bus

System bus

I/O I/O Memory

Processor DMA Memory

I/O I/O I/O

Processor DMA DMA

I/O

I/O I/O

Memory

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

CPU

DACK = DMA acknowledge

DREQ = DMA request

HLDA = HOLD acknowledge

HRQ = HOLD request

Figure 7.15 8237 DMA Usage of System Bus

Data bus

DACK

DREQ

Address bus

Control bus (IOR, IOW, MEMR, MEMW)

8237 DMA

chip

Main

memory

Disk

controller

HRQ

HLDA

+
Fly-By DMA Controller

Data does not pass
through and is not
stored in DMA chip

• DMA only between
I/O port and
memory

• Not between two
I/O ports or two
memory locations

Can do memory to
memory via register

8237 contains four
DMA channels

• Programmed
independently

• Any one active

• Numbered 0, 1, 2,
and 3

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 7.2

Intel

8237A

Registers

E/D = enable/disable

TC = terminal count

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Bit Command Status Mode Single Mask All Mask

D0
Memory-to-

memory E/D

Channel 0 has

reached TC

Clear/set

channel 0 mask

bit

D1
Channel 0

address hold

E/D

Channel 1 has

reached TC

Channel select
Select channal

mask bit Clear/set

channel 1 mask

bit

D2 Controller E/D
Channel 2 has

reached TC
Clear/set mask

bit

Clear/set
channel 2 mask

bit

D3
Normal/compre

ssed timing
Channel 3 has

reached TC

Verify/write/
read transfer Clear/set

channel 3 mask

bit

D4
Fixed/rotating

priority

Channel 0

request

Auto-

initialization
E/D

D5
Late/extended

write selection

Channel 0

request

Address

increment/
decrement

select

D6
DREQ sense

active high/low

Channel 0

request

D7
DACK sense

active high/low

Channel 0

request

Demand/single/

block/cascade

mode select

Not used

Not used

+
Direct Cache Access (DCA)

◼ DMA is not able to scale to meet the increased demand due

to dramatic increases in data rates for network I/O

◼ Demand is coming primarily from the widespread

deployment of 10-Gbps and 100-Gbps Ethernet switches to

handle massive amounts of data transfer to and from

database servers and other high-performance systems

◼ Another source of traffic comes from Wi-Fi in the gigabit

range

◼ Network Wi-Fi devices that handle 3.2 Gbps and 6.76 Gbps

are becoming widely available and producing demand on

enterprise systems

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Cache-Related Performance Issues

Network traffic is transmitted in the form of a sequence of protocol blocks called packets or protocol data
units

The lowest, or link, level protocol is typically Ethernet, so that each arriving and departing block of
data consists of an Ethernet packet containing as payload the higher-level protocol packet

The higher-level protocols are usually the Internet Protocol (IP), operating on top of Ethernet and
the Transmission Control Protocol (TCP), operating on top of IP

The Ethernet payload consists of a block of data with a TCP header and an IP header

For outgoing data, Ethernet packets are formed in a peripheral component, such as in I/O controller
or network interface controller (NIC)

For incoming traffic, the I/O controller strips off the Ethernet information and delivers the TCP/IP packet to
the host CPU

+
Cache-Related Performance Issues

For both outgoing
and incoming
traffic the core,
main memory,
and cache are all
involved

In a DMA scheme, when an
application wishes to transmit
data, it places that data in an
application-assigned buffer in
main memory

• The core transfers this to a system
buffer in main memory and creates the
necessary TCP and IP headers, which
are also buffered in system memory

• The packet is then picked up via DMA
for transfer via the NIC

• This activity engages not only main
memory but also the cache

• Similar transfers between system and
application buffers are required for
incoming traffic

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Packet Traffic Steps:

◼ Packet arrives

◼ DMA

◼ NIC interrupts host

◼ Retrieve descriptors and
headers

◼ Cache miss occurs

◼ Header is processed

◼ Payload transferred

◼ Packet transfer requested

◼ Packet created

◼ Output operation invoked

◼ DMA transfer

◼ NIC signals completion

◼ Driver frees buffer

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Incoming
Outgoing

+
Direct Cache Access Strategies

Much more substantial gains can be realized by avoiding
the system buffer in main memory altogether

Much more substantial gains can be realized by avoiding
the system buffer in main memory altogether

The packet and packet
descriptor information

are accessed only
once in the system
buffer by the core

For incoming packets,
the core reads the data

from the buffer and
transfers the packet

payload to an
application buffer

It has no need to
access that data in the

system buffer again
Cache injection

Implemented in Intel’s
Xeon processor line,
referred to as Direct

Data I/O

Simplest strategy was implemented as a prototype on a
number of Intel Xeon processors between 2006 and 2010
Simplest strategy was implemented as a prototype on a

number of Intel Xeon processors between 2006 and 2010

This form of DCA applies only to
incoming network traffic

The DCA function in the memory
controller sends a prefetch hint to the
core as soon as the data is available in

system memory

This enables the core to prefetch the
data packet from the system buffer

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Evolution of the I/O Function

1. The CPU directly controls a

peripheral device.

2. A controller or I/O module

is added. The CPU uses

programmed I/O without

interrupts.

3. Same configuration as in

step 2 is used, but now

interrupts are employed.

The CPU need not spend

time waiting for an I/O

operation to be performed,

thus increasing efficiency.

4. The I/O module is given direct
access to memory via DMA. It can
now move a block of data to or
from memory without involving
the CPU, except at the beginning
and end of the transfer.

5. The I/O module is enhanced to
become a processor in its own
right, with a specialized
instruction set tailored for I/O

6. The I/O module has a local

memory of its own and is, in fact, a

computer in its own right. With

this architecture a large set of I/O

devices can be controlled with

minimal CPU involvement.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Selector

channel

Control signal

path to CPU

Data and

address channel

to main memory

I/O

Controller

I/O

Controller

I/O

Controller

(a) Selector

(b) Multiplexor

Figure 7.18 I/O Channel Architecture

I/O

Controller

Multi-

plexor

channel

Control signal

path to CPU

Data and

address channel

to main memory

I/O

Controller

I/O

Controller

+ Universal Serial Bus (USB)
◼ Widely used for peripheral connections

◼ Is the default interface for slower speed devices

◼ Commonly used high-speed I/O

◼ Has gone through multiple generations

◼ USB 1.0

◼ Defined a Low Speed data rate of 1.5 Mbps and a Full Speed rate of 12 Mbps

◼ USB 2.0

◼ Provides a data rate of 480 Mbps

◼ USB 3.0

◼ Higher speed bus called SuperSpeed in parallel with the USB 2.0 bus

◼ Signaling speed of SuperSpeed is 5 Gbps, but due to signaling overhead the
usable data rate is up to 4 Gbps

◼ USB 3.1

◼ Includes a faster transfer mode called SuperSpeed+

◼ This transfer mode achieves a signaling rate of 10 Gbps and a theoretical
usable data rate of 9.7 Gbps

◼ Is controlled by a root host controller which attaches to devices to
create a local network with a hierarchical tree topology

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+ FireWire Serial Bus

◼ Was developed as an alternative to small computer system interface
(SCSI) to be used on smaller systems, such as personal computers,
workstations, and servers

◼ Objective was to meet the increasing demands for high I/O rates while
avoiding the bulky and expensive I/O channel technologies developed
for mainframe and supercomputer systems

◼ IEEE standard 1394, for a High Performance Serial Bus

◼ Uses a daisy chain configuration, with up to 63 devices connected off a
single port

◼ 1022 FireWire buses can be interconnected using bridges

◼ Provides for hot plugging which makes it possible to connect and
disconnect peripherals without having to power the computer system
down or reconfigure the system

◼ Provides for automatic configuration

◼ No terminations and the system automatically performs a configuration
function to assign addresses

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
SCSI

◼ Small Computer System Interface

◼ A once common standard for connecting peripheral devices to
small and medium-sized computers

◼ Has lost popularity to USB and FireWire in smaller systems

◼ High-speed versions remain popular for mass memory support
on enterprise systems

◼ Physical organization is a shared bus, which can support up
to 16 or 32 devices, depending on the generation of the
standard

◼ The bus provides for parallel transmission rather than serial,
with a bus width of 16 bits on earlier generations and 32 bits
on later generations

◼ Speeds range from 5 Mbps on the original SCSI-1
specification to 160 Mbps on SCSI-3 U3

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Thunderbolt

◼ Provides up to 10 Gbps

throughput in each direction

and up to 10 Watts of power to

connected peripherals

◼ Most recent and fastest

peripheral connection

technology to become available

for general-purpose use

◼ Developed by Intel with

collaboration from Apple

◼ The technology combines data,

video, audio, and power into a

single high-speed connection

for peripherals such as hard

drives, RAID arrays, video-

capture boxes, and network

interfaces

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
InfiniBand

◼ I/O specification aimed at the high-end server market

◼ First version was released in early 2001

◼ Heavily relied on by IBM zEnterprise series of mainframes

◼ Standard describes an architecture and specifications for data
flow among processors and intelligent I/O devices

◼ Has become a popular interface for storage area networking
and other large storage configurations

◼ Enables servers, remote storage, and other network devices to
be attached in a central fabric of switches and links

◼ The switch-based architecture can connect up to 64,000
servers, storage systems, and networking devices

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+

◼ High-speed bus system for

connecting peripherals of a

wide variety of types and

speeds

◼ Serial Advanced Technology

Attachment

◼ An interface for disk storage

systems

◼ Provides data rates of up to 6

Gbps, with a maximum per

device of 300 Mbps

◼ Widely used in desktop

computers and in industrial

and embedded applications

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

PCI Express

SATA

+
Ethernet

◼ Predominant wired

networking technology

◼ Has evolved to support data

rates up to 100 Gbps and

distances from a few meters to

tens of km

◼ Has become essential for

supporting personal

computers, workstations,

servers, and massive data

storage devices in

organizations large and small

◼ Began as an experimental

bus-based 3-Mbps system

◼ Has moved from bus-based to

switch-based

◼ Data rate has periodically

increased by an order of

magnitude

◼ There is a central switch

with all of the devices

connected directly to the

switch

◼ Ethernet systems are currently

available at speeds up to 100

Gbps

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+ Wi-Fi

◼ Is the predominant wireless
Internet access technology

◼ Now connects computers,
tablets, smart phones, and
other electronic devices such
as video cameras TVs and
thermostats

◼ In the enterprise has become
an essential means of
enhancing worker productivity
and network effectiveness

◼ Public hotspots have
expanded dramatically to
provide free Internet access in
most public places

◼ As the technology of

antennas, wireless

transmission techniques, and

wireless protocol design has

evolved, the IEEE 802.11

committee has been able to

introduce standards for new

versions of Wi-Fi at higher

speeds

◼ Current version is 802.11ac

(2014) with a maximum data

rate of 3.2 Gbps

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 7.19 IBM EC12 I/O Channel Subsystem Structure

Partition

≤ 15 partitions per channel subsystem

≤ 256 channels per channel subsystem

Subchannels

Channel Channel

Channel

Subsystem

Channel

Subsystem

Channel

Subsystem

Channel

Subsystem

Channel

Subsystem

4 channel

subsystems

Channel

Subsystem

Channel

Subsystem

Partition

Subchannels

Partition

Subchannels

Partition

Subchannels

≤ 60 partitions per system

≤ 1024 partitions per system

Channel Channel

+

Figure 7.20

IBM zEC12 I/O Frames-Front View

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 7.21 IBM EC12 I/O System Structure

Book 1 Book 2 Book 3 Book 4

PCIe I/O Drawer I/O Cage & I/O Drawer

PCIe

switch

PCIe

switch

PCIe

switch

PCIe

switch

InfiniBand

multiplexor

InfiniB and

multiplexor

Channels Ports

1-Gbps

Ethernet controller

Fibre Channel

controller

ESCON10-Gbps

Ethernet controller

Memory

PU PU PU

SC1, SCO

PCIe (8X)

PU PU PU

Memory

PU PU PU

SC1, SCO

PCIe (8X)

PU PU PU

Memory

PU PU PU

SC1, SCO

HCA2 (8X)

PU PU PU

Memory

PU PU PU

SC1, SCO

HCA2 (8X)

PU PU PU

+ Summary

◼ External devices

◼ Keyboard/monitor

◼ Disk drive

◼ I/O modules

◼ Module function

◼ I/O module structure

◼ Programmed I/O

◼ Overview of programmed I/O

◼ I/O commands/instructions

◼ Direct memory access

◼ Drawbacks of programmed and
interrupt-driven I/O

◼ DMA function

◼ Intel 8237A DMA controller

◼ Interrupt-driven I/O

◼ Interrupt processing

◼ Design issues

◼ Intel 82C59A interrupt controller

◼ Intel 82C55A programmable
peripheral interface

◼ Direct Cache Access

◼ DMA using shared last-level
cache

◼ Cache-related performance
issues

◼ Direct cache access strategies

◼ Direct data I/O

◼ I/O channels and processors

◼ The evolution of the I/O function

◼ Characteristics of I/O channels

Chapter 7

Input/Output

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

