SIFAT VOLUMETRIK FLUIDA MURNI

Bagian 1

Kaidah Fase Gibbs

Pada kesetimbangan fase dan tidak ada reaksi kimia, berlaku :

$$
F=2-\pi+N
$$

Dengan :
F = derajat kebebasan
$\pi=$ jumlah fase
$\mathrm{N}=$ jumlah komponen

$$
F=2-\pi+N
$$

Contoh:
a. Air (cair) seimbang dengan uapnya

$$
F=2-2+1=1
$$

b. Etanol-air (cair) seimbang dengan uapnya

$$
F=2-2+2=2
$$

c. Air (cair) seimbang dengan uap air dan gas Nitrogen

$$
F=2-2+2=2
$$

C.

(a)
a.

Derajat kebebasan pada titik tripel:

$$
\pi=3, N=1 \rightarrow F=2-3+1=0
$$

Jadi Titik Tripel sudah tertentu.

Pada kurva penguapan :
$\pi=2, N=1 \rightarrow \mathrm{~F}=2-2+1=1$
Jadi pd kurva penguapan kita bisa memilih T tertentu, atau P tertentu.
Tapi ingat hanya 1 pilihan T saja atau P saja, yg lain mengikuti saja.

a.

b.
$\int_{0}^{0}=$

SINGLE PHASE REGION

Persamaan Keadaan (Equation of State = EOS)

adalah:
Persamaan yang menunjukkan hubungan antara P, V dan T suatu zat atau

$$
f(P, V, T)=0
$$

Khas untuk tiap zat.

- An equation of state exists relating pressure, molar or specific volume, and temperature for any pure homogeneous fluid in equilibrium states.
- An equation of state may be solved for any one of the three quantities P, V, or T as a function of the other two.
- Example:

$$
d V=\left(\frac{\partial V}{\partial T}\right)_{P} d T+\left(\frac{\partial V}{\partial P}\right)_{T} d P
$$

Volume expansivity: $\beta \equiv \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P} \quad$ Isothermal compressibility: $\kappa \equiv-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}$

$$
\frac{d V}{V}=\beta d T-\kappa d P
$$

- For incompressible fluid, both β and κ are zero.
- For liquids β is almost positive (liquid water between $0^{\circ} \mathrm{C}$ and $4^{\circ} \mathrm{C}$ is an exception), and κ is necessarily positive.
- At conditions not close to the critical point, β and κ can be assumed constant:

$$
\ln \frac{V_{2}}{V_{1}}=\beta\left(T_{2}-T_{1}\right)-\kappa\left(P_{2}-P_{1}\right)
$$

GAS IDEAL

Gas Ideal

\checkmark EOS berbentuk: $\quad \mathrm{PV}=\mathrm{RT}$

$$
\text { atau } \mathrm{Z}=\mathrm{PV} / \mathrm{RT} \quad \text { dan } \mathrm{Z}=1
$$

dengan
Z = faktor kompresibilitas
$\mathrm{P}=$ pressure, Pa
$\mathrm{V}=$ volume molar, $\mathrm{m}^{3} / \mathrm{mol}$
$\mathrm{T}=$ temperature absolut, K
$R=$ konstanta gas umum,
$=8,314 \mathrm{~m}^{3} \mathrm{~Pa} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=8,314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Untuk satuan lain, lihat appendix A SVNA
$\checkmark \mathrm{U}=\mathrm{f}(\mathrm{T}) \rightarrow$ Energi dalam hanya fungsi suhu
\checkmark Berlaku pada tekanan sangat rendah

Hubungan antar Sifat pada
Gas Ideal

$$
\begin{aligned}
& C v=\left(\frac{\partial U}{\partial T}\right)_{V}=\frac{d U}{d T}=C v(T) \\
& H=U+P V=U(T)+R T=H(T) \\
& C p=\left(\frac{\partial H}{\partial T}\right)_{P}=\frac{d H}{d T}=C p(T) \\
& C p=\frac{d H}{d T}=\frac{d U}{d T}+\frac{d(R T)}{d T}=C v+R \rightarrow \quad C p=C v+R \\
& d U=C v d T \quad \Delta U=\int C v d T \\
& d H=C p d T \quad \Delta H=\int C p d T
\end{aligned}
$$

Contoh:

Hitung densitas gas Nitrogen pada tekanan 1 atm dan suhu $30^{\circ} \mathrm{C}$? (Asumsi: Gas ideal)
Jawab:
$\mathrm{R}=82,06 \mathrm{~cm}^{3} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$\mathrm{V}=\mathrm{RT} / \mathrm{P}=(82,06)(30+273,15) /(1)$
$=24876,49 \mathrm{~cm}^{3} / \mathrm{mol}$
$\mathrm{Mr} \mathrm{N}_{2}=28 \mathrm{~g} / \mathrm{mol}$
$\rho=(28 \mathrm{~g} / \mathrm{mol}) /\left(24876,49 \mathrm{~cm}^{3} / \mathrm{mol}\right)$
$=0,001144 \mathrm{~g} / \mathrm{cm}^{3}$

Perhitungan Proses dengan Persamaan Gas Ideal

Proses-proses yg akan dibahas (untuk sistem tertutup), a.I. :

1. Proses Isotermal
2. Proses Isobarik
3. Proses Isokhorik
4. Proses Adibatik

Proses Isotermal ($\Delta \mathrm{T}=0$)

$$
\Delta \mathrm{U}=\mathrm{Cv} \Delta \mathrm{~T}=0 \quad \text { ingat } \quad\left(\frac{\partial U}{\partial T}\right)_{V}=C v
$$

$\Delta \mathrm{H}=\mathrm{Cp} \Delta \mathrm{T}=0 \quad$ ingat $\quad\left(\frac{\partial H}{\partial T}\right)_{P}=C p$

$$
\begin{aligned}
& \Delta U=Q+W=0 \\
& \left.Q=-W=\int_{\mathrm{V}_{1}}^{\mathrm{v}_{2}} P d V \quad \text { (ingat } \quad P=\frac{R T}{V}\right) \\
& Q=-W=\int_{\mathrm{V}_{1}}^{\mathrm{v}_{2}} \frac{R T}{V} d V=R T \ln \frac{V_{2}}{V_{1}}
\end{aligned}
$$

$$
\text { (ingat } \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \text { dan } T_{2}=T_{1} \text { sehingga } \frac{V_{2}}{V_{1}}=\frac{P_{1}}{P_{2}} \text {) }
$$

$$
\begin{equation*}
Q=-W=R T \ln \frac{P_{1}}{P_{2}}=-R T \ln \frac{P_{2}}{P_{1}}=R T \ln \frac{V_{2}}{V_{1}} \tag{Ttetap}
\end{equation*}
$$

Proses Isobarik

$\Delta U=\int C v d T \quad$ dan $\quad \Delta H=\int C p d T$
$Q=\Delta H=\int C p d T(P$ tetap $)$

$$
\begin{aligned}
W & =-\int P d V=-P \int d V=-\int R d T=-R \int d T \\
& =-R\left(T_{2}-T_{1}\right)=-P\left(V_{2}-V_{1}\right)
\end{aligned}
$$

Cek dgn Hk I: $\Delta \mathrm{U}=\mathrm{Q}+\mathrm{W}$

$$
\begin{aligned}
& C v d T=C p d T-R d T \\
& C v=C p-R \rightarrow C p=C v+R
\end{aligned}
$$

Proses Isokhorik ($\Delta \mathrm{V}=0$)

$$
\begin{aligned}
& \Delta U=\int C V d T \quad \text { dan } \quad \Delta H=\int C p d T \\
& Q=\Delta U=\int C V d T \quad(V \text { tetap) } \\
& W=-\int P d V=0 \rightarrow W=0
\end{aligned}
$$

Cek dgn HkI: $\Delta \mathrm{U}=\mathrm{Q}+\neq \mathrm{W} \rightarrow \Delta \mathrm{U}=\mathrm{Q}$

Proses Adiabatik (Q=0)

$$
\begin{aligned}
& T V^{\gamma-1}=\text { tetap } \rightarrow T_{1} V_{1}^{\gamma-1}=T_{2} V_{2}^{\gamma-1} \\
& T P^{(1-\gamma) / \gamma}=\text { tetap } \\
& P V^{\gamma}=\text { tetap }
\end{aligned}
$$

$\gamma=1,67$ pada gas monoatomik ($\mathrm{He}, \mathrm{Ne}, \mathrm{Ar} d s b$)
$\gamma=1,4$ pada gas diatomik ($\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}$)
$\gamma=1,3$ pada gas poli atomik sederhana $\left(\mathrm{CO}_{2}, \mathrm{SO}_{2}, \mathrm{NH}_{3}, \mathrm{CH}_{4}\right)$

Proses Adiabatik (lanjutan)

dari Hk I: $\quad \Delta U=Q+W \rightarrow W=\Delta U$

$$
W=\int C v d T=C v \Delta T \quad\left(C v=\frac{R}{\gamma-1}\right)
$$

$$
=\frac{R}{\gamma-1} \Delta T=\frac{R T_{2}-R T_{1}}{\gamma-1}=\frac{P_{2} V_{2}-P_{1} V_{1}}{\gamma-1}
$$

$$
W=\frac{P_{1} V_{1}}{\gamma-1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\frac{\gamma-1}{\gamma}}-1\right]=\frac{R T_{1}}{\gamma-1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\frac{\gamma-1}{\gamma}}-1\right]
$$

Irreversible Process

- The work of an irreversible process is calculated:
- First, the work is determined for a mechanically reversible process.
- Second, the result is multiple or divided by an efficiency to give the actual work.

Ex. 1 Air is compressed from an initial condition of 1 bar and $25^{\circ} \mathrm{C}$ to a final state of 5 bar and $25^{\circ} \mathrm{C}$ by three different mechanically reversible processes in a closed system. (1) heating at constant volume followed by cooling at constant pressure; (2) isothermal compression; (3) adiabatic compression followed by cooling at constant volume. Assume air to be an ideal gas with the constant heat capacities, $\mathrm{C}_{\mathrm{V}}=$ $(5 / 2) R$ and $C_{P}=(7 / 2) R$. Calculate the work required, heat transferred, and the changes in internal energy and enthalpy of the air in each process.

Choose the system as 1 mol of air, contained in an imaginary frictionless piston /cylinder arrangement.

For $\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} . \mathrm{K}, \mathrm{C}_{\mathrm{V}}=20.785, \mathrm{C}_{\mathrm{P}}=29.099 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$

The initial and final molar volumes are: $\mathrm{V}_{1}=0.02479 \mathrm{~m}^{3}$ and $\mathrm{V}_{2}=0.004958 \mathrm{~m}^{3}$ The initial and final temperatures are identical: $\Delta \mathrm{U}=\Delta \mathrm{H}=0$
(1) $\mathrm{Q}=\mathrm{C}_{\mathrm{V}} \Delta \mathrm{T}+\mathrm{C}_{\mathrm{P}} \Delta \mathrm{T}=-9915 \mathrm{~J} ; \mathrm{W}=\Delta \mathrm{U}-\mathrm{Q}=9915 \mathrm{~J}$
(2) $Q=-W=R T \ln \left(\frac{P_{1}}{P_{2}}\right)=-3990 \quad \mathrm{~J}$
(3) adiabatic compression: $\begin{aligned} & T_{2}=T_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1}=567.57 \mathrm{~K} \\ & P_{2}=P_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma}=9.52 \mathrm{bar} \\ & W=C_{V} \Delta T=5600 \mathrm{~J}\end{aligned}$
cooling at constant $\mathrm{V}, \mathrm{W}=0$.
overall, $\mathrm{W}=5600 \mathrm{~J}, \mathrm{Q}=\Delta \mathrm{U}-\mathrm{W}=-5600 \mathrm{~J}$.

An ideal gas undergoes the following sequence of mechanically reversible processes in a closed system:
(1) From an initial state of $70^{\circ} \mathrm{C}$ and 1 bar, it is compressed adiabatically to $150{ }^{\circ} \mathrm{C}$.
(2) It is then cooled from 150 to $70^{\circ} \mathrm{C}$ at constant pressure.
(3) Finally, it is expanded isothermally to its original state.

Calculate $\mathrm{W}, \mathrm{Q}, \Delta \mathrm{U}$, and $\Delta \mathrm{H}$ for each of the three processes and for the entire cycle. Take $C_{V}=(3 / 2) R$ and $C_{P}=(5 / 2) R$. If these processes are carried out irreversibly but so as to accomplish exactly the same changes of state (i.e. the same changes in P, T, U , and H), then different values of Q and W result. Calculate Q and W if each step is carried out with an efficiency of 80%.

Choose the system as 1 mol of air, contained in an imaginary frictionless piston /cylinder arrangement. For $\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} . \mathrm{K}, \mathrm{C}_{\mathrm{V}}=12.471, \mathrm{C}_{\mathrm{P}}=20.785 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$
(1) For an ideal gas undergoing adiabatic compression, $\mathrm{Q}=0$

$$
\begin{aligned}
& \Delta \mathrm{U}=\mathrm{W}=\mathrm{C}_{\mathrm{V}} \Delta \mathrm{~T}=12.471(150-70)=998 \mathrm{~J} \\
& \Delta \mathrm{H}=\mathrm{C}_{\mathrm{P}} \Delta \mathrm{~T}=20.785(150-70)=1663 \mathrm{~J} \\
& P_{2}=P_{1}\left(\frac{T_{2}}{T_{1}}\right)^{\gamma /(\gamma-1)}=1.689 \mathrm{bar}
\end{aligned}
$$

(2) For the constant-pressure process:

$$
\begin{aligned}
& \mathrm{Q}=\Delta \mathrm{H}=\mathrm{C}_{\mathrm{P}} \Delta \mathrm{~T}=20.785(70-150)=-1663 \mathrm{~J} \\
& \Delta \mathrm{U}=\mathrm{C}_{\mathrm{V}} \Delta \mathrm{~T}=12.471(70-150)=-998 \mathrm{~J} \\
& \mathrm{~W}=\Delta \mathrm{U}-\mathrm{Q}=665 \mathrm{~J}
\end{aligned}
$$

(3) Isotherm process, $\Delta \mathrm{U}$ and $\Delta \mathrm{H}$ are zero:

$$
Q=-W=R T \ln \left(\frac{P_{3}}{P_{1}}\right)=1495 \mathrm{~J}
$$

(4) Overall: $\mathrm{Q}=0-1663+1495=-168 \mathrm{~J}$

$$
\begin{aligned}
& \mathrm{W}=998+665-1495=168 \mathrm{~J} \\
& \Delta \mathrm{U}=0 \\
& \Delta \mathrm{H}=0
\end{aligned}
$$

Irreversible processes:
(1) For 80% efficiency:
$\mathrm{W}($ irreversible $)=\mathrm{W}($ reversible $) / 0.8=1248 \mathrm{~J}$
$\Delta \mathrm{U}($ irreversible $)=\Delta \mathrm{U}($ reversible $)=998 \mathrm{~J}$
$\mathrm{Q}($ irreversible $)=\Delta \mathrm{U}-\mathrm{W}=-250 \mathrm{~J}$
(2) For 80% efficiency:
$\mathrm{W}($ irreversible $)=\mathrm{W}($ reversible $) / 0.8=831 \mathrm{~J}$

$$
\Delta \mathrm{U}=\mathrm{C}_{\mathrm{V}} \Delta \mathrm{~T}=12.471(70-150)=-998 \mathrm{~J}
$$

$$
\mathrm{Q}=\Delta \mathrm{U}-\mathrm{W}=-998-831=-1829 \mathrm{~J}
$$

(3) Isotherm process, $\Delta \mathrm{U}$ and $\Delta \mathrm{H}$ are zero:
$\mathrm{W}($ irreversible $)=\mathrm{W}($ reversible $) \times 0.8=-1196 \mathrm{~J}$
$\mathrm{Q}=\Delta \mathrm{U}-\mathrm{W}=1196 \mathrm{~J}$
(4) Overall: $\mathrm{Q}=-250-1829+1196=-883 \mathrm{~J}$
$\mathrm{W}=1248+831-1196=883 \mathrm{~J}$
$\Delta \mathrm{U}=0$
$\Delta \mathrm{H}=0$
The total work required when the cycle consists of three irreversible steps is more than 5 times the total work required when the steps are mechanically reversible, even though each irreversible step is assumed 80% efficient.

A 400 g mass of nitrogen at $27^{\circ} \mathrm{C}$ is held in a vertical cylinder by a frictionless piston. The weight of the piston makes the pressure of the nitrogen 0.35 bar higher than that of the surrounding atmosphere, which is at 1 bar and $27^{\circ} \mathrm{C}$. Take $\mathrm{C}_{\mathrm{V}}=(5 / 2) \mathrm{R}$ and $\mathrm{C}_{\mathrm{P}}=(7 / 2) \mathrm{R}$. Consider the following sequence of processes:
(1) Immersed in an ice/water bath and comes to equilibrium
(2) Compressed reversibly at the constant temperature of $0^{\circ} \mathrm{C}$ until the gas volume reaches onehalf the value at the end of step (1) and fixed the piston by latches
(3) Removed from the ice/water bath and comes to equilibrium to thermal equilibrium with the surrounding atmosphere
(4) Remove the latches and the apparatus return to complete equilibrium with its surroundings. Nitrogen may be considered an ideal gas. Calculate $\mathrm{W}, \mathrm{Q}, \Delta \mathrm{U}$, and $\Delta \mathrm{H}$ for each step of the cycle.

The steps:

(1) $27^{\circ} \mathrm{C}, 1.35 \mathrm{bar} \xrightarrow{\text { const } P} 0^{\circ} \mathrm{C}, 1.35 \mathrm{bar}$
(2) $0^{\circ} C, V_{2} \xrightarrow{\text { const } T} 0^{\circ} C, V_{3}=\frac{1}{2} V_{2}$
(3) $0^{\circ} C, V_{3} \xrightarrow{\text { const } V} 27^{\circ} \mathrm{C}, V_{4}=V_{3}$
(4) $27^{\circ} \mathrm{C}, \mathrm{P}_{4} \xrightarrow{T_{4}=T_{1}} 27^{\circ} \mathrm{C}, 1.35 \mathrm{bar}$

$$
n=\frac{m}{M}=14.286 \mathrm{~mol}
$$

-

(1) $W_{1}=-n \int P d V=-n P \Delta V=-n R \Delta T=3207 J \quad Q_{1}=n \Delta H_{1}=n C_{P} \Delta T=11224 J$

$$
n \Delta U_{1}=Q_{1}+W_{1}=-11224+3207=-8017 \mathrm{~J}
$$

(2) $\Delta U_{2}=\Delta H_{2}=0 \quad Q_{2}=-W_{2}=n R T \ln \frac{V_{3}}{V_{2}}=-22487 \mathrm{~J}$
(3) $W_{3}=0 \quad Q_{3}=n \Delta U_{3}=n C_{V} \Delta T=8017 \mathrm{~J} \quad n \Delta H_{3}=n C_{P} \Delta T=11224 \mathrm{~J}$
(4) the oscillation of the piston \rightarrow irreversible process with $T_{4}=T_{1}$

$$
\Delta U_{4}=\Delta H_{4}=0 \quad Q_{4}=-W_{4}
$$

Ex. 4
Air flows at a steady rate through a horizontal insulated pipe which contains a partly closed valve. The conditions of the air upstream from the valve are $20^{\circ} \mathrm{C}$ and 6 bar, and the downstream pressure is 3 bar. The line leaving the valve is enough larger than the entrance line so that the kinetic-energy change as it flows through the valve is negligible. If air is regarded as an ideal gas, what is the temperature of the air some distance downstream from the valve?

Flow through a partly closed valve is known as a throttling process.
For steady flow system:

The result that $\Delta \mathrm{H}=0$ is general for a throttling process.

If the flow rate of the air is $1 \mathrm{~mol} / \mathrm{s}$ and if the pipe has an inner diameter of 5 cm , both upstream and downstream from the valve, what is the kinetic-energy change of the air and what is its temperature change? For air, $C_{P}=(7 / 2) R$ and the molar mass is $\mathrm{M}=29 \mathrm{~g} / \mathrm{mol}$.

Upstream molar volume:

$$
V_{1}=\frac{R T_{1}}{P_{1}}=\frac{83.14 \times 293.15}{6} \times 10^{-6}=4.062 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{mol} \quad u_{1}=n \frac{1}{A \rho}=n \frac{V}{A}=2.069 \mathrm{~m} / \mathrm{s}
$$

Downstream molar volume:

$$
V_{2}=2 V_{1} \quad u_{2}=2 u_{1}=4.138 \mathrm{~m} / \mathrm{s}
$$

The rate of the change in kinetic energy:

$$
\dot{m} \Delta\left(\frac{1}{2} u^{2}\right)=\dot{n} M\left(\frac{1}{2} u^{2}\right)=\left(1 \times 29 \times 10^{-3}\right) \frac{\left(4.138^{2}-2.069^{2}\right)}{2}=0.186 \mathrm{~J} / \mathrm{s}
$$

$$
\frac{d(m \not \subset)_{c v}}{d t}+\Delta\left[\left(H+\frac{1}{2} u^{2}+z\right) \dot{m}\right]_{f s}=\dot{\mathscr{Q}}+\dot{W} \quad \underset{\dot{m}\left(\frac{C_{P}}{M} \Delta T+\Delta\left(\frac{1}{2} u^{2}\right)\right)=0}{\downarrow}
$$

