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Overview 

 Renewable Energy 

 Renewable Energy Sources 

 Grid Integration 

 Renewable Energy Issues 

 Renewable Energy Research 

 Storage 

 Integration 

 Prediction 
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The Big Picture 

 Renewable energy use growing 
 13% of total electricity in 2000  34.2% in 2012 (not including biogas) 

 >2x growth in annual electrical energy output since 2010 
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Renewable Energy Sources 

 Types 
 Solar-electric 

 Wind 

 Hydroelectric 

 Fuel Cell/Biomass 

 Solar-heat 

 Geothermal 

 Uses 
 Direct-electric 

 Heat/combustion electric 

[1] http://www.nationalatlas.gov/articles/people/a_energy.htm 
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Renewable Energy at the Load 

 Load-level, distributed 
generation 
 Solar[2]: 

 Grid Tie 

 Off-grid 

 Battery backup 

 Varying costs: 
 $5000-$25000 

 

 Wind: 
 400-6000W commercially available 

systems 

 Capital costs: $500-10k turbine costs[3] 

 Additional inverter, regulator, 
transmission costs 

[2] http://www.wholesalesolar.com/grid-tie-battery-backup.html 

[3] http://bergey.com/wind-school/residential-wind-energy-systems 

[4] R. Miller, "Wind-Powered Data Center Planned," Data Center Knowledge, 20 July 2009. [Online]. Available: 

http://www.datacenterknowledge.com/archives/2009/07/20/wind-powered-data-center-planned/. 
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Renewable Energy at the Utility 

 Larger sources 

 Combined Heat & Power (CHP) 

 

 Decoupled from grid, separated by: 
 Storage elements 

 Inverters (intermediate, grid-tie) 

 Converters (step-up or step-down) 

 

 Voltage and Phase control 
 Physical control (sluice control,  

turbine resistance, heat  
exchanger flow control) 

 Electrical buffering (storage, 
flywheels, inversion) 
 

 Varying cold-start & ramp-up times 
 Sub-second control (solid-state inverters) to several-hours ahead (CHP cold-start) 

[5] http://www.mapsearch.com/gis-asset-data/renewable-energy-gis-data.html 
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Grid Integration – AC Generators 

 Found in wind turbines, smaller hydroelectric, etc. – sources that are turbine-
connected. 

 Progression: 
 One-phase AC output from generator, with fine control (turbine speed, current, 

excitation) 

 Switching semiconductor or capacitor-based Voltage Source Converter (VSC) 
with further grid adjustment control (semiconductor switching speed, current) 

 Three-phase grid output 

[6] http://www.rpi.edu/cfes/news-and-events/Seminars/06%20Sun.pdf 
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Grid Integration – Load-level 

8 

Solar: 

Wind: 
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Grid Integration – Grid-tie Inverter 

 Single- or 3-phase, 

synchronous inverter, to allow 

connection back into the grid 

 Seamless integration with 

utility power in grid-connected 

loads: 

 Pull from the grid when local 

renewables are insufficient 

 Push back into the grid at 

overcapacity (net metering, 

etc.) 

 Grid connect/disconnect 

response time: ~100ms 

 
[7] http://solar.smps.us/grid-tie-inverter-schematic.html 
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Grid Integration – High-Voltage DC 

 Direct-drive offshore wind + HVDC 

 Efficient for offshore, due to long distances and HV generation 

 Conversion downstream for grid integration or: 

 (potentially) direct use for DC Micro Grids 

 Thyristors: solid-state “switch” to connect HVDC to AC Grid 
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Renewable Energy Issues 

 Efficiency: 
 Solar: up to 16% 

 Wind: up to 40%, realistically 20% capacity factor. 

 Biofuel: 20%, though up to 80% (best CHP generation) 

 Turbine-based generation suffers additional generator efficiency 

 

 Variability! 
 Try to mitigate with storage (next section) or prediction 

 Grid-tied integration for immediate use 

 

 Distribution & Transmission: 
 Grid accountability for distributed integration 

 Reverse power-flow support 

 Variability = secondary predictive supply/demand issues for utility 
providers 
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Energy Storage in Grid 

Source: EPRI 
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Energy Storage Technologies 

 Mechanical 

 Pumped hydro, compressed air, flywheel 

 Electromagnetic 

 Super-capacitors 

 Chemical 

 Fossil fuel, biomass 

 Thermal 

 Heat pump 

 Electrochemical 

 Batteries 
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Market Share of Energy Storage Devices 
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Some Energy Storage Properties 

1. Nominal discharge power 

2. Discharge duration 

3. Round-trip efficiency 

4. Lifetime, i.e. “State-of-Health”, performance 

5. Energy and power density 

6. Standby losses 

7. Cost: Capital vs. operational 
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Pumped Hydro 

 Operation 
 Use off-peak electricity to pump water to a reservoir at high 

elevation 

 When electricity is needed, water is released hydroelectric 
turbines into low reservoir 

 Features 
 Siting is limited 

 Round-trip efficiency between 70% - 85% 
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Compressed Air Energy Storage 

(CAES) 

 Operation 

 Use off-peak electricity to compress air & store in reservoir 

 Underground cavern 

 Aboveground vessel 

 When electricity is needed, compressed air is heated, 

expanded, and directed thru conventional turbine-

generator 

 Features 

 Efficiency < 70% 

 Siting is limited 

 Adiabatic CAES 

 Little or no fossil fuel 
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Batteries 

 Lead-acid battery 
 Types 

 Flooded 

 Sealed (VRLA) 

 Applications 
 Starting/lighting/ignition 

 Industrial 
 Traction (Motive Power) 

 Stationary (UPS, backup) 

 Portable 

 Issues 
 Short lifetime cycle 

 Deep discharge and/or 
temperature issues 

 Sodium sulfur battery 

 Operates at high 
temperature 

 High energy density 

 High efficiency, ~85 

 Inexpensive 

 Used for grid storage in 
USA and Japan 

 Other applications 

 Space applications 

 Transport and heavy 
machinery 
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Batteries 

 Lithium ion battery 

 Developed with many 

different materials 

 High energy density and 

efficiency, ~90% 

 Small standby loss 

 Applications 

 Consumer electronics 

 Transportation 

 Recently: Electric 

vehicle - Aerospace 

 

 

 

 Nickel cadmium battery 

 Good cycle life 

 Good perf. at low temp. 

 Good perf. with high 
discharge rate 

 Expensive! 

 Memory effect 

 Environmental impact of 
heavy metal cadmium 

 Applications 

 Standby power 

 Electric vehicles 

 Aircraft starting batteries 
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Super-capacitors 

 Long life, with little degradation over hundreds of thousands of 
charge cycles 

 Low cost per cycle 

 Fast charge and discharge 

 High output power but low energy density 
 Power systems that require very short, high current 

 No danger of overcharging, thus no need for full-charge 
detection 

 
 High self-discharge 

 Rapid voltage drop 

 Applications 
 General automotive 

 Heavy transport 

 Battery complement  Hybrid 
energy storage systems 
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Flywheel 

 Operation 

 Store kinetic energy in a spinning 
rotor made of advanced high-
strength material, charged and 
discharged through a generator 

 Charge by drawing electricity from 
grid to increase rotational speed 

 Discharge by generating electricity 
as the wheel’s rotation slows 

 Features 

 Limitations to energy stored 

 Primarily for power applications  

 High round-trip efficiency (~85%) 

 Source: Beacon Power 
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Application Classification 

Source: ESA 
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Capital Cost Comparison 

Source: ESA 
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Electric Supply Applications 

 Electric Energy Time Shift 

 When inexpensive: purchase energy from wholesale 

 When expensive: resell to market or offset need to buy 

 Electric Supply Capacity (aka 

Asset Utilization) 

 Defer peak capacity investment 

 Provide system capacity/resource 

adequacy (offset need for 

generation equipment) 

 

Energy storage will increase asset 

utilization for generation and transmission 

and reduce the number of “peaker” power 

plants 
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Ancillary Service Applications 

 Area (frequency) regulation 
 Helps managing moment-to-moment 

variations within a controlled area 

 “interchange” flows between areas  

 

 Load following 

 Helps grid to adjust its output level 

 Backup for grid to isolate the frequent and rapid power changes 
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End-user Applications 

 Time-of-use Energy Cost management  
 Discharge when the energy is more expensive 

 Electric Service Reliability (UPS) 
 Provide energy outage management 

 Electric Service Power Quality 
 Protect on-site loads downstream (from storage) against short-term 

events that affect the quality of power delivered 

 

 Source: Sandia Lab (2010) 
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Renewable Energy Integration 

Applications 

 Renewable Capacity Firming  

 Use intermittent electric supply source as a nearly constant power source  

 Wind Generation Integration 

 Improve power quality by reducing output variability 

 Backup when not enough wind energy 

 

 

Eg: Rokkasho Windfarm (JP), 51 MW Wind, 

34 MW/7hr NaS Storage  

 Renewable Energy Time-shift  

 Charge using low-value energy  

 Discharge used by owner, sold on 

spot market or PPA  

 Enhance the value of energy to 

increase profits 
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Storage Device vs. Application Domain 

Source: EPRI (2010) 
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Renewable Energy Efficiency 

 Very low efficiency, even compared to fossil-fuel 
generation 

 Technology improvements: 
 Solar: 

 Multi-axis tracking and control[8] 

 Improved concentrator/CHP output (photovoltaic/thermal – 
PVT)[9] 

 Efficiency/yield improvements[10] and new PV cell types[11]. 

 

 Other Technologies: 
 Improved efficiency/yield 

 Biological/cellular biofuel – re-engineer micro-organisms to 
generate alkanes, alcohols, hydroxyl groups as byproducts. 

 Wave and tidal stream generation – utility-scale 

 Nanotechnology filtration for refining/producing methanols  
 [8] Venkata et al. “Design and Development of an Automated Multi Axis Solar Tracker Using PLC”. 2013. 

[9] Chow, T.T. “A review on photovoltaic/thermal hybrid solar technology”. 2011 

[10] Jupe et al. "Increasing the energy yield of generation from new and renewable energy sources". 

[11] http://news.yale.edu/2013/02/13/new-carbon-films-improve-prospects-solar-energy-devices 
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Variability Mitigation via Prediction 

 Numerical Weather Prediction[12] (<20% error): 
 High-computation, data-intensive models to 

output different variables 

 Spatial prediction of variables 

 Succeeded by power prediction via other 
algorithms: 
 Time Series Analysis (TSA) 

 Machine-learning algorithms (ANN, MOS) 

 

 Direct Measurement[13] (<10% error) 
 Cloud tracking for very granular (30s) prediction  

[12] R. Marquez and C.F.M. Coimbra (2013) “Intra-Hour DNI Forecasting Methodology Based on Cloud Tracking Image Analysis” (2013) 

[13] P. Mathieson, J. Kleissl, "Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States," 2011 
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Optimum Battery Chemistry Selection 

 Barnes et al. “Optimal Battery Chemistry, Capacity 

Selection under Time of Use Pricing” IGST Europe 2011 
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PV Integration 

 Problems 
 Voltage regulation 

 Peak shaving 

 Cost of energy storage 

 Location 

 
Tant et al. “Multiobjective Battery Storage to Improve PV 

Integration in Residential Distribution Grids”, IEEE 
Transactions on Sustainable Energy 2013 
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Wind Integration 

 Problems 
 High variability  

 Large amount of instantaneous 
generation 

 
 Atwa et al. “Optimal Allocation of ESS in Distribution Systems 

With a High Penetration of Wind Energy”, IEEE Transactions on 
Power Systems 2010 
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Grid Upgrade Deferring 

 Problem 
 With more generation, the grid might need upgrades to keep up with the generation 

 
 Celli et al. “Optimal Integration of Energy Storage in Distribution Networks”, PowerTech 2009 

 

 
Infrastructure cost 

Cost of energy losses 

Battery cost Upgrade cost 
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Hybrid Storage Devices 
 Battery + super-capacitors 

 Energy vs. power demand 

 Capacity planning along with PV 

 
 Glavin et al. “Optimization of Autonomous Hybrid Energy 

Storage System for Photovoltaic Applications”, ECCE 2009 

LPSP: Loss of power supply probability  
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Applicability of Storage Devices 

Wang et al. “Energy Storage in Datacenters: What, Where, and How much?”, SIGMETRICS 2012 

 This research is specific for data centers but the main idea is 

applicable to different domains as well 
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Moving forward… 

 Optimality of renewable sources + energy storage: 

 Type 

 Capacity 

 Configuration 

 Energy Storage Implications on the Grid 

 Prediction of loads/sources  more efficient grid use 

 Energy distribution to loads/storage elements: 

 Pricing 

 Availability (home and utility) 

 Capacity 

 Load needs/rescheduling 
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Solar-Electric Energy Potential 
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Wind Energy Potential 
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Hydroelectric Energy Potential 
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Geothermal Potential 
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Reasons for Energy Storage 

 Smart Grid 

 Increasing use of 

Demand Response 

 Commonly available 

electricity price signals 

 Regulatory incentives 

 Transmission capacity 

constraints 

 Increasing usage of 

electric vehicles 

 Increasing usage of 

renewable energy 

sources 

 Distributed energy 

sources 

 Environmental concerns 

due to fossil-based fuel 

use 

 Advancements in 

storage technology 
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Weight/Volume vs. Energy Density 

Source: ESA 
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Application Classification 

 Power vs. Energy Application 
 Power 

 High power output usually for a short periods of time (a few sec to a few 
min) 

 Capacitors (super-capacitors), flywheels, some batteries 

 Energy 
 Require relatively high amounts of energy, often for discharge duration of 

many minutes to hours 

 Pumped hydro, CAES, some batteries 

 

 Capacity vs. Energy Application 
 Capacity 

 Storage used to defer or reduce the need for other equipment  

 Typically limited amounts of energy discharge throughout the year 

 Energy 
 Significant amount of energy stored and discharged throughout the year 

 Efficiency important or else energy losses will offset benefits 
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Energy Storage Applications in Grid 

1. Electric supply 

2. Ancillary services 

3. Grid system 

4. End-user/Utility customers 

5. Renewable energy integration 

 

Source: Sandia National Lab (2010)  
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Ancillary Service Applications 

 Load following 

 Helps grid to adjust its output level 

 Area (frequency) regulation 

 Helps managing moment-to-moment variations within a 

controlled area and “interchange” flows between areas  

 Electric supply reserve capacity 

 Increased reliability with more energy available 

 Voltage support (Grid stabilization) 

 Maintain voltage levels within required stability 
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Ancillary Service Applications 

 Load following 

 Helps grid to adjust its output level 

 

When there are severe changes in total load associated with a region or 

a specific user, an electricity storage system can act as a buffer isolating 

the rest of the power grid from the frequent and rapid power changes.  
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Grid System Applications 

 Transmission support 

 Compensate for electrical anomalies and disturbances in 
sub-second response 

 Transmission congestion relief 

 Discharge during peak demand: reduce transmission 
capacity requirement 

 Transmission and Distribution Upgrade Deferral 

 Small amount of storage can provide enough incremental 
capacity to defer the need for a large ‘lump’ investment in 
grid equipment 

 Substation On-site Power 

 Provide power to switching components, communications, 
controls when grid is down 
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Energy Storage Challenges in Grid  

 Relatively high cost per kW installed and cost of stored 

electricity 

 Most technologies are not commercialized or mature  

 Financing of any ‘new’ technology is challenging 

 Lack of regulatory rules 

 Inefficient electric energy and services pricing 

 Permitting and siting rules and regulation 

 Limited risk/reward mechanisms between utility-customers and 

utility-third parties 

 Existing utility biases: technologically risk averse  


