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The discipline
• Principles: “Fluid mechanics” and “Thermodynamics”

• Contrast

– Flow process inevitably result from pressure gradients 
within the fluid. Moreover, temperature, velocity, and 
even concentration gradients may exist within the 
flowing fluid.

– Uniform conditions that prevail at equilibrium in closed 
system.

• Local state 

– An equation of state applied locally and instantaneously 
at any point in a fluid system, and that one may invoke a 
concept of local state, independent of the concept of 
equilibrium.
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Duct flow of compressible fluids

• Equations interrelate the changes occurring in 
pressure, velocity, cross-sectional area, enthalpy, 
entropy, and specific volume of the flowing system.

• Consider a adiabatic, steady-state, one dimensional 
flow of a compressible fluid:flow of a compressible fluid:

• The continuity equation:
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Pipe flow
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For subsonic flow, M2 < 1,                           , the pressure decreases 
and the velocity increases in the direction of flow.  For subsonic 
flow, the maximum fluid velocity obtained in a pipe of constant 
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Consider the steady-state, adiabatic, irreversible flow of an incompressible liquid in a 
horizontal pipe of constant cross-sectional area. Show that (a) the velocity is constant. 
(b) the temperature increases in the direction of flow. (c) the pressure decreases in the 
direction of flow.

Control volume: a finite length of horizontal pipe, with entrance (1) and exit (2)

The continuity equation:
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Nozzles and Diffusers

A diffuser converts high 
speed, low pressure 

flow to low speed, high 
pressure flow

A nozzle converts high 
pressure, low speed 
flow to low pressure, 

high speed flow
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For subsonic flow in a converging nozzle, the velocity increases as the cross-sectional 
area diminishes. The maximum value is the speed of sound, reached at the throat.



0
1

1 2

2
=









−
+

dx

dA

A

u

dx

du
u

M

( ) 01
2

2 =−−
dx

dA

A

u

dx

dP
VM

isentropic
VdPudu −=

∫−=− 2

1

22
1

2
2

P

P
VdPuu

.constPV =γ























−

−
=−

−
γ

γ

γ
γ

1

1

2112
1

2
2 1

1

2

P

PVP
uu







−γ 11 P

cu =2
SV

P
Vc 









∂
∂−= 22

V

P

V

P

S

γ−=








∂
∂

.constPV =γ01 =u

1

1

2

1

2 −










+
=

γ
γ

γP

P



A high-velocity nozzle is designed to operate with steam at 700 kPa and 300°C. At the 
nozzle inlet the velocity is 30 m/s. Calculate values of the ratio A/A1 (where A1 is the 
cross-sectional area of the nozzle inlet) for the sections where the pressure is 600, 
500, 400, 300, and 200 kPa. Assume the nozzle operates isentropically.

The continuity equation:
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P (kPa) V (cm3/g) U (m/s) A/A1

700 371.39 30 1.0
600 418.25 282.3 0.120
500 481.26 411.2 0.095
400 571.23 523.0 0.088
300 711.93 633.0 0.091
200 970.04 752.2 0.104



Consider again the nozzle of the previous example, assuming now that steam behaves 
as an ideal gas. Calculate (a) the critical pressure ratio and the velocity at the throat. 
(b) the discharge pressure if a Mach number of 2.0 is required at the nozzle exhaust.

The ratio of specific heats for steam, 3.1=γ
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Throttling Process

Throttling
Valve

When a fluid flows through a restriction, 
such as an orifice, a partly closed valve, or a 
porous plug, without any appreciable 
change in kinetic or potential energy, the 
primary result of the process is a pressure 
drop in the fluid.drop in the fluid.
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Throttling Process (continued)

For most real gas at moderate conditions of temperature 
and pressure, a reduction in pressure at constant 
enthalpy results in a decrease in temperature. 

If a saturated liquid is throttled to a lower pressure, If a saturated liquid is throttled to a lower pressure, 
some of the liquid vaporizes or flashes, producing a 
mixture of saturated liquid and saturated vapor at the 
lower pressure. The large temperature drop results from 
evaporation of liquid. Throttling processesfind frequent 
application in refrigeration.



Propane gas at 20 bar and 400 K is throttled in a steady-state flow process to 1 bar. 
Estimate the final temperature of the propane and its entropy change. Properties of 
propane can be found from suitable generalized correlations.

Constant enthalpy process:
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Throttling a real gas from conditions of moderate temperature and pressure usually 
results in a temperature decrease. Under what conditions would an increase in 
temperature be expected.

Define the Joule/Thomson coefficient:
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Turbine (Expanders)

• A turbine (or expander):
– Consists of alternate sets of nozzles and rotating 

blades

– Vapor or gas flows in a steady-state expansion – Vapor or gas flows in a steady-state expansion 
process and overall effect is the efficient 
conversion of the internal energy of a high-
pressure stream into shaft work.
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A steam turbine with rated capacity of 56400 kW operates with steam 
at inlet conditions of 8600 kPa and 500°C, and discharge into a 
condenser at a pressure of 10 kPa. Assuming a turbine efficiency of 
0.75, determine the state of the steam at discharge and the mass rate of 
flow of the steam.
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A stream of ethylene gas at 300°C and 45 bar is expanded adiabatically 
in a turbine to 2 bar. Calculate the isentropic work produced. Find the 
properties of ethylene by: (a) equations for an ideal gas (b)appropriate 
generalized correlations.
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(b) General correlation
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• Pressure increases: compressors, pumps, fans, 
blowers, and vacuum pumps.

• Interested in the energy requirement
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Saturated-vapor steam at 100 kPa (tsat= 99.63 °C ) is compressed 
adiabatically to 300 kPa. If the compressor efficiency is 0.75, what is 
the work required and what is the work required and what are the 
properties of the discharge stream?

For saturated steam at 100 kPa:
Kkg

kJ
S

⋅
= 3598.71 kg

kJ
H 4.26751 =

Isentropic compression

kJ 300 kPa kJ ( ) kJ

Kkg

kJ
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⋅
==′ 3598.712
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kg

kJ
H 8.28882 =′ ( )
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kJ
H S 4.213=∆
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kJH
H S 5.284=∆=∆

ηkg

kJ
HHH 9.295912 =∆+=300 kPaCT o1.2462 =

Kkg

kJ
S

⋅
= 5019.72

kg

kJ
HWS 5.284=∆=



If methane (assumed to be an ideal gas) is compressed adiabatically 
from 20°C and 140 kPa to 560 kPa, estimate the work requirement and 
the discharge temperature of the methane. The compressor efficiency 
is 0.75.

RR

S

ig
P SS

P

P
R

T

T
CS 12

1

2

1

2 lnln −+−=∆
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iteration 4
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Pumps

• Liquids are usually moved by pumps. The same 
equations apply to adiabatic pumps as to adiabatic 
compressors.

• For an isentropic process: ( ) ∫=∆= 2

1

)(
P

PSs VdPHisentropicW

• With 
• For liquid,

–
–
–

( ) )()( 12 PPVHisentropicW Ss −=∆=
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T

dT
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T

T
CS P ∆−=∆ β
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Water at 45°C and 10 kPa enters an adiabatic pump and is discharged 
at a pressure of 8600 kPa. Assume the pump efficiency to be 0.75. 
Calculate the work of the pump, the temperature change of the water, 
and the entropy change of water.

kg

cm
V

3

1010=The saturated liquid water at 45°C:
K
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