Catalysis and Catalytic Reactors

Fogler— Chapter 10




Catalysts and Catalysis

A Catalyst is a substance that affects the rate of

chemical reaction but emerges from the process
unchanged.

Catalysis Is the occurrence, study, and use of
catalysts and catalytic processes.

Approximately 1/3 of the GNP of materials
produced in the U.S. involves a catalytic process.




Catalysts and Catalysis

Catalysts affect both selectivity and yield
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Catalysts and Catalysis

Different shapes and sizes of catalyst.

Material aktif = katalis
Support= Material yang tidak aktif tetapi dijadikan tempat menempel katalis

Promoter= Sejumlah kecil aktif material tambahan yang meningkatkan aktivitas katalis




Catalysts and Catalysis
Packed catalyst bed Catalyst pellet Catalyst pellet surface

Pores

Catalytic packed-bed reactor, schematic.
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Steps in a Catalytic Reaction

External
diffusion
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Active Sites

Reactions are not catalyzed over the entire
surface but only at certain active sites or centers
that result from unsaturated atoms in the surface.

An active site Is a point on the surface that can
form strong chemical bonds with an adsorbed
atom or molecule.
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Active Sites - Ethylidyne on Platinum

Pt (111) + ethylidyne

Figure 10-3 Ethylidyne as chemisorbed on platinum. (Adapted from G. A, Somorjai,
Introduction to Surface Chemistry and Catalysis, Wiley, New York, 1994.) /




The Adsorption Step

A+S T— A-S
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Vacant and occupied sites

For the system shown, the total concentration of sites is

Ci=C,+Crs*+Cpgs




The Adsorption Step

A+S AeS
F'ap = kAPACv } k-ACA-s — kA[PACV _CAoS / KA]
K,=k,/k , [atm™]
@ equilibrium: r,, =0 C,. =k,P,C,
ro/k,=0 C,. =k,P,C,
C, =C,+C,.=C,+K,P.C, =C, 1+ K,P,)

C =
1+K,P,C,
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Langmuir Adsorption Isotherm

Ct
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Langmuir Adsorption Isotherm

CA-S CA.S — KAPA
CT Increasing T Ct 1+ KAPA
Slope=k,\ =~
Langmuir Adsorption
| Isotherm
——————— PA
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The Surface Reaction Step

1. Single site. The surface reaction may be a single-site mechanism in
which only the site on which the reactant is adsorbed is involved in the
reaction. For example, an adsorbed molecule of A may isomerize (or
perhaps decompose) directly on the site to which it is attached, such as

-'N ‘.- "--'-‘.n
Al20O3 l Ak O3
N = n-pentene | = i-pentene
:’-'A.‘\'. r"‘.B."".
T A-S — B-S
Single site
Because in each step the reaction mechanism is elementary, the sur-
face reaction rate law 1is
Single Site
: ks |, -8
(IJ rs = Ks | LA.s—
kg'=|= Ks
g2
S

where Ky is the surface reaction equilibrium constant Kg = kg/k_g

K, = (dimensionless)

7 Y,
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The Surface Reaction Step_

2. Dual site. The surface reaction may be a dual-site mechanism in
which the adsorbed reactant interacts with another site (either unoccu-
pied or occupied) to form the product.

:" P A .................. } - {_.-'B‘._‘:
Dual site

For example, adsorbed A may react with an adjacent vacant site to
yield a vacant site and a site on which the product is adsorbed, such
as the dehydration of butanol.

C,H,OH -,

For the generic reaction

A'S+S —— B'S+S

the corresponding surface reaction rate law is

rs = kS [CA‘SCU_——CB]'(SCU] (10-
S
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The Surface Reaction Step

Dual Site the corresponding surface reaction rate law is
o mol ] C..C
<=
\gcat-s rs —_ ks CA SCU_ B-S“v
( Ks
.. g )
o=
mol -s : ) ; ;
Another example of a dual-site mechanism is the reaction between
Ks = (dimensionless) two adsorbed species, such as the reaction of CO with O
.'CO‘. /'o"- [002
Pt Pt Pt Pt

A-S+B:S —— C:S+D-S

Dual site

the corresponding surface reaction rate law is

Cc.sco.s)

rs = ks [CASCB-S" K
S




The Surface Reaction Step

A third dual-site mechanism is the reaction of two species adsorbed
on different types of sites S and S’, such as the reaction of CO with O.

CO .0, CO
{ AY i %

— |

N N~ NS
Pt Fe Pt Fe Pt Fe Pt Fe

For the generic reaction

:,-B..,_.',__,,_“\__,.-A‘-\__ :,»O..,'. D
DD 7Dt AS+BS§ — C-S'+D-S
Dual site

the corresponding surface reaction rate law is

Crnilc
_ v c.s’Cp.s
rs= ks | Caislpigm————
K
Langmuir- Reactions involving either single- or dual-site mechanisms, which

Hinshelwood

Veatics were described earlier are sometimes referred to as following Lang-

muir—Hinshelwood kinetics.

16




The Surface Reaction Step

3. Eley-Rideal. A third mechanism is the reaction between an adsorbed
molecule and a molecule in the gas phase, such as the reaction of pro-
pylene and benzene

He
CaHs, :'O". :'&'-.
® A ” PRSI
/'. "\.“ _— :"/' '-.‘.
%/7, % For the generic reaction
Eley-Rideal mechanism A-S + B(g) -
(—

the corresponding surface reaction rate law is

Ces
rs = ks |CysPa——2=
1 K
k= :
> latm-s
; This type of mechanism is referred to as an Eley-Rideal mechanism.
P L]
katm
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Steps in a Catalytic Reaction

External
diffusion

b ——— ——— —— —

Internal
diffusion




Desorption from the Surface for the Reactipn

L
A——>B+C J'""; . Jlnlll.
CeS C+S
Ipc = kD|:CCoS - II)ECU} (10-20)
DC
I'bc =TADC

1
Ko = ——
PE K,

I‘DC :kD [Cc.s _KCPCCU] (10_21>
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Steps in a Single-Site Catalytic Reactor

' C
Adsorption A+S <> AeS —r, =1, = kA{PACV _ ZAss }

A

- C
Surface Reaction AeS<>BeS —r,=r;=k; {CA.S _ ZBes }

C

Desorption BeS<B+S -—r,=r,=k; [CB-S —Kg PBCB]

Which step is the Rate Limiting Step (RLS)?
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The Rate Limiting Step:
Which step has the largest resistance?

RaD Rs Rp

Adsorption Surface Desorption
reaction

S

Electrical analog to heterogeneous reactions
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Collecting and Analyzing Data

Obtain data from
laboratory reactors
(ch. 5) L

7 N
- ~
/ ~

Synthesize Develop mechanlsm |
rate law and rate-limiting step
from data
Estimate rate law

Collecting information for catalytic reactor design

—"_"'-""\
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Collecting and Analyzing Data

| Spark Plug

K.l
SN

-
i

(=

=

1
Transducer 1+

=71 Spontaneous
=] Combustion t

o1

Calibration Curve Unknown

K.I.

100% heptane 100% iso octane 100

Octane Number Octane Number




atalytic Reformers

Normal Pentane Octane Number = 62 - > >
|Iso-Pentane Octane Number = 95

Gasoline
Cs 10%
Ce 10%
C; 20%
Cs 25%
Co 20%
Cio 10%
Cihz 3%

Platinum on alumina. (igure from R.I, Msl. Chemical Kinetics and Catalysis,
Wiley, New York, 2001, p 700)
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Catalytic Reformers

0.75 wt% Pt

n-pentane > j-pentane
Al,O,
_H2 A|203 +H2
n-pentane > N-pentene > i-pentene > > i-pentane
Pt Pt
Al,Oq
n-pentene i—pentene
N > |




Catalytic Reformers

Isomerization of n-pentene (N) to I-pentene (I) over alumina

Al,O,

1. Select a mechanism (Mechanism Single Site)

Adsorption on Surface: N+S< NeS
Surface Reaction: NeS~— | eS
Desorption: |leS <= | +S

Treat each reaction step as an elementary reaction when writing rate laws.
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Catalytic Reformers

2. Assume a rate-limiting step.

Choose the surface reaction first, since more than 75%
of all heterogenous reactions that are not diffusion-
limited are surface-reaction-limited. The rate law for the
surface reaction step Is:

NeS+S< |eS5+5

/

! CI
_ _ _ oS
—I, =1 =T _kS Cres —

Ks
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Catalytic Reformers

3. Find the expression for the concentrations of
the adsorbed species

Cy s and C, <. Use the other steps that are not limiting to
solve for C\ s and C, . For this reaction:

N+S< NeS
From ~22 ~Q: Ches = PyWKLC,
A
|leS <= |+S
From r_DzO: Cl.s:PI—CU:Klppo
kD I‘<D




Catalytic Reformers

4. Write a Site Balance.
C,=C +C.s+C,.c

5. Derive the rate law. Combine steps 2, 3 and 4 to
arrive at the rate law :
K

’ :ksCtKN(PN_PI/KP)
(1+K,P, +K,P)
r =1 = k(PN_PI/KP)
"7 (14K P, +K,P)
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Catalytic Conversion of Exhaust Gas

1994 2004 2008
HC 0.41 0.125 0.10
CO 3.4 3.4 3.4
NO 0.4 0.4 0.14

CO+NO — CO, +%N2
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Catalytic Conversion of Exhaust Gas

> C
NO +S(_ NO-S Mano = kNO|:PNOCV _ﬁ} Cros = KnoProCy
NO
- Ceos
CO°S(_CO°S Faco = Keo| PeoCy _K— Ceos =KeoPeoCy
co

CO+S+NO+S—>CO, +N*S+S 1, =K[Cr0sCrous]

- _ 2 2 _
NS+N+S N, (g)+25 o=k, |2 — Ky Py.C2]  Cus =CyfKyPy
(_ 2 2 2
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Catalytic Conversion of Exhaust Gas

15 = kg [Cno.sCco-s ]
>
15 = ksKnoKcoPrnoPeoCy

Ct =Cy +Cnoes + Cco.s + Cnies

=Cy + CyKyoPrno + CyKeoPeo +Cy \/KNQPN2
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Catalytic Conversion of Exhaust Gas

C. = C,
=
1+ K oPyo + KeoPeo +4/Ky, Py,
K
= = ksKNoKCOCt2 PNOPCO
NO ~— 'S 2
(1+ K voPro + KeoPeo +\/KN2PN2 )
_rr . kI:)NOF)CO
NO ~—

(1+ K woPyo + KcoPeo + /Ky, Py, )2




Catalytic Conversion of Exhaust Gas
kPyoPco

2

(1 +KyxoPno + KeoPco + \/KN2PN2 )

Neglect \/KNzPNZ

’ —
—INO =

kPnoPco

(1+KnoPno +KeoPeo )2

i |
—|-.,1|:'|, |
|

|

|

1 1
E MCH E 0

, —
—INO T




Catalytic Conversion of Exhaust Gas

’ —
—INO =

kPnoPco

(1+KynoPrno +KcoPeo )2

Find optimum partial pressure of CO

d(—vo) 0

“Twn

1+ KynoPro

Pco =
Kco

/N

3
EBIT

3
E{T]




