OSMOREGULATION

THE CONTROL OF WATER BALANCE

Osmoregulation

A combination of three factors:

Concentration

The concentration of the solutes dissolved in the boy fluid will influence osmosis

Volume

The volume of the body fluids will influence the pressure they exert

Composition

The different types of dissolved solutes will influence body function.

Conformers and Regulators

- Conformers
 change with their environment
- Their tissues must tolerate changes in solute concentration

Conformers and Regulators

• Regulators resist changes in the environment

They possess homeostatic mechanisms to

control their internal Mediu

concentration

Osmoregulator's Blood Solutes

Estuarine invertebrates

In estuaries the salt levels are always changing

Shore crab (Carcinus maenas)

© P Billiet

Estuarine invertebrates

Upogebia pugettensis

Neotrypaea californiensis

Mud Crab (Rhithropanopeus harrisii)

REGULATORS

Fluid compartments and exchange surfaces

NB volumes for a 70kg male

BODY FLUID BALANCE

- A mammal cannot stop breathing because it would suffocate
- A mammal cannot stop sweating because it would over heat
- It can reduce water loss by the kidneys
- It can add water to the body by drinking

Dehydration

Hyperhydration

Note: for a terrestrial animal this is a less likely situation and it is easy to lose water

Dehydration is more likely so the control system has evolved to saving or getting water