PERKEMBANGAN BATERAI

Prof. Dr. Eng. Agus Purwanto

SEJARAH BATERAI

1800	Voltaic pile: silver zinc
1836	Daniell cell: copper zinc
1859	Planté: rechargeable lead-acid cell
1868	Leclanché: carbon zinc wet cell
1888	Gassner: carbon zinc dry cell
1898	Commercial flashlight, D cell
1899	Junger: nickel cadmium cell

SEJARAH BATERAI

1946	Neumann: seal	led NiCd

1960s Alkaline, rechargeable NiCd

1970s Lithium, sealed lead acid

1990 Nickel metal hydride (NiMH)

1991 Lithium ion

1992 Rechargeable alkaline

1999 Lithium ion polymer

NOMENKLATUR BATERAI

Duracell batteries

Two cells

More precisely

9v battery

A real battery

6v dry cell

Another battery

SEL ELEKTROKIMIA

Sel Elektrokimia

• Zinc is (much) more easily oxidized than Copper

$$Zn \longrightarrow Zn^{2+} + 2e^-$$
 (I.)

$$Zn \longrightarrow Zn^{2+} + 2e^{-}$$
 (I.)
 $Cu^{2+} + 2e^{-} \longrightarrow Cu$ (II.)

- Maintain equilibrium electron densities
 - Add copper ions in solution to Half Cell II
- Salt bridge only carries negative ions
 - This is the limiting factor for current flow
 - Pick a low-resistance bridge

The Electrochemical Series

Most wants to reduce (gain electrons)

- Gold
- Mercury
- Silver
- Copper
- Lead
- Nickel
- Cadmium

But, there's a reason it's a *sodium* drop

- Iron
- Zinc
- Aluminum^o
- Magnesium
- Sodium
- Potassium
- Lithium

Most wants to oxidize (lose electrons)

Karakteristik Baterai

- Size
 - Physical: button, AAA, AA, C, D, ...
 - Energy density (watts per kg or cm³)
- Longevity
 - Capacity (Ah, for drain of C/10 at 20°C)
 - Number of recharge cycles
- Discharge characteristics (voltage drop)

Karakteristik Baterai

- Cost
- Behavioral factors
 - Temperature range (storage, operation)
 - Self discharge
 - Memory effect
- Environmental factors
 - Leakage, gassing, toxicity
 - Shock resistance

Primary (Disposable) Batteries

- Zinc carbon (flashlights, toys)
- Heavy duty zinc chloride (radios, recorders)
- Alkaline (all of the above)
- Lithium (photoflash)
- Silver, mercury oxide (hearing aid, watches)
- Zinc air

Standard Zinc Carbon Batteries

Chemistry

Zinc (-), manganese dioxide (+)

Zinc, ammonium chloride aqueous electrolyte

Features

- + Inexpensive, widely available
- Inefficient at high current drain
- Poor discharge curve (sloping)
- Poor performance at low temperatures

Heavy Duty Zinc Chloride Batteries

Chemistry

Zinc (-), manganese dioxide (+)

Zinc chloride aqueous electrolyte

• Features (compared to zinc carbon)

- + Better resistance to leakage
- + Better at high current drain
- + Better performance at low temperature

Standard Alkaline Batteries

Chemistry

Zinc (-), manganese dioxide (+)

Potassium hydroxide aqueous electrolyte

Features

- + 50-100% more energy than carbon zinc
- + Low self-discharge (10 year shelf life)
- ± Good for low current (< 400mA), long-life use
- Poor discharge curve

Alkaline-Manganese Batteries

(2)

Alkaline Battery Discharge

Lithium Manganese Dioxide

Chemistry

Lithium (-), manganese dioxide (+)

Alkali metal salt in organic solvent electrolyte

Features

- + High energy density
- + Long shelf life (20 years at 70°C)
- + Capable of high rate discharge
- Expensive

Lithium v Alkaline Discharge

Secondary (Rechargeable) Batteries

- Nickel cadmium
- Nickel metal hydride
- Alkaline
- Lithium ion
- Lithium ion polymer
- Lead acid

Nickel Cadmium Batteries

Chemistry

Cadmium (-), nickel hydroxide (+)

Potassium hydroxide aqueous electrolyte

Features

- + Rugged, long life, economical
- + Good high discharge rate (for power tools)
- Relatively low energy density
- Toxic

NiCd Recharging

- Over 1000 cycles (if properly maintained)
- Fast, simple charge (even after long storage)

C/3 to 4C with temperature monitoring

Self discharge

10% in first day, then 10%/mo

Trickle charge (C/16) will maintain charge

Memory effect

Overcome by 60% discharges to 1.1V

NiCd Memory Effect

Nickel Metal Hydride Batteries

Chemistry

LaNi₅, TiMn₂, ZrMn₂ (-), nickel hydroxide (+)

Potassium hydroxide aqueous electrolyte

Features

- + Higher energy density (40%) than NiCd
- + Nontoxic
- Reduced life, discharge rate (0.2-0.5C)
- More expensive (20%) than NiCd

NiMH Battery Discharge

NiMH Recharging

- Less prone to memory than NiCd
- Shallow discharge better than deep

Degrades after 200-300 deep cycles

Need regular full discharge to avoid crystals

- Self discharge 1.5-2.0 more than NiCd
- Longer charge time than for NiCd

To avoid overheating

NiMH Memory Effect

NiCd v NiMH Self-Discharge

Secondary Alkaline Batteries

Features

- 50 cycles at 50% discharge
- No memory effect
- Shallow discharge better than deeper

NiCd v Alkaline Discharge

Lead Acid Batteries

Chemistry

Lead

Sulfuric acid electrolyte

- Features
 - + Least expensive
 - + Durable
 - Low energy density
 - Toxic

Lead Acid Recharging

- Low self-discharge
 - 40% in one year (three months for NiCd)
- No memory
- Cannot be stored when discharged
- Limited number of full discharges
- Danger of overheating during charging

Lead Acid Batteries

Ratings

CCA: cold cranking amps (0F for 30 sec)

RC: reserve capacity (minutes at 10.5v, 25amp)

Deep discharge batteries

Used in golf carts, solar power systems

2-3x RC, 0.5-0.75 CCA of car batteries

Several hundred cycles

Lithium Ion Batteries

Chemistry

Graphite (-), cobalt or manganese (+)

Nonaqueous electrolyte

Features

- + 40% more capacity than NiCd
- + Flat discharge (like NiCd)
- + Self-discharge 50% less than NiCd
- Expensive

Lithium Ion Recharging

- 300 cycles
- 50% capacity at 500 cycles

Lithium Ion Polymer Batteries

Chemistry

Graphite (-), cobalt or manganese (+)

Nonaqueous electrolyte

Features

- + Slim geometry, flexible shape, light weight
- + Potentially lower cost (but currently expensive)
- Lower energy density, fewer cycles than Li-ion

Battery Capacity

Type	Capacity (mAh)	Density (Wh/kg)
Alkaline AA	2850	124
Rechargeable	1600	80
NiCd AA	750	41
NiMH AA	1100	51
Lithium ion	1200	100
Lead acid	2000	30

Discharge Rates

Type	Voltage	Peak Drain	Optimal Drain
Alkaline	1.5	0.5C	< 0.2C
NiCd	1.25	20C	1C
Nickel metal	1.25	5C	< 0.5C
Lead acid	2	5C	0.2C
Lithium ion	3.6	2C	< 1C

Recharging

Type	Cycles (to 80%)	Charge time	Discharge per month	Cost per kWh
Alkaline	50 (50%)	3-10h	0.3%	\$95.00
NiCd	1500	1h	20%	\$7.50
NiMH	300-500	2-4h	30%	\$18.50
Li-ion	500-1000	2-4h	10%	\$24.00
Polymer	300-500	2-4h	10%	
Lead acid	200-2000	8-16h	5%	\$8.50

Example: IBM ThinkPad T21 Model 2647

- Source: IBM datasheet
- Relatively-constant discharge

Lithium-ion Batteries in Notebooks

- Lithium: greatest electrochemical potential, lightest weight of all metals
 - But, Lithium metal is explosive
 - So, use Lithium-{cobalt, manganese, nickel} dioxide
- Overcharging would convert lithium-x dioxide to metallic lithium, with risk of explosion

IBM ThinkPad Backup Battery

- Panasonic CR2032 coin-type lithium-magnesium dioxide primary battery
 - Application: CMOS memory backup
 - Constant discharge, ~0.1 mA
 - Weight: 3.1g
 - 220 mA-h capacity

IBM ThinkPad T21 Main Battery

- Lithium-ion secondary battery
- 3.6 A-h capacity at 10.8V
- Back-of-the-envelope calculations from workload shown earlier:
 - Maximum: 47 minutes
 - Average: 2 hours, 17 minutes
 - Sleep: 19 hours?

References

Manufacturers

www.duracell.com/OEM

data.energizer.com

www.rayovac.com/busoem/oem

Books

- T. R. Crompton, *Battery Reference Book*, Newnes, 2000
- D. Berndt, *Maintenance-Free Batteries*, Wiley, 1997
- C. Vincent & B. Scrosati, *Modern Batteries*, Wiley, 1997
- I. Buchmann, Batteries in a Portable World, www.buchmann.ca