Kesetimbangan Uap/Cair: Pendahuluan

Dosen: Bregas S T Sembodo

Kesetimbangan Fase

- Aplikasi
- Distilasi, absorpsi, dan ekstraksi \rightarrow membuat kontak antar fase-fase yg berbeda
- Sejauh mana perubahan dan kecepatan transfer massa antar fase, tergantung pada keberangkatan sistem dari kesetimbangannya.
- Perhitungan kuantitatif transfer massa; T dan P saat kesetimbangan; dan komposisi tiap fase \rightarrow harus diketahui

Sifat Kesetimbangan

- Sebuah kondisi statis di mana tidak ada perubahan terjadi dalam sifat-sifat makroskopik sistem terhadap waktu.
- Pada tingkat mikroskopik, kondisi tidak statis.

Transfer massa molekuler adalah sama pada kedua arah, dan secara netto transfer massa antarfase sama dgn nol.

- Sistem terisolasi yg terdiri dari fase cair \& uap dalam kontak yg akhirnya mencapai keadaan di mana tdk ada kecenderungan perubahan terjadi di dlm sistem.

Saat itu suhu, tekanan, dan komposisi fase tetap.

Phase rule vs. Duhem's theorem

- (The number of variables that is independently fixed in a system at equilibrium $)=($ the number of variables that characterize the intensive state of the system) - (the number of independent equations connecting the variable):
- Phase rule: $F=2+(N-1)(\pi)-(\pi-1)(N)=2-\pi+N$
- Duhem's rule: $F=2+[(N-1)(\pi)+\pi]-[(\pi-1)(N)+N]=2$
- for any closed system formed initially from given masses of prescribed chemical species, the equilibrium state is completely determined when any two independent variables are fixed.
- Two ? When phase rule $\mathrm{F}=1$, at least one of the two variables must be extensive, and when $\mathrm{F}=0$, both must be extensive.

VLE: qualitative behavior

- When two chemical species: $N=2$
- phase rule: $F=4-\pi$
- the maximum value of $F=3(\pi=1)$, namely, P, T, and one mole fraction. All equilibrium states of the system can be represented in three-dimensional P-T-composition space.

- Within this space, the states of pairs of phases coexisting at equilibrium define surfaces.
- The subcooled-liquid region lies above the upper surface; the superheated-vapor region lies below the under surface.
- UBHC_{1} and KAC_{2} represent the vapor pressure-vs.-T curves for pure species 1 and 2.
$-\mathrm{C}_{1}$ and C_{2} are the critical points of pure species 1 and 2.
- L is a bubble point and the upper surface is the bubblepoint surface.
- Line VL is an example of a tie line, which connects points representing phases in equilibrium.
- W is a dewpoint and the lower surface is the dewpoint surface.
- Pxy diagram at constant T
- Txy diagram at constant P
- PT diagram at constant composition

- Fig 10.8 (a)(b), Negative departures from $\mathrm{P}-\mathrm{x}_{1}$ linearity: strong liquid-phase intermolecular attractions between unlike than between like pairs of molecules.
- Fig 10.8 (c)(d), Positive departures from $\mathrm{P}-\mathrm{x}_{1}$ linearity: strong liquid-phase intermolecular attractions between like than between unlike pairs of molecules.
- Fig 10.8 (b)(d), the "azeotrope": the point where $\mathrm{x}_{1}=\mathrm{y}_{1}$ the dewpoint and bubblepoint curves are tangent to the same horizontal line. The liquid does not change in composition as it evaporates. No separation of such a constant-boiling solution is possible by distillation.

Simple models for VLE

- The simplest are Raoult's law and Henry's law.
- Raoult's law:
- the vapor phase is an ideal gas (apply for low to moderate pressure)
- the liquid phase is an ideal solution (apply when the species that are chemically similar)
- $y_{i} P=x_{i} P_{i}^{\text {sat }} \quad(i=1,2, \ldots, N)$
- although it provides a realistic description of actual behavior for a small class of systems, it is valid for any species present at a mole fraction approaching unity, provided that the vapor phase is an ideal gas.

Binary system acetonitrile (1)/nitromethane(2) conforms closely to Raoult's law. Vapor pressures for the pure species are given by the following Antoine equations:

$$
\ln P_{1}^{\text {sat }} / k P a=14.2724-\frac{2945.47}{t /{ }^{\circ} C+224.00} \quad \ln P_{2}^{\text {sat }} / k P a=14.2043-\frac{2972.64}{t /{ }^{\circ} C+209.00}
$$

(a) Prepare a graph showing P vs. x_{1} and P vs. y_{1} for a temperature of $75^{\circ} \mathrm{C}$.
(b) Prepare a graph showing t vs. x_{1} and t vs. y_{1} for a pressure of 70 kPa .
(a) BUBL P $P=P_{2}^{\text {sat }}+\left(P_{1}^{\text {sat }}-P_{2}^{\text {sat }}\right) x_{1}$

At $75^{\circ} \mathrm{C}$, a liquid mixture of $60 \mathrm{~mol} \%$ (1) and $40 \mathrm{~mol}-\%$ (2) is in equilibrium with a vapor containing $74.83 \mathrm{~mol}-\%$ (1) at pressure of 66.72 kPa .

(b) BUBL T, having $\mathrm{P}=70 \mathrm{kPa}$
$\ln P_{1}^{\text {sat }} / k P a=14.2724-\frac{2945.47}{t /{ }^{\circ} C+224.00} \ln P_{2}^{\text {sat }} / k P a=14.2043-\frac{2972.64}{t /{ }^{\circ} C+209.00}$

Henry's law

- For a species present as a very dilute solute in the liquid phase, the partial pressure of the species in the vapor phase is directly proportional to its liquid-phase mole fraction:

$$
y_{i} P=x_{i} H_{i}
$$

- H = Henry's Constant
- See table 10.1

Assuming that carbonated water contains only CO_{2} (species 1) and $\mathrm{H}_{2} \mathrm{O}$ (species 2), determine the compositions of the vapor and liquid phases in a sealed can of "soda" and the pressure exerted on the can at $10^{\circ} \mathrm{C}$. Henry's constant for CO_{2} in water at $10^{\circ} \mathrm{C}$ is about 990 bar.

| Henry's law for species $1:$ | $y_{1} P=x_{1} H_{1}$ |
| :--- | :--- | :--- |
| Raoult's law for species 2: | $y_{2} P=x_{2} P_{2}^{\text {sat }}$ |
| | |

VLE modified Raoult's law

- Account is taken of deviation from solution ideality in the liquid phase by a factor inserted into Raoult's law:

For the system methanol (1)/methyl acetate (2), the following equations provide a reasonable correlation for the activity coefficients:

$$
\ln \gamma_{1}=(2.771-0.00523 T) x_{2}^{2} \quad \ln \gamma_{2}=(2.771-0.00523 T) x_{1}^{2}
$$

The Antoine equations provide vapor pressures:

$$
\ln P_{1}^{\text {sat }} / k P a=16.59158-\frac{3643.31}{T(K)-33.424}
$$

$$
\ln P_{2}^{\text {sat }} / k P a=14.25326-\frac{2665.54}{T(K)-53.424}
$$

Calculate
(a): P and $\left\{y_{i}\right\}$ for $T=318.15 K$ and $x_{1}=0.25$
(b): P and $\left\{\mathrm{x}_{\mathrm{i}}\right\}$ for $\mathrm{T}=318.15 \mathrm{~K}$ and $\mathrm{y}_{1}=0.60$
(c): T and $\left\{\mathrm{y}_{\mathrm{i}}\right\}$ for $\mathrm{P}=101.33 \mathrm{kPa}$ and $\mathrm{x}_{1}=0.85$
(d): T and $\left\{\mathrm{x}_{\mathrm{i}}\right\}$ for $\mathrm{P}=101.33 \mathrm{kPa}$ and $\mathrm{y}_{1}=0.40$
(e): the azeotropic pressure and the azeotropic composition for $\mathrm{T}=318.15 \mathrm{~K}$
(a) for $\mathrm{T}=318.15$, and $\mathrm{x}_{1}=0.25$

$$
\begin{aligned}
& \begin{array}{|l|l|}
\hline P_{1}^{\text {sat }}=44.51 & P_{2}^{\text {sat }}=65.64 \\
\gamma_{1}=1.864 & \gamma_{2}=1.072 \\
\hline P=\sum_{i} x_{i} \gamma_{i} P_{i}^{\text {sat }}=(0.25)(1.864)(44.51)+(0.75)(1.072)(65.64)=73.50
\end{array}
\end{aligned}
$$

$$
y_{i} P=x_{i} \gamma_{i} P_{i}^{\text {sat }} \quad y_{1}=0.282 y_{2}=0.718
$$

(b): for $\mathrm{T}=318.15 \mathrm{~K}$ and $\mathrm{y}_{1}=0.60$
$P_{1}^{\text {sat }}=44.51 P_{2}^{\text {sat }}=65.64$
A iterative process is applied, with

Converges at: $P=62.89 \mathrm{kPa} \gamma_{1}=1.0378 \quad \gamma_{2}=2.0935 x_{1}=0.8169$

(c): for $\mathrm{P}=101.33 \mathrm{kPa}$ and $\mathrm{x}_{1}=0.85$
$T_{1}^{\text {sat }}=337.71 \quad T_{2}^{\text {sat }}=330.08 \quad T=(0.85) T_{1}^{\text {sat }}+(0.15) T_{2}^{\text {sat }}=336.57$ initial
A iterative process is applied, with

Converges at: $T=331.20 \mathrm{~K}$ 人 $\gamma_{1}=1.0236$ $\gamma_{2}=2.1182 \quad y_{1}=0.670 \quad y_{2}=0.330$
(d): for $\mathrm{P}=101.33 \mathrm{kPa}$ and $\mathrm{y}_{1}=0.40$

$$
T_{1}^{\text {sat }}=337.71 T_{2}^{\text {sat }}=330.08
$$

A iterative process is applied, with

$$
\begin{gathered}
T=(0.40) T_{1}^{\text {sat }}+(0.60) T_{2}^{\text {sat }}=333.13 \text { initial } \\
T \\
\uparrow \gamma_{1}=1, \gamma_{2}=1
\end{gathered}
$$

$$
\ln P_{1}^{\text {sat }} / k P a=16.59158-\frac{3643.31}{T(K)-33.424}
$$

$$
\ln P_{i}^{\text {sat } / k P a=A_{i}-\frac{B_{i}}{T(K)-C_{i}}}
$$

Converges at: $T=326.70 K \quad \gamma_{1}=1.3629 \quad \gamma_{2}=1.2523 x_{1}=0.4602 x_{2}=0.5398$
(e): the azeotropic pressure and the azeotropic composition for $\mathrm{T}=318.15 \mathrm{~K}$

$$
\left.\alpha_{12}\right|_{x_{1}=0}=\frac{P_{1}^{\text {sat }} \exp (2.771-0.00523 T)}{P_{2}^{\text {sat }}}=2.052 \|\left.\alpha_{12}\right|_{x_{1}=1}=\frac{P_{1}^{\text {sat }}}{P_{2}^{\text {sat }} \exp (2.771-0.00523 T)}=0.224
$$

Since α_{12} is a continuous function of x_{1} : from 2.052 to $0.224, \alpha_{12}=1$ at some point There exists the azeotrope!

$$
\begin{aligned}
& \alpha_{12}=\frac{\gamma_{1} P_{1}^{\text {sat }}}{\gamma_{2} P_{2}^{\text {sat }}}=1 \longrightarrow \frac{\gamma_{1}^{\text {az }}}{\gamma_{2}^{\text {az }}}=\frac{P_{2}^{\text {sat }}}{P_{1}^{\text {sat }}}=1.4747 \\
& \begin{array}{r}
\left.\begin{array}{r}
\begin{array}{|l|}
\hline \ln \gamma_{1}=(2.771-0.00523 T) x_{2}^{2} \\
\ln \gamma_{2}=(2.771-0.00523 T) x_{1}^{2}
\end{array} \\
\hline
\end{array}\right\} \begin{array}{r}
\ln \frac{\gamma_{1}}{\gamma_{2}}=(2.771-0.00523 T)\left(x_{2}-x_{1}\right)=(2.771-0.00523 T)\left(1-2 x_{1}\right) \\
\downarrow \\
x_{1}^{a z}=0.325=y_{1}^{a z}
\end{array} \rightarrow \frac{\gamma_{1}^{a z}=1.657}{P^{a z}=\gamma_{1}^{a z} P_{1}^{s a t}=73.76 \mathrm{kPa}}
\end{array}
\end{aligned}
$$

VLE from K-value correlations

- A convenient measure, the K-value:

$$
K_{i} \equiv \frac{y_{i}}{x_{i}}
$$

- the "lightness" of a constituent species, i.e., of its tendency to favor the vapor phase.
- The Raoult's law:

$$
K_{i}=\frac{P_{i}^{\text {sat }}}{P}
$$

- The modified Raoult's law:

$$
K_{i}=\frac{\gamma_{i} P_{i}^{\text {sat }}}{P}
$$

De Priester Diagram
For Low-Temp. range

De Priester's Diagram for
High-Temp. range

For a mixture of $10 \mathrm{~mol}-\%$ methane, $20 \mathrm{~mol} \%$ ethane, and $70 \mathrm{~mol}-\%$ propane at $50^{\circ} \mathrm{F}$, determine: (a) the dewpoint pressure, (b) the bubblepoint pressure. The Kvalues are given by Fig. 10.13.
(a) at its dewpoint, only an insignificant amount of liquid is present:

		$\mathrm{P}=100(\mathrm{psia})$		$\mathrm{P}=150(\mathrm{psia})$		$\mathrm{P}=126(\mathrm{psia})$	
Species	y_{i}	K_{i}	$\mathrm{y}_{\mathrm{i}} / \mathrm{K}_{\mathrm{i}}$	K_{i}	$\mathrm{y}_{\mathrm{i}} / \mathrm{K}_{\mathrm{i}}$	K_{i}	$\mathrm{y}_{\mathrm{i}} / \mathrm{K}_{\mathrm{i}}$
Methane	0.10	20.0	0.005	13.2	0.008	16.0	0.006
Ethane	0.20	3.25	0.062	2.25	0.089	2.65	0.075
Propane	0.70	0.92	0.761	0.65	1.077	0.762	0.919
		$\sum\left(\mathrm{y}_{\mathrm{i}} / \mathrm{K}_{\mathrm{i}}\right)=0.828$				$\sum\left(\mathrm{y}_{\mathrm{i}} / \mathrm{K}_{\mathrm{i}}\right)=1.174$	
$\Sigma\left(\mathrm{y}_{\mathrm{i}} / \mathrm{K}_{\mathrm{i}}\right)=1.000$							

(b) at bubblepoint, the system is almost completely condensed:

		$\mathrm{P}=380(\mathrm{psia})$		$\mathrm{P}=400(\mathrm{psia})$		$\mathrm{P}=385(\mathrm{psia})$	
Species	x_{i}	K_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{K}_{\mathrm{i}}$	K_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{K}_{\mathrm{i}}$	K_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{K}_{\mathrm{i}}$
Methane	0.10	5.60	0.560	5.25	0.525	5.49	0.549
Ethane	0.20	1.11	0.222	1.07	0.214	1.10	0.220
Propane	0.70	0.335	0.235	0.32	0.224	0.33	0.231
		$\Sigma\left(\mathrm{x}_{\mathrm{i}} \mathrm{K}_{\mathrm{i}}\right)=1.017$				$\Sigma\left(\mathrm{x}_{\mathrm{i}} \mathrm{K}_{\mathrm{i}}\right)=0.963$	

Flash calculations

- A liquid at a pressure equal to or greater than its bubblepoint pressure "flashes" or partially evaporates when the pressure is reduced, producing a two-phase system of vapor and liquid in equilibrium.
- Consider a system containing one mole of nonreacting chemical species:

$$
\begin{aligned}
& \text { The moles of vapor } \quad \text { The vapor mole fraction } \\
& z_{i}=x_{i} L+y_{i} V \longrightarrow z_{i}=x_{i}(1-V)+y_{i} V \\
& \text { The liquid mole fraction } \\
& \sum \frac{z_{i} K_{i}}{1+V\left(K_{i}-1\right)}=1
\end{aligned}
$$

The system acetone (1)/acetonitrile (2)/nitromethane(3) at $80^{\circ} \mathrm{C}$ and 110 kPa has the overall composition, $\mathrm{z}_{1}=0.45, \mathrm{z}_{2}=0.35, \mathrm{z}_{3}=0.20$, Assuming that Raoult's law is appropriate to this system, determine $L, V,\left\{x_{i}\right\}$, and $\left\{y_{i}\right\}$. The vapor pressures of the pure species are given.

Do a $B U B L P$ calculation, with $\left\{\mathrm{z}_{\mathrm{i}}\right\}=\left\{\mathrm{x}_{\mathrm{i}}\right\}$:
$P_{\text {bubl }}=x_{1} P_{1}^{\text {sat }}+x_{2} P_{2}^{\text {sat }}+x_{3} P_{3}^{\text {sat }}=(0.45)(195.75)+(0.35)(97.84)+(0.20)(50.32)=132.40 \mathrm{kPa}$
Do a $D E W P$ calculation, with $\left\{\mathrm{z}_{\mathrm{i}}\right\}=\left\{\mathrm{y}_{\mathrm{i}}\right\}$:
$P_{\text {dew }}=\frac{1}{y_{1} / P_{1}^{\text {sat }}+y_{2} / P_{2}^{\text {sat }}+y_{3} / P_{3}^{\text {sat }}}=101.52 \mathrm{kPa}$

$$
L=1-V=0.2636 \mathrm{~mol}
$$

Since $\mathrm{P}_{\text {dew }}<\mathrm{P}=110 \mathrm{kPa}<\mathrm{P}_{\text {bubl }}$, the system is in the two-phase region,

$$
\begin{aligned}
& K_{i}=\frac{P_{i}^{\text {sat }}}{P} \rightarrow K_{1}=1.7795 \rightarrow K_{2}=0.8895 K_{3}=0.4575 \rightarrow \sum_{i} \frac{z_{i} K_{i}}{1+V\left(K_{i}-1\right)}=1 \rightarrow V=0.7364 \mathrm{~mol}
\end{aligned}
$$

