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Conservation of Energy

AE=AK+ AU =0 if conservative forces are the only
forces that do work on the system.

The total amount of energy in the system is constant.

1 2 Lyo2 1 5 1 2
—mv: +mgy, +—kx; =—=—mv" +mgy. + —kx

AE=AK+ AU = -fd if friction forces are doing work
on the system.

The total amount of energy in the system is still
constant, but the change in mechanical energy goes
into “internal energy” or heat.

1 1 1 1
- fd :(E mv; +mgy, +§W?)—(§ mv;’ +mgy; +§kxi2j



Linear Momentum

This is a new fundamental quantity, like force, energy.
It is a vector quantity (points in same direction as
velocity).

The linear momentum p of an object of mass /m moving
with a velocity v is defined to be the product of the
mass and velocity:

p=mv

The terms momentum and linear momentum will be
used interchangeably in the text

Momentum depend on an object’s mass and velocity



Momentum and Energy

Two objects with masses m, and m,

have equal kinetic energy. How do the
magnitudes of their momenta
compare?

(A) P1 < P,
(B) P1 = Py
(C) P> Py
(D) Not enough information is given




Linear Momentum, cont’d

Linear momentum is a vector quantity p =mv

Its direction is the same as the direction of
the velocity

The dimensions of momentum are ML/T
The SI units of momentum are kgm /s

Momentum can be expressed in component
form:

p, =mv, p,=my,

y



Newton’s Law and Momentum

Newton’s Second Law can be used to relate the
momentum of an object to the resultant force

acting on it - _
= _ AV A(mV)
F,.=ma=m =

At At

ne

The change in an object’'s momentum divided by
the elapsed time equals the constant net force
acting on the object

Ap _ change in momentum

- - — IEnet
At time Interval




Impulse

s on the

When a single, constant force ac

object, there is an impulse delivered to the

bject - =
. | = FAt

I is defined as the impulse

The equality is true even if the force is not constant

Vector quantity, the direction is the
direction of the force

Ap  change in momentum

same as the

— Fnet

At time Interval



Impulse-Momentum Theorem

The theorem states '
that the impulse pipoles
acting on a system s~ swem
equal to the change
in momentum of the
system

The change in the total
At _ I momentum of the system
net is equal to the total

Momentum

impuls(- on the g\‘sl('l]'l.



Calculating the Change of Momentum

Ap — pafter o pbefore
= MV —mv

after before j
=M (Vafter o Vbefore )
For the teddy bear

Ap=m[0—(—v)|=mv
For the bouncing ball

Ap =m|v—(-v)|=2mv



How Good Are the Bumpers?

In a crash test, a car of mass 1.5@103 kg collides with a wall and
rebounds as in figure. The initial and final velocities of the car are vi=-15
m/s and v = 2.6 m/s, respectively. If the collision lasts for 0.15 s, find
(a) the impulse delivered to the car due to the collision
(b) the size and direction of the average force exerted on the car

B('f: ne

=150 m/s
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How Good Are the Bumpers?

In a crash test, a car of mass 1.5@103 kg collides with a wall and
rebounds as in figure. The initial and final velocities of the car are vi=-15
m/s and v = 2.6 m/s, respectively. If the collision lasts for 0.15 s, find
(a) the impulse delivered to the car due to the collision
(b) the size and direction of the average force exerted on the car

Before

p. =mv, = (1.5x10°kg)(-15m/s) =—2.25x10*kg -m/s
p, =mv, =(1.5x10%kg)(+2.6m/s) = +0.39x10*kg -m/s

| =p; —p=mv, —my,
=(0.39x10%kg -m/s)—(-2.25x10%kg - m/s)
=2.64x10kg -m/s

After

= _Ap_ | _ 2.64x10%kg-m/s

av = = =1.76 XlOSN
At At 0.15s




Impulse-Momentum Theorem

A child bounces a 100 g superball on the
sidewalk. The velocity of the superball
changes from 10 m/s downward to 10 m/s
upward. If the contact time with the
sidewalk is 0.1s, what is the magnitude of
the impulse imparted to the superball?

(A) 0

(B) 2 kg-m/s ~

(C) 20 kg-m/s | =Ap=mv, —mv,
(D) 200 kg-m/s

(E) 2000 kg-m/s



Impulse-Momentum Theorem 2

A child bounces a 100 g superball on the
sidewalk. The velocity of the superball
changes from 10 m/s downward to 10 m/s
upward. If the contact time with the
sidewalk is 0.1s, what is the magnitude of
the force between the sidewalk and the
superball?

(A) 0 3 )

(B) 2N e_ 1 _Ap _ MV, —my,
(C) 20N At At At
(D) 200 N

(E) 2000 N



Conservation of Momentum

e i e—

In an isolated and closed system,

o the total momentum of the
Before system remains constant in time.
Isolated system: no external forces
Q) sysem ™ ClOSEd System: no mass enters or
leaves
buring The linear momentum of each
colliding body may change
3 _> The total momentum P of the

system cannot change.
After



Conservation of Momentum

Before collision

— —
( ) V1i Vzii >
m mo
After collision

iy C Vs
- / ‘ @—/>
R

3

a

Start from impulse-momentum
theorem

Fz 1At =MVye — MV

Iflet =M,V —M,V,,
Since F, At = —F At
Then my,; —my; =—(m,v,; —m,V,)

So m1\71i + m2\72i — m1\71f + m2\72f



Conservation of Momentum

When no external forces act on a system consisting of
two objects that collide with each other, the total
momentum of the system remains constant in time

— System

FnetAt — Al_j — I_jf _ I_ji boundary
When F,=0 then Ap=0 R
For dn ISOIated SyStem The total nlnnh.-ulu.lllfri'
pf j— pi lhl" "‘;-‘! sLem -|‘i Cconstanl.

Specifically, the total momentum before the collision will
equal the total momentum after the collision

M\Vy; +MyVy =MV + M,V



The Archer

An archer stands at rest on frictionless ice and fires a 0.5-kg arrow
horizontally at 50.0 m/s. The combined mass of the archer and bow is
60.0 kg. With what velocity does the archer move across the ice after
firing the arrow? 3

P = Py
MVy; + MV =MV +MLV,
m, = 600kg, m, :().5|(g,V1i =V, :O,sz :50m/S,V1f _9

0= MV + MV,

v, =2y G%SOKI? (50.0m/s) =—0.417m/s
0kg

m

© 2006 Brooks/Cole - Thomson



Conservation of Momentum

A 100 kg man and 50 kg woman on ice

skates stand facing each other. If the woman
pushes the man backwards so that his final
speed is 1 m/s, at what speed does she recoil?
(A) 0

(B) 0.5 m/s
(C©) 1 m/s
(D) 1.414 m/s
(E) 2 m/s



Types of Collisions

Momentum is conserved in any collision

Inelastic collisions: rubber ball and hard ball

Kinetic energy is not conserved

Perfectly inelastic collisions occur when the objects
stick together

Elastic collisions: billiard ball
both momentum and kinetic energy are conserved

Actual collisions

Most collisions fall between elastic and perfectly
inelastic collisions



Collisions Summary

In an elastic collision, both momentum and kinetic
energy are conserved

In a non-perfect inelastic collision, momentum is
conserved but kinetic energy is not. Moreover, the
objects do not stick together

In a perfectly inelastic collision, momentum is conserved,
Kinetic energy is not, and the two objects stick together
after the collision, so their final velocities are the same

Elastic and perfectly inelastic collisions are limiting cases,
most actual collisions fall in between these two types

Momentum is conserved in all collisions




More about Perfectly Inelastic
Collisions

When two objects stick together
after the collision, they have
undergone a perfectly inelastic
collision

Conservation of momentum

Before collision

m,V;; +M,V, = (M, +m,)v,

After collision

/
_ MV, +MyVy, {
Vi = =
my + mo
—» +X

Kinetic energy is NOT conserved 5]



An SUV Versus a Compact

An SUV with mass 1.80m103 kg is travelling eastbound at
+15.0 m/s, while a compact car with mass 9.00=102 kg
is travelling westbound at -15.0 m/s. The cars collide
head-on, becoming entangled.

Find the speed of the entangled
cars after the collision.

Find the change in the velocity
of each car.

Find the change in the kinetic
energy of the system consisting
of both cars. (b)

(a)




An SUV Versus a Compact

Find the speed of the entangled , _1 gg,1¢°

kg,v; =+15m/s
cars after the collision.

m, = 9.00x10°kg,V,; =—15m/s
B = Py

MV +MyVy; = (m1 + mz)Vf

MVy; + M,V
ml + m2

Ve =

v, =+5.00m/s



An SUV Versus a Compact

Find the change in the velocity |, _, 80x10%kg, v, = +15m/s
1 ' P

of each car. ,
m, =9.00x10°kg,v,; =—15m/s

v, =+5.00m/s
Av, =V, —V; =—10.0m/s

AV, =V, =V, =+20.0m/s

mAv, =m, (v, -V, ) =-1.8x10*kg-m/s
m,Av, =m, (v, —V,;) = +1.8x10*kg-m/s

m,AV, + m,Av, =0 - b)



An SUV Versus a Compact

Find the change in the kinetic

_ 3 B
energy of the system consisting ™ =1-80x10°kg, v, =+15m/s

of both cars. m, =9.OO><102kg,V2i =-15m/s
v, =+5.00m/s
1 ;1 2 5
KE, =—myVv; +—m,v,, =3.04x10°J
2 2
1 » 1 2 4
KEf :Emlvlf +Em2V2f :338X1O J

AKE = KE, —KE, =-2.70x10°J (b)



More About Elastic Collisions

Both momentum and kinetic energy Befsre collision

are conserved R .
3 Vi; <VAQ
M\Vy; + MV, =MV +MyV,,
X

M
1 -, 1r -, 1 , 1 -, )
Emlvli +Em2V2i = Emlvlf "‘Emzvzf (a)

M — +
Typically have two unknowns
Momentum is a vector quantity

Vi () Vo
Direction is important
—>» +X

Be sure to have the correct signs
Solve the equations simultaneously (b)

© 2006 Brooks/Cole - Thomson

After collision



Elastic Collisions

A simpler equation can be used in place of the KE
equation

- Tovzitmve 2 imye o imye

211| 222| 211f 222f

2 2 2 2
ml(vli — Vi ) =m, (sz —Vy,

ml(vli — Vi )(Vli +V1f) — mz(sz _V2i)(V2f tVy

M, Vy; + MyVy = MV + MLV, M, (Vi — Vi) =My (Vy —Vy,

Vi TV =V Yy,

M, Vy; + MyVy = MV + M,V




Summary of Types of Collisions

In an elastic collision, both momentum and kinetic
energy are conserved

Vij £V =V TV M, Vy; +MyVy = MV + M,V

In an inelastic collision, momentum is conserved but
Kinetic energy is not

M, Vy; +MyVy = MV + M,V

In a perfectly inelastic collision, momentum is conserved,
Kinetic energy is not, and the two objects stick together
after the collision, so their final velocities are the same

m,Vy; +M,V, = (M, +m,)v,




Conservation of Momentum

An object of mass m moves to the right with a
speed v. It collides head-on with an object of
mass 3m moving with speed v/3 in the opposite
direction. If the two objects stick together, what
is the speed of the combined object, of mass 4m,
after the collision?
(A) O

(B) v/2

(C) v

(D) 2v —rcs
(E) 4v




Problem Solving for 1D Collisions, 1

COOI‘dinates: Set Up d Before collision

coordinate axis and define = 7.

the velocities with respect ‘

to this axis m — >
It is convenient to make (a)

your axis coincide with one
of the initial velocities

Diagram: In your sketch,

. Vi Vo
draw all the velocity —
—» +X

vectors and label the
velocities and the masses (b)

After collision



Problem Solving for 1D Collisions, 2

Conservation Of Before collision
Momentum: Write a Vit Vo,

general expression for the
total momentum of the
system before and after
the collision

Equate the two total

- Vi T
momentum expressions <—O O-»
—» +X

Fill in the known values

After collision

(b)
M Vy; + MyVy = MV + M,V




Problem Solving for 1D Collisions, 3

Conservation Of Energy: Before collision

If the collision is elastic, 7 7
write a second equation '

for conservation of KE, or m, >
the alternative equation (a)

This only applies to perfectly
elastic collisions

After collision

v, +V, =V, Y ‘—[O Q_/,
—_—>» +X

Solve: the resulting
equations simultaneously (b)




One-Dimension vs Two-Dimension

Before collision

— —
: ) Vi, Vo, .
my my

©2006 BrooksCole - Thoms

After collision




Two-Dimensional Collisions

For a general collision of two objects in two-
dimensional space, the conservation of momentum
principle implies that the fota/ momentum of the
system in each direction is conserved

MV, + Moo = Mg + Moy
M, Vy;, + MV, =MV, + MYV, . %*
‘”).;» ~~~~~~ - ~ +X —~‘~~~——<—\7\d) ~~~~~~ :(;

(a) Before the collision (b) After the collision



Two-Dimensional Collisions

The momentum is conserved in all directions

Use subscripts for Mgt MaVaiy = MV +MyVy g
Identifying the object M, Vyiy +MyVp =MV, g +MyY5,
Indicating initial or final values
The velocity components

If the collision is elastic, use conservation of
Kinetic energy as a second equation

Remember, the simpler equation can only be used

for one-dimensional situations
Vi T V==V +Vy,



Glancing Collisions

R
vy psin 60 ?E i' |
£ |
) {
+) /} 7
- vjpcos 6
i | Y
O_’ “““ y W Ry N S
my ) N, VosCOs ¢
m A i |
~tpg S F—
‘ V)
(a) Before the collision (b) After the collision

ms

The “after” velocities have x and y components

Momentum is conserved in the x direction and in the
y direction

Apply conservation of momentum separately to each

direction _
mlvlix + m2V2ix - mlvl fx + m2V2 fx

leliy + m2V2iy = mlvl fy + m2v2 fy



2-D Collision,

Particle 1 is moving at

. — m
velocity v, and 1

example

12
particle 2 is at rest . ""6
m

In the x-direction, the
initial momentum is
mW

In the y~direction, the
initial momentum is 0O

(a) Before the collision



2-D Collision, example cont

After the collision, the Yy
momentum in the x-direction is i 0 iE é':
M, V4 ,COS 6+ M, V,COS ¢ ) .
After the collision, the /,/\/9 i
momentum in the )~directionis ~— W

m, Vv, /Sin O+ My, Sin ¢ \%COW
|
VoSN ¥ ——=

myVv, +0=myVv,; cosd+m,Vv,, COS¢

0+0=myv,, sin @—m,v,, sin ¢ ~(b) After the collision

2

If the collision is elastic, apply 1 1,
the kinetic energy equation 3™ T M T eV



Collision at an Intersection

- A car with mass 1.5x103 kg traveling
east at a speed of 25 m/s collides at
an intersection with a 2.5x103 kg van
traveling north at a speed of 20 m/s.
Find the magnitude and direction of
the velocity of the wreckage after the
collision, assuming that the vehicles
undergo a perfectly inelastic collision .
and assuming that friction between the = e
vehicles and the road can be
neglected.

m_=1.5x10°kg, m, = 2.5x10°kg
Ve =25Mm/s, v, =20m/s,v, =20 ="7




Collision at an Intersection

m_ =1.5x10°kg, m, = 2.5x10°kg

Vv, =25mis,v,,, =20m/s,v, =70 ="

viy
> P =MV, + MYy = MV, = 3.75x10°kg - mis
Z P =MV, +MmV,, =(m, +m,)v, cosd

3.75x10%kg - m/s = (4.00x10°kg)v, cosé

> p,; =MV, + MV, =myV,, =5.00x10*kg - m/s

ccly v Y viy v Y viy

Z pyf - mcvcfy + vavfy = (mc + mv)vf sin @

5.00x10"kg - m/s = (4.00 x10°kg)v, sin &




Collision at an Intersection

m_=1.5x10%kg, m, = 2.5x10%kg

Vg, =25m/s,v,, =20m/s,v, =760 ="7

viy

5.00x10%kg - m/s = (4.00 x10°kg)v, sin &
3.75x10%kg - m/s = (4.00x10°kg)v, coséd

~ 5.00x10%kg-m/s

tan 0 = 7
3.75x10°kg -m/s

=1.33

6 = tan(1.33) =53.1°

v 5.00x10*kg - m/s
' (4.00x10°kg)sin 53.1°

=15.6m/s




The Center of Mass

(a)
How should we define
the position of the o S
moving body ? SN
What is y for U, = <
mgy ?
Take the average
position of mass. Call

“Center of Mass”
(COM or CM) "



The Center of Mass

There is a special point in a system or
object, called the center of mass, that
moves as if all of the mass of the system
iS concentrated at that point

The CM of an object or a system is the
point, where the object or the system can

be balanced in the uniform gravitational
field



The Center of Mass

The center of mass of any symmetric object lies on an
axis of symmetry and on any plane of symmetry

If the object has uniform density
The CM may reside inside the body, or outside the body




Where is the Center of Mass ?

The center of mass of particles
Two bodies in 1 dimension

-

Y

R, 16).Y ——

ny

Q D
" }‘7 CM

<€ X2




enter of Mass for many
particles in 3D?

» themode?ﬁéé.org



Where is the Center of Mass ?

Assume m; = 1 kg, m, = 3 kg, and x; =
1 m, X, =5 m, where is the center of

mass of these two objects? LMy emx,
A) Xy = 1 M 3 oo mem,
B) Xey =2 m T e

C) Xey = 3 M -

@
D) XCM — 4 m —>» X }4—
E) Xy =5 m LT *2




Center of Mass
for a System of Particles

Two bodies and one dimension
M1 T + MaTa

:B{IDIH

M + Mo

General case: n bodies and three dimension

1 2 1 2 1 2
Leom — ﬁ Z i, Yecom — ﬁ Z mM;Yis Zcom — ﬁ m;z;
i=1 i=1 1=1
whereM =m; + m, + m; +... ;| =



Sample Problem : Three particles of masses ml = 1.2 kg,
m2 = 2.5 kg, and m3 = 3.4 kg form an equilateral triangle of
edge length @ = 140 cm. Where is the center of mass of this
system? (Hint: m1 is at (0,0), m2 is at (140 cm,0), and m3 is
at (70 cm, 120 cm), as shown in the figure below.)

y

n
17 ”
n 100
Voo = 1 S m,y, = My, +M,Yy, + MYy,
CM iJi a
M = m, +m, +m, "

50

Yoom

n

Xy = 82.8cm  and y,, =57.5cm

X

0-m; 5O Xeom 100 150



Motion of a System of Particles

Assume the total mass, M, of the system
remains constant

We can describe the motion of the system
in terms of the velocity and acceleration of
the center of mass of the system

We can also describe the momentum of
the system and Newton’s Second Law for
the system



Velocity and Momentum of a
System of Particles

The velocity of the center of mass of a system of

particles is
V = = m.v.
CM dt M Z I

The momentum can be expressed as
MVCM :Zmivi :Zﬁi :I_jtot

The total linear momentum of the system equals
the total mass multiplied by the velocity of the
center of mass



Acceleration and Force of the

Center of Mass

The acceleration of the center of mass can be
found by differentiating the velocity with respect
to time v,

. 1 _
A~,, = = m. a.
CM dt M Z I

The acceleration can be related to a force
MéCM = leu
If we sum over all the internal forces, they

cancel in pairs and the net force on the system
is caused only by the external forces



Newton’s Second Law
for a System of Particles

Since the only forces are external, the net
external force equals the total mass of the
system multiplied by the acceleration of the
center of mass:

The center of mass of a system of particles of
combined mass M moves like an equivalent
particle of mass M would move under the
influence of the net external force on the system




