
Equilibrium of a Rigid Body Under
Coplanar Forces

The Torque (τ) about an axis, due to a force, is a measure of the
effectiveness of the force in producing rotation about that axis. The word
comes from the French for “twist.” It is defined in the following way:

where r is the radial distance from the axis of rotation to the point of
application of the force, and θ is the acute angle between the lines-of-action
of and  and , as shown in Fig. 5-1(a). Often this definition is written in
terms of the lever arm of the force, which is the perpendicular distance from
the axis of rotation to the line-ofaction of the force, as shown in Fig. 5-1(b).
Because the lever arm is simply r sinθ, the torque becomes

The units of torque are newton-meters (N⋅m). Plus and minus signs will be
assigned to torques; for example, a torque that tends to cause
counterclockwise rotation about the axis might be positive, whereas one
causing clockwise rotation would then be negative. This will allow us to
sum the influences of several torques acting simultaneously.



Fig. 5-1

The Two Conditions for Equilibrium of a rigid object under the action of
coplanar forces are

(1) The first or force condition: The vector sum of all forces acting on the
body must be zero:

where the plane of the coplanar forces is taken to be the xy-plane.
(2) The second or torque condition: Take any axis perpendicular to the

plane of the coplanar forces. Call the torques that tend to cause
clockwise rotation about that axis negative, and counterclockwise
torques positive; then the sum of all the torques acting on the object
must be zero:

The Center-of-Gravity (c.g.) of an object is the point at which the entire
weight of the object may be considered concentrated—that is, the line-of-
action of the weight passes through the center-of-gravity. A single vertical
upwardly directed force, equal in magnitude to the weight of the object,
applied through its center-of-gravity, will keep the object in equilibrium.

The Position of the Axis Is Arbitrary: If the sum of the torques is zero
about one axis for a body that obeys the force condition, it is zero about all
other axes parallel to the first. To make the math a little simpler, we can
often choose the axis in such a way that the line-of-action of an unknown



force passes through the intersection of the axis and the plane of the forces.
The angle θ between  and  is then zero; hence, that particular unknown
force exerts zero torque and therefore does not appear in the torque
equation.

PROBLEM SOLVING GUIDE

Start the analysis of each problem by carefully reading it, several times if
necessary. Once you know what was given and what you must find, write
those quantities down with their appropriate symbols. The most important
equations in this chapter are (5.3) and (5.4). Two equations will allow you to
solve for two unknowns. Again—try doing the [I]-level worked-out
problems first. Cover the solutions and look at them only after you’re
finished or you get stuck. Wait a day or two and then go back to any
problem you could not do and try again, and again if need be, until you
really master it.

SOLVED PROBLEMS

5.1 [I]      Imagine a bar of steel 80 cm long pivoted horizontally at its left
end, as depicted in Fig. 5-2. Find the torque about axis-A (which is
perpendicular to the page) due to each of the forces shown acting
at its right end.

Fig. 5-2

We use τ = rF sinθ, taking clockwise torques to be negative while
counterclockwise torques are positive. The individual torques due
to the three forces are



The line of the 20-N force goes through the axis, and so θ = 0° for
it. Or, put another way, because the line of the force passes
through the axis, its lever arm is zero. Either way, the torque is
zero for this (and any) force whose line-of-action passes through
the axis. If you had trouble seeing which way the torques act,
redraw the diagram on a piece of paper and imagine a pin stuck
downward at A. Then put your finger at the right end of the rod
and push the paper in the direction of the 10-N force. The paper
will rotate clockwise around the pin. That’s the angular direction
of the torque due to that force.

5.2 [II]    A uniform metal beam of length L weighs 200 N and holds a 450-N
object as shown in Fig. 5-3. Find the magnitudes of the forces
exerted on the beam by the two supports at its ends. Assume the
lengths are exact.

Rather than draw a separate free-body diagram, we show the
forces on the object being considered (the beam) in Fig. 5-3.
Because the beam is uniform, its center of gravity is at its
geometric center. Thus, the weight of the beam (200 N) is shown
acting downward at the beam’s center. The forces F1 and F2 are
exerted on the beam by the supports. Because there are no x-
directed forces acting on the beam, we have only two equations to
write for this equilibrium situation: ΣFy = 0 and Στ = 0.



Fig. 5-3

Before the torque equation is written, an axis must be chosen. We
choose it at A, so that the unknown force F1 will pass through it
and exert no torque. The torque equation is then

Dividing through the equation by L and solving for F2, we find
that F2 = 438 N.

To determine F1, substitute the value of F2 in the force equation,
thereby obtaining F1 = 212 N.

5.3 [II]    A uniform, horizontal, 100-N pipe is used as a lever, as shown in
Fig. 5-4. Where must the fulcrum (the support point) be placed if a
500-N weight at one end is to balance a 200-N weight at the other
end? What is the upward reaction force exerted by the support on
the pipe?

The forces in question are shown in Fig. 5-4, where FR is the
reaction force of the support on the pipe. The weight of the pipe
acts downward at its center. We assume that the support point is at
a distance x from one end. Take the axis of rotation to be at the
support point. Then the torque equation, , about that
point becomes

+(x)(200 N)(sin 90°) + (x − L/2)(100 N)(sin 90°) − (L − x)(500 N)(sin 90°) =
0

This simplifies to

(800 N)(x) = (550 N)(L)

and so x = 0.69L. The support should be placed 0.69 of the way
from the lighter-loaded end. To find FR use ,



FR − 200 N − 100 N − 500 N = 0

from which FR = 800 N.

Fig. 5-4

5.4 [II]    Where must a 0.80-kN object be hung on a uniform, horizontal,
rigid 100-N pole so that a girl pushing up at one end supports one-
third as much as a woman pushing up at the other end?

The situation is shown in Fig. 5-5, where the weight of the pole
acts down at its center. We represent the force exerted by the girl
as F, and that by the woman as 3F. There are two unknowns, F
and x, and we will need two equations. To avoid the possibility of
writing equations that turn out not to be independent, it’s a good
practice to write one sum-of-the-torques equation and one sum-of-
the-forces equation. Take the rotational axis point at the left end.
Then the torque equation becomes

−(x)(800 N)(sin 90°) − (L/2)(100 N)(sin 90°) + (L)(F)(sin 90°) = 0

For the second equation write

+↑ΣFy = 3F − 800 N − 100 N + F = 0

from which F = 225 N. Substitution of this value in the torque
equation yields

(800 N)(x) = (225 N)(L) − (100 N)(L/2)

and so x = 0.22L. The load should be hung 0.22 of the way from



the woman to the girl.

Fig. 5-5

Fig. 5-6

5.5 [II]    A uniform, horizontal, 0.20-kN board of length L has two objects
hanging from it with weights of 300 N at exactly L/3 from one end
and 400 N at exactly 3L/4 from the same end. What single
additional force acting on the board will cause the board to be in
equilibrium?

The situation is drawn in Fig. 5-6, where F is the force we wish to
find. For equilibrium, ΣFy = 0 and so

F = 400 N + 200 N + 300 N = 900 N



Because the board is to be in equilibrium, we are free to locate the
axis of rotation anywhere. Choose it at point-A at the left end of
the board, since all the forces are measured (as to location) from
that end in the diagram. Then Στ = 0, and taking counterclockwise
as positive,

+(x)(F)(sin 90°) − (3L/4)(400 N)(sin 90°) − (L/2)(200 N)(sin 90°) − (L/3)
(300 N)(sin 90°) = 0

Using F = 900 N, we find that x = 0.56L. The required force is
0.90 kN upward at 0.56L from the left end.

5.6 [III]  The right-angle rule (or square) depicted in Fig. 5-7 hangs at rest
from a peg as shown. It is made of a uniform metal sheet. One arm
is L cm long, while the other is 2L cm long. Find (to two
significant figures) the angle θ at which it will hang.

Fig. 5-7

If the rule is not too wide, we can approximate it as two thin rods
of lengths L and 2L joined perpendicularly at A. Let γ be the
weight of each centimeter of rule. The forces acting are indicated
in Fig. 5-7, where FR is the upward reaction force of the peg.



Write the torque equation using point-A as the axis of rotation.
Because τ = rF sinθ and because the torque about A due to FR is
zero, the torque equation becomes

where the moment arm of the counterclockwise torque (due to γL)
is (L/2) sin (90° − θ) and that of the clockwise torque (due to 2γL)
is L sinθ. Recall that sin (90° − θ) = cosθ. After making this
substitution and dividing by 2γL2 cosθ,

which yields θ = 14°.

5.7 [II]    Consider the situation illustrated in Fig. 5-8(a). The uniform 0.60-
kN beam is hinged at P. Find the tension in the tie rope and the
components of the reaction force exerted by the hinge on the
beam. Give your answers to two significant figures.

Fig. 5-8

The reaction forces acting on the beam are shown in Fig. 5-8(b),
where the force exerted by the hinge is represented by its
horizontal and vertical components, FRH and FRV. The torque
equation about P is

(We take the axis at P because then FRH and FRV do not appear in
the torque equation.) Solving this equation yields FT = 2280 N or,



to two significant figures, FT = 2.3 kN.

To find FRH and FRV, write

Since we know FT, these equations lead to FRH = 1750 N or 1.8
kN and FRV = 65.6 N or 66 N.

5.8 [II]    A uniform, 0.40-kN boom is supported as shown in Fig. 5-9(a).
Find the tension in the tie rope and the force exerted on the boom
by the pin at P.

The forces acting on the boom are shown in Fig. 5-9(b). Take the
pin as the axis of rotation. The torque equation is then

Fig. 5-9

from which it follows that FT = 2460 N or 2.5 kN. Now write

and so FRH = 2.5 kN. Also,

and so FRV = 2.4 kN. FRV and FRH are the components of the
reaction force at the pin. The magnitude of this force is



The tangent of the angle it makes with the horizontal is tanθ =
2400/2460, and so θ = 44°.

5.9 [II]    As indicated in Fig. 5-10, hinges A and B hold a uniform, 400-N
door in place. If the upper hinge happens to support the entire
weight of the door, find the forces exerted on the door at both
hinges. The width of the door is exactly h/2, where h is the
distance between the hinges.

Fig. 5-10

The forces acting on the door are shown in Fig. 5-10. Only a
horizontal force acts at B, because the upper hinge is assumed to
support the door’s weight. Take torques about point-A as the axis
of rotation:

from which F = 100 N. We also have



We find from these that FRH = 100 N and FRV = 400 N.

For the resultant reaction force FR on the hinge at A, we have

The tangent of the angle that  makes with the negative x-
direction is FRV/FRH, and so the angle is arctan 4.00 = 76.0°.

5.10 [II]  A ladder leans against a smooth wall, as can be seen in Fig. 5-11.
(By a “smooth” wall, we mean that the wall exerts on the ladder
only a force that is perpendicular to the wall. There is no friction
force.) The ladder weighs 200 N, and its center of gravity is 0.40L
from the base, where L is the ladder’s length. (a) How large a
friction force must exist at the base of the ladder if it is not to slip?
(b) What is the necessary coefficient of static friction?

Fig. 5-11

(a) We wish to find the friction force Ff. Notice that no friction force
exists at the top of the ladder. Taking torques about point-A gives the
torque equation



Solving leads to FN2 = 67.1 N. We can also write

and so Ff = 67 N and FN1 = 0.20 kN.

(b) 

5.11 [III] For the situation drawn in Fig. 5-12(a), find FT1, FT2, and FT3. The
boom is uniform and weighs 800 N.

First apply the force condition to point-A. The appropriate free-
body diagram is shown in Fig. 5-12(b). We then have

From the first of these we find FT2 = 3.11 kN; then the second
equation gives FT1 = 2.38 kN.

Let us now isolate the boom and apply the equilibrium conditions
to it. The appropriate free-body diagram is found in Fig. 5-12(c).
The torque equation, for torques taken about point-C, is

Solving for FT3, we compute it to be 9.84 kN. If it were required,
we could find FRH and FRV by using the x- and y-force equations.

Fig. 5-12



SUPPLEMENTARY PROBLEMS

5.12 [I]    A steering wheel has a diameter of 40.0 cm. A force of 30.0 N is
applied to its rim on the right, tangent to the wheel and in the
plane of it. Determine the size of the resulting torque. [Hint: The
moment arm is the radius. Watch out for units.]

5.13 [I]    A wrench is 50.0 cm long. It is placed on a nut, and a force of 100
N is applied perpendicular to the wrench handle. This force is in
the plane of the wrench and nut, at a distance of 30.0 cm from the
center of the nut. Determine the size of the torque twisting the nut.
[Hint: Draw a diagram and label the moment arm. Watch out for
units.]

5.14 [I]    A horizontal essentially weightless lever is pivoted so it can rotate
freely in a vertical plane. A downward force of 30.0 N is applied
perpendicularly to the lever at a point 25.0 cm from and to the
right of the pivot. Determine the torque on the lever, about the
pivot. [Hint: Draw a diagram and specify the direction of the
torque.]

5.15 [I]    A horizontal essentially weightless lever is pivoted at its center so
it can rotate freely in a vertical plane. A downward force of 80.0 N
is applied perpendicularly to the lever at a point 35.0 cm from and
to the right of the pivot. Another downward force of 100.0 N is
applied perpendicularly to the lever at a point 15.0 cm from and to
the left of the pivot. Determine the net torque on the lever. [Hint:
Draw a diagram.]

5.16 [I]    A seesaw is 5.00 m long with a fulcrum at its center. The uniform
plank is balanced horizontally when a 40.0-kg kid sits at the very
end on the right and an 80.0-kg kid sits somewhere on the left.
Locate that second kid. [Hint: Draw a diagram.]

5.17 [I]    A force of 1000 N is applied downward at the right end of a 1.50-m
long, essentially weightless horizontal crowbar. The bar is pivoted
on a rock 1.25 m from the right end. What is the maximum



amount of weight that can be supported on the left end before the
bar moves? [Hint: Draw a diagram. Watch out for significant
figures.]

5.18 [I]    An essentially weightless shovel is 120 cm long. Someone holds it
horizontally, supporting it with his left hand at the shovel’s center
of gravity and his right hand 80.0 cm to the right of the c.g. The
shovel contains a 20.0-N rock whose c.g. is 8.00 cm to the right of
the edge of the shovel. How much force does the person exert
down on the handle? [Hint: Draw a diagram and take the torques
around the left hand to avoid the force of the left hand.]

5.19 [I]    An 800-N painter stands on a uniform horizontal 100-N plank
resting on the rungs of two separated stepladders. The plank is
4.00 m long, and it is supported at its very ends (not a very safe
arrangement). The painter stands on the plank 1.00 m from its
right end. Determine the upward force exerted by the ladder on the
left. [Hint: Draw a diagram and locate the weight of the plank at
its c.g. and take the torques around the right end.]

5.20 [II]  As depicted in Fig. 5-13, two people sit in a car that weighs 8000
N. The person in front weighs 700 N, while the one in the back
weighs 900 N. Call L the distance between the front and back
wheels. The car’s center of gravity is a distance 0.400L behind the
front wheels. How much force does each front wheel and each
back wheel support if the people are seated along the centerline of
the car?



Fig. 5-13

5.21 [I]    Two people, one at each end of a uniform beam that weighs 400 N,
hold the beam at an angle of 25.0° to the horizontal. How large a
vertical force must each person exert on the beam?

5.22 [II]  Repeat Problem 5.13 if a 140-N child sits on the beam at a point
one-fourth of the way along the beam from its lower end.

5.23 [II]  Shown in Fig. 5-14 is a uniform 1600-N beam hinged at one end
and held by a horizontal tie rope at the other. Determine the
tension FT in the rope and the force components at the hinge.

Fig. 5-14

5.24 [II]  The uniform horizontal beam illustrated in Fig. 5-15 weighs 500 N
and supports a 700-N load. Find the tension in the tie rope and the
reaction force of the hinge on the beam.



Fig. 5-15

Fig. 5-16

5.25 [II]  The arm drawn in Fig. 5-16 supports a 4.0-kg sphere. The mass of
the hand and forearm together is 3.0 kg and its weight acts at a
point 15 cm from the elbow. Assuming all the forces are vertical,
determine the force exerted by the biceps muscle.

5.26 [II]  The mobile depicted in Fig. 5-17 hangs in equilibrium. It consists
of objects held by vertical strings. Object-3 weighs 1.40 N, while
each of the identical uniform horizontal bars weighs 0.50 N. Find
(a) the weights of objects-1 and -2, and (b) the tension in the upper
string.



Fig. 5-17

5.27 [II]  The hinges of a uniform door which weighs 200 N are 2.5 m apart.
One hinge is a distance d from the top of the door, while the other
is a distance d from the bottom. The door is 1.0 m wide. The
weight of the door is supported by the lower hinge. Determine the
forces exerted by the hinges on the door.

5.28 [III] The uniform bar in Fig. 5-18 weighs 40 N and is subjected to the
forces shown. Find the magnitude, location, and direction of the
force needed to keep the bar in equilibrium.

Fig. 5-18

5.29 [III] The horizontal, uniform, 120-N board drawn in Fig. 5-19 is
supported by two ropes as shown. A 0.40-kN weight is suspended
one-quarter of the way from the left end. Find FT1, FT2, and the



angle θ made by the rope on the left.

Fig. 5-19

Fig. 5-20

5.30 [III] The foot of a ladder rests against a wall, and its top is held by a
horizontal tie rope, as indicated in Fig. 5-20. The ladder weighs
100 N, and its center of gravity is 0.40 of its length from the foot.
A 150-N child hangs from a rung that is 0.20 of the length from
the top. Determine the tension in the tie rope and the components
of the force on the foot of the ladder.

5.31 [III] A truss is made by hinging two uniform, 150-N rafters as depicted
in Fig. 5-21. They rest on an essentially frictionless floor and are
held together by a horizontal tie rope. A 500-N load is held at their
apex. Find the tension in the tie rope.



Fig. 5-21

5.32 [III] A 900-N lawn roller is to be pulled over a 5.0-cm high curb (see
Fig. 5-22). The radius of the roller is 25 cm. What minimum
pulling force is needed if the angle θ made by the handle is (a) 0°
and (b) 30°? [Hint: Find the force needed to keep the roller
balanced against the edge of the curb, just clear of the ground.]

Fig. 5-22



Fig. 5-23

5.33 [II]  In Fig. 5-23, the uniform horizontal beam weighs 500 N. If the tie
rope can support 1800 N, what is the maximum value the load FW
can have?

5.34 [III] The beam in Fig. 5-24 has negligible weight. If the system hangs in
equilibrium when FW1 = 500 N, what is the value of FW2?

Fig. 5-24

5.35 [III] Repeat Problem 5.26, but now find FW1 if FW2 is 500 N. Here the
beam weighs 300 N and is uniform.

5.36 [III] An object is subjected to the forces shown in Fig. 5-25. What
single force F applied at a point on the x-axis will balance these
forces leaving the object motionless? (First find its components,
and then find the force.) Where on the x-axis should the force be



applied? Notice that before F is applied there is an unbalanced
force with components to the left and upward.

Fig. 5-25

5.37 [III] The solid uniform disk of radius b illustrated in Fig. 5-26 can turn
freely on an axle through its center. A hole of diameter D is drilled
through the disk; its center is a distance r from the axle. The
weight of the material drilled out is FWh. (a) Find the weight FW of
an object hung from a string wound on the disk that will hold the
disk in equilibrium in the position shown. (b) What would happen
if the load FW vanished? Explain your answer.

Fig. 5-26
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