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1. Interpretation of The Expansion Coeffisients

Fourier’s theorem states that any function ¢/(x) that satisfies the boundary conditions y«(0) =
yra) = O can be written in the form

P(x) = > C, sin 25= (3-29)
n—1

Since the cigenfunctions of H for the infinite well are proportional to sin n7rx/a, we write
the preceding expression in terms of the eigenfunctions u,,(x):

y(x) = i A, u,(x) (3-30)

n=1

The orthonormality relation (3-23) can be used to find A,,. We see that

fdx wh(x)Y(x) = fdx wuh(x) 2 A, u,(x)

i A, f dx u;, (Xu,(x) = i ASB, =
0 n=1

n=1
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Interpretation of The Expansion Coeffisients...

so that

A, = f dx uy, (x)(x) (3-31)
0

As in our discussion of the free wave packet, we can calculate the time development of
this arbitrary initial wave function ¢(x). Since cach of the cigenfunctions u,(x) acquires its
own time dependence e ““" we have quite generally

Yix, 1) = Y Au, (e " (3-32)

T
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Interpretation of The Expansion Coeffisients...

To interpret the coefficients A,, we calculate the expectation value of the energy in an arbi-
trary state (x). Since inside the box ¥/ = p?/2m, and outside the box y(x) = 0, and since

Hu,(x) = E,u,(x)

It follows that

(H) = f dx Yy*(x)HyAx) = f dx Yy*(xX)H D, A, u,(x)
0 [ =

- ; A, j dx Yy*(x)E, 1, (x) (3-33)
0
=2 EJlA,l’
We also note that
] dx P*(x)Pp(x) = 1 (3-34)
0
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Interpretation of The Expansion Coeffisients...

implies that

1= f dx y*(x) 3, A, (x) = X AAY = 3 |A, (3-35)
0 n n n

Comparison with (3-33) and (3-35) immediately suggests that |A,|?, where
A, = f dx u) (x)yY(x) (3-36)
0

be interpreted as the probability that a measurement of the energy for the state yA(x) yields
the eigenvalue E,.
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2. Operators In The Schrodinger Equation

How do we get to the Schridinger equation from our abstract framework? Consider the
harmonic oscillator problem. Starting from (6-42), we get

(x|A]0) =0 (6-50)
The original definition of A then implies that

X [(Bax,+i ;p
2h 2mwh "

O> =0 (6-51)

T
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Operators in The Schrodinger Equation...

We now use

(x|x0pl 0) = x(x]0) (6-52)

Xpepl0) = [ dpxlpoplpXpl0) = [ dp pixlpXpl0)

= fdpp ,_zlﬁew(pl())—'—“fdp, = (6-53)

=% 4 | aeplor =% o cxio)

We now denote (xlO) by uy(x), the ground-state wave function. Equation (6-50) now be-
comes a differential equation in x-space, which reads (after a little algebra)
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Operators in The Schrodinger Equation...

This is a simple differential equation, whose solution is
sol(x) = Ceg™™=xT2h (6-55)
The constant C is determined by the normalization requirement that

] =R f dic & . 2 /"m" (6-56)

soO that
C= |20 (6-57)

We may also obtain the higher energy states by working out in detail

U (X) = —A— (A )1 (%)

Vn!
— (6-58)
h _‘L "e—mr’m
2mw dx




Operators in The Schrodinger Equation...

2

In a general Schrédinger equation in which H = % + V(x,,), we have

(x| V(xp) |E) = V(xXx|E)
To get {x|p . |E) we calculate

lpal® = [ dxlpalpXplE) = [ dp pialpXplE)

— 7 z (x| E)

by following the same steps that led to (6-53). From this we see that

IHIE) = — 2 L (x|E) + Vo E) = EGIE)

which is just the Schridinger energy eigenvalue equation!

(6-59)

(6-60)

(6-61)
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3. The Time Dependence of Operators

We conclude this chapter by discussing the time development of a system in our
representation-independent way. The equation that describes the evolution of a system is
the time-dependent Schrédinger equation

it <4 |y0) = Hlp(o) (6-62)

This is now an operator equation in an abstract space. |[y«(1)) is a vector in that space and it
points in a direction that depends on time. The solution of this equation is

[Y(0)) = e """ [y(0)) (6-63)
where |4/(0)) 1s the vector at time ¢ = (. The operator in front is defined by

et = 3, L (—iHthy (6-64)

n-0
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The Time Dependence of Operators...

The solution (6-63) allows us to describe the change with time of the expectation value of
any operator B that does not have any explicit time dependence:
(B), = ()| Bly«D))
= (e """ 0)| Ble""""yA(0))

= ((0)| "™ Be M |y(0)) (6-65)
= {Y(0)| B(2) [y«0))
where we have defined
B(1) = eilldfr Be—ilhlﬁ (6-66)
d B(I) - i HeilhIItBe—illlM . ! eiHlMBe-iHlMH
dt h h
(6-67)

= _;1 (HB(1) — B()H) = -;l [H, B(1)]

MPF1204, FISIKA KUANTUM




The Time Dependence of Operators...

For the harmonic oscillator

H = hw(A*A + 3) (6-68)
and since H is a constant of the motion, we have
H = ho(A* (A1) + 3) (6-69)
We can also show, using (6-66), that
[A(N), A" (D] = 1 (6-70)

Eq. (6-67) implies that

d —
EA(') = —iwA(1)

d avtn = 1oat
‘TtA(t)—uuA(t)
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The Time Dependence of Operators...

whose solutions are
A(t) = e " A(0)

A*(1) = €“A*(0) (-12)
We may use these to express the operators p(f) and x(£) in terms of p(0) and x(0):
p(t) = p(0) cos wt — mwx(0) sin wt
(6-73)

x(1) = x(0) cos wt + p_"(l% sin wt

Note that in the Heisenberg picture we only deal with operators. We have therefore omit-
ted the subscript op to avoid cluttering up the equations.
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Exercises: (at paper),

1. Use the general operator equation (6-53) to Calculate {(n|x*|n) and {n|p?*|n).

x= L (A+4")
2o

- ’ln;oh(A —4)

2. Use the general operator equation of motion (6-67) to solve for the time dependence of the operator
x(f) given that

H= [—7-22(2 + mgx(1)
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Thank you
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