Solution Thermodynamics: Applications

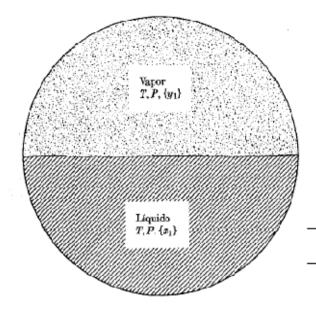
Lecturer: Bregas S T Sembodo

Liquid-phase properties from VLE data

- Fugacity
 - For species *i* in the vapor mixture: $\hat{f}_i^v = y_i \hat{\phi}_i^v P$
 - Vapor/liquid equilibrium: $\hat{f}_i^v = \hat{f}_i^l$
 - The vapor phase is assumed an ideal gas: $\hat{\phi}_i^{\nu} = 1$

- Therefore:
$$\hat{f}_i^v = \hat{f}_i^l = y_i P$$

- The fugacity of species *i* (in both the liquid and vapor phases) is equal to the partial pressure of species *i* in the vapor phase.
- Its value increases from zero to P_i^{sat} for pure species *i*

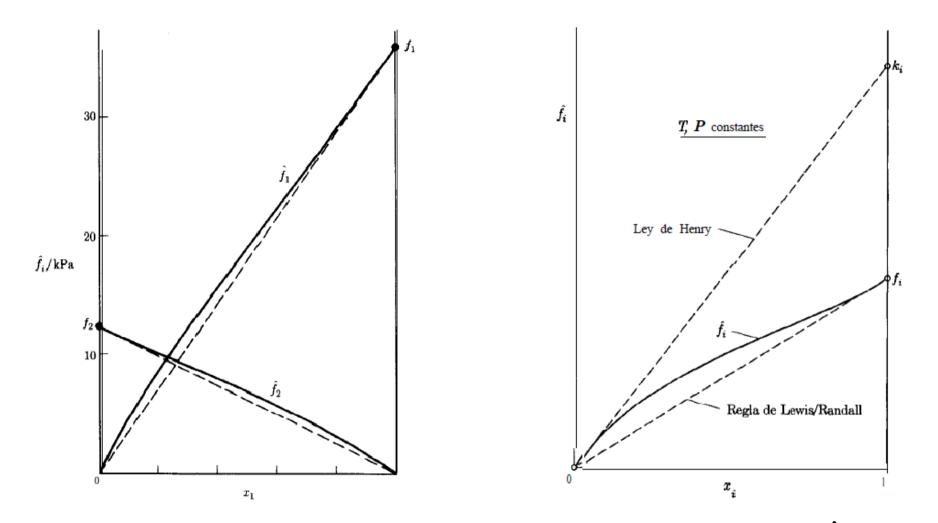


System MEK(1)/ Toluene(2)

P/kPa	x_1	y_1	$\hat{f}_1 = y_1 P$	$\hat{f}_2 = y_2 P$	γ1	γ_2
$12.30(P_2^{\text{sat}})$	0.0000	0.0000	0.000	12,300		1.000
15.51	0.0395	0.2716	4.212	11.298	1.304	1.009
18.61	0.1981	0.4565	8.496	10,114	1.188	1.026
21.63	0.3193	0.5934	12.835	8.795	1.114	1.050
24.01	0.4232	0.6815	16.363	7.697	1.071	1.073
25.92	0.5119	0.7440	19.284	5.636	1.044	1.105
27.96	0.6096	0.8050	22.508	5.542	1.023	1.135
30.12	0.7135	0.8639	26.021	4.099	1.010	1.163
31.75	0.7934	0.9048	28.727	3.023	1.003	1.189
34.15	0.9102	0.9590	32.750	1.400	0.997	1.268
$36.09(P_1^{\rm sat})$	1.0000	1.0000	36.090	0.000	1.000	

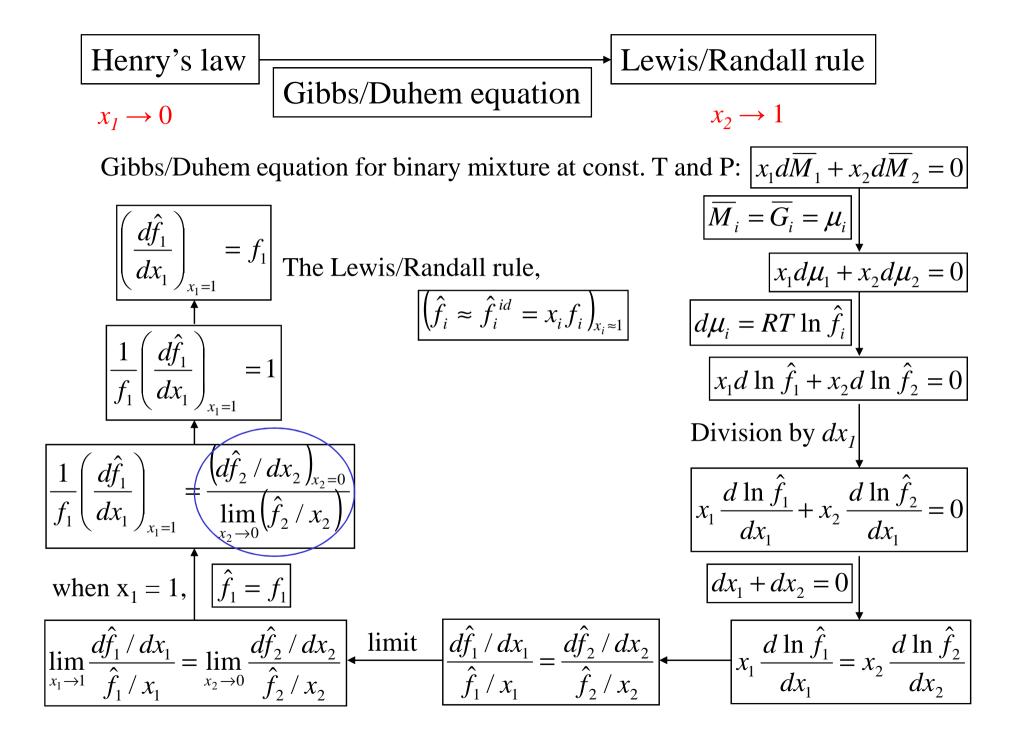
The first three columns are $P-x_1-y_1$ data.

Columns 4 and 5 are:
$$\hat{f}_1 = y_1 P$$
 $\hat{f}_2 = y_2 P$
Column 6 is: $\gamma_1 = \frac{\hat{f}_1}{x_1 f_1} = \frac{\hat{f}_1}{\hat{f}_1^{id}} = \frac{y_1 P}{x_1 P_1^{sat}}$



$$\lim_{x_i \to 0} \frac{\hat{f}_i}{x_i} = \left(\frac{d\hat{f}_i}{dx_i}\right)_{x_i = 0} \equiv H_i$$

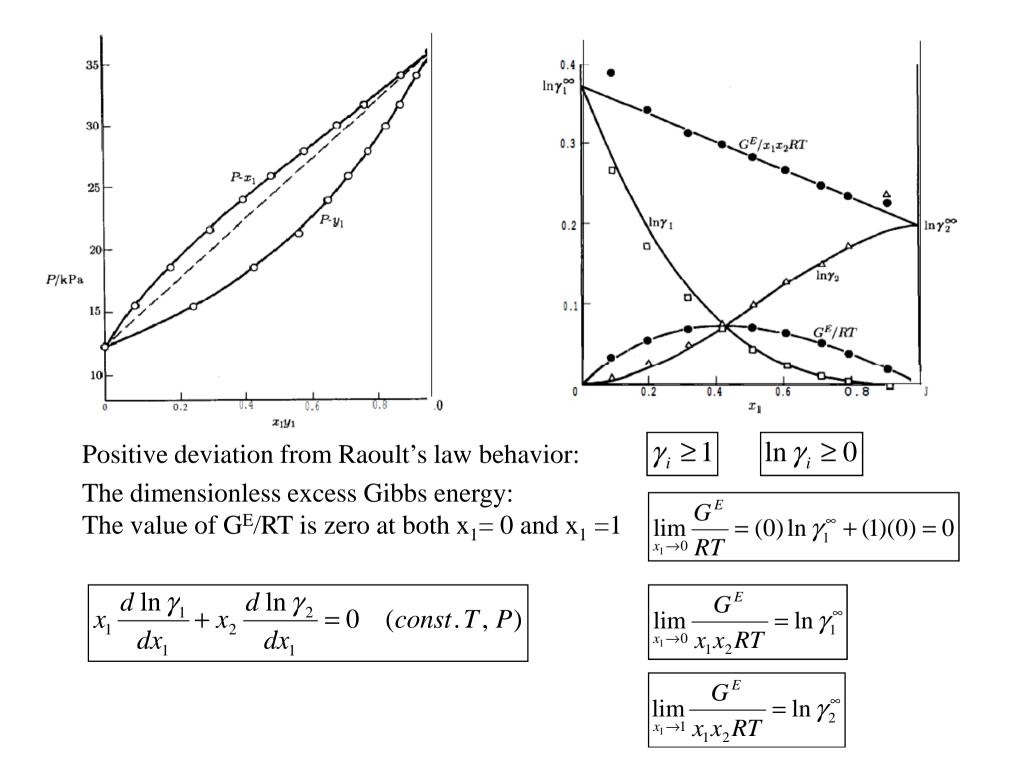
Henry's constant, the limiting slope of the $\hat{f}_i - vs - x_i$ curve at $x_i = 0$. Henry's law expresses: $\hat{f}_i = x_i H_i = y_i P$, it is approximate valid for small values of x_i



Excess Gibbs energy

$$: \quad \frac{G^E}{RT} = x_1 \ln \gamma_1 + x_2 \ln \gamma_2$$

P/kPa	x_1	y_1	$\ln \gamma_1$	$\ln \gamma_2$	G^E/RT	$G^{E}/x_{1}x_{2}RT$
$12.30(P_2^{\rm sat})$	0.0000	0.0000		0.000	0.000	
15.51	0.0895	0.2716	0.266	0.009	0.032	0.389
18.61	0.1981	0.4565	0.172	0.025	0.054	0.342
21.63	0.3193	0.5934	0.108	0.049	0.068	0.312
24.01	0.4232	0.6815	0.069	0.075	0.072	0.297
25.92	0.5119	0.7440	0.043	0.100	0.071	0.283
27.96	0.6096	0.8050	0.023	0.127	0.063	0.267
30.12	0.7135	0.8639	0.010	0.151	0.051	0.248
31.75	0.7934	0.9048	0.003	0.173	0.038	0.234
34.15	0.9102	0.9590	-0.003	0.237	0.019	0.227
$36.09(P_1^{\rm sat})$	1.0000	1.0000	0.000		0.000	



From Fig 12.5(b), linear relation:

$$\frac{G^{E}}{x_{1}x_{2}RT} = A_{21}x_{1} + A_{12}x_{2}$$

$$\frac{G^{E}}{RT} = (A_{21}x_{1} + A_{12}x_{2})x_{1}x_{2}$$

$$\frac{nG^{E}}{RT} = (A_{21}n_{1} + A_{12}n_{2})\frac{n_{1}n_{2}}{(n_{1} + n_{2})^{2}}$$

$$\ln \gamma_{1} = \left[\frac{\partial \left(nG^{E}/RT\right)}{\partial n_{1}}\right]_{P.T.n_{2}} = x_{2}[(A_{21}x_{1} + A_{12}x_{2})(1 - 2x_{1}) + A_{21}x_{1}] = x_{2}^{2}[A_{12} + 2(A_{21} - A_{12})x_{1}]$$
Similarly,
$$\ln \gamma_{2} = x_{1}^{2}[A_{21} + 2(A_{12} - A_{21})x_{2}]$$
The Margules equations
Limiting conditions:
$$\frac{\ln \gamma_{1}^{\infty}|_{x_{1}=0} = A_{12}}{RT} = \frac{\ln \gamma_{2}^{\infty}|_{x_{2}=0} = A_{21}}{RT} = (A_{21}x_{1} + A_{12}x_{2})x_{1}x_{2}$$

Models for the excess Gibbs energy

•
$$G^{E}/RT = f(T, P, composition)$$

- At constant T: $\frac{G^{E}}{RT} = g(x_{1}, x_{2}, ..., x_{N})$ Date but

Data fitting, convenient, but only for binary system

$$\frac{G^{E}}{x_{1}x_{2}RT} = A + B(x_{1} - x_{2}) + C(x_{1} - x_{2})^{2} + \dots$$
 The Redlich/Kister expansion

$$\frac{G^{E}}{x_{1}x_{2}RT} = A + B(x_{1} - x_{2}) \xrightarrow{A + B = A_{21}}$$
 The Margules equation

$$\frac{G^{E}}{x_{1}x_{2}RT} = \frac{A'_{12} + A'_{21}}{A'_{12}x_{1} + A'_{21}x_{2}}$$

The van Laar equation

Local composition models

• Can be applied to multi-component systems

• The Wilson equation:
$$\frac{G^E}{RT} = -x_1 \ln(x_1 + x_2 \Lambda_{12}) - x_2 \ln(x_2 + x_1 \Lambda_{21})$$

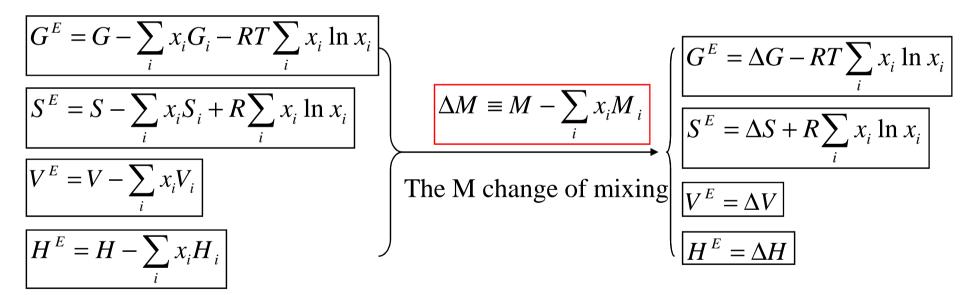
• The NRTL(Non-Random-Two-Liquid) equation:

$$\frac{G^{E}}{x_{1}x_{2}RT} = \frac{G_{21}\tau_{21}}{x_{1} + x_{2}G_{21}} + \frac{G_{12}\tau_{21}}{x_{2} + x_{1}G_{12}}$$

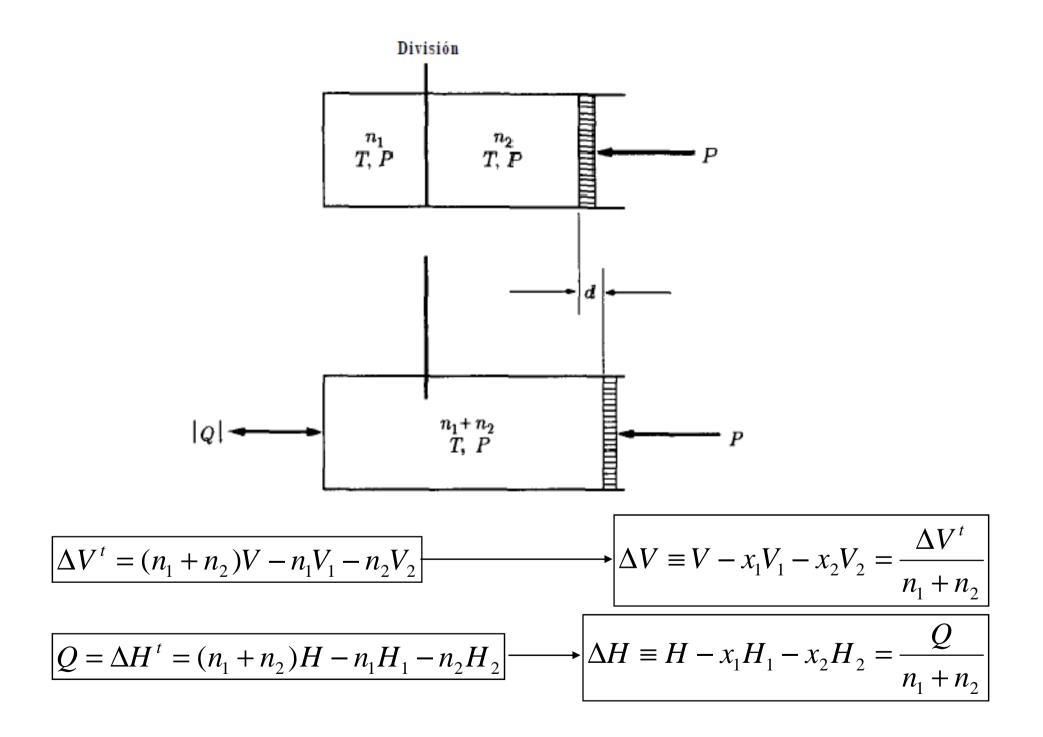
The UNIQUAC equation and the UNIFAC method:
– App. H.

Property changes of mixing

• Excess properties



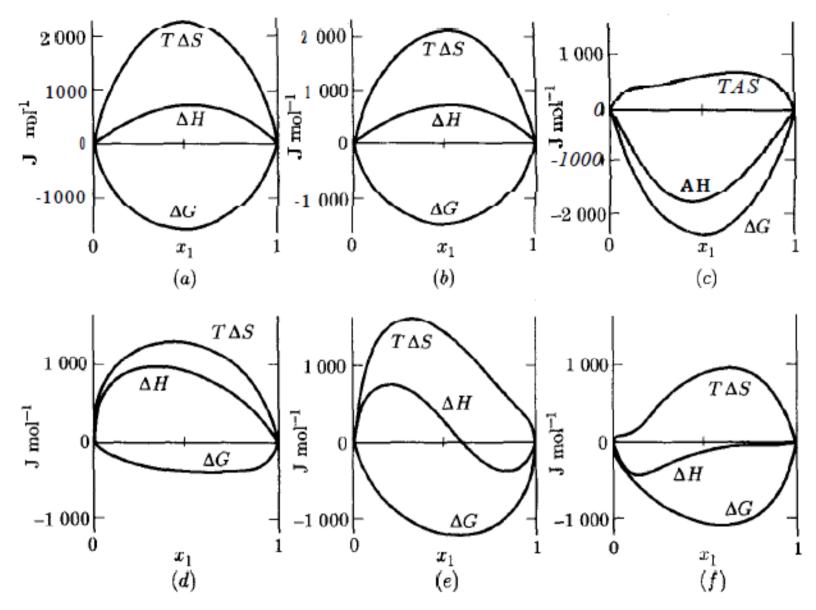
Because of their direct measurability, ΔV and ΔH are the property changes of mixing of major interest.



The excess enthalpy (heat of mixing) for liquid mixture of species 1 and 2 at fixed T and P is represented by the equation: $H^{E} = x_{1}x_{2}(40x_{1} + 20x_{2})$

Determine expressions for \overline{H}_1^E and \overline{H}_2^E as functions of x_i .

The partial properties:
$$\overline{H_{1}^{E}} = H^{E} + (1 - x_{1}) \frac{dH^{E}}{dx_{1}} \overline{H_{2}^{E}} = H^{E} - x_{1} \frac{dH^{E}}{dx_{1}}$$
$$\boxed{H^{E} = x_{1}x_{2}(40x_{1} + 20x_{2})}$$
$$\overline{H_{1}^{E}} = 20 - 60x_{1}^{2} + 40x_{1}^{3}$$
$$\overline{H_{2}^{E}} = 40x_{1}^{3}$$



1. Each ΔM is zero for a pure species.

- 2. The Gibbs energy change of mixing ΔG is always negative.
- 3. The entropy change of mixing ΔS is positive.

Heat effects of mixing processes

- Heat of mixing: $\Delta H = H \sum_{i} x_{i} H_{i}$
 - For binary systems: $H = x_1H_1 + x_2H_2 + \Delta H$
 - When a mixture is formed, a similar energy change occurs because interactions between the force fields of like and unlike molecules are different.
- Heat of solution
 - based on *1 mol* of solute dissolve in liquids:

$$\Delta \tilde{H} = \frac{\Delta H}{x_1}$$