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Functional Equations

Equations for unknown functions arc called finctional equations. We dealt with
these already in the chapters on sequences and polynomials. Sequences and poly-
nomials are just special functions.

Here are five examples of functional equations of a single variable:

F@&) = f=%), Jf@ =<ft=x) [fofF=% JSE@=L3);
fx)y=cosif(3), f(0)=1, [ continuous.
The first three properties characterize even functions, odd functions, and involu-
tions, respectively. Many functions have the fourth property. On the other hand,

the last condition makes the solution unique.
Here are examples of famous functional equations in two variables:

Sa+y)=Ff)+ fO), Sf+yl=ff), fay) =)+ ),
and fixy) = f(x) f(y). These are Cauchy’s functional equations.

£ () = [ERID) This s Jensen’s functional equation.

fx+y)+ flix —y)=2f(x)f(y). Thisis d’Alambert’s functional cquation.

gx +y)=gx)f(y) + flx)g(y), [flx+y)= f)f(y)—gkx)gly),
gx Y=g f(y) gflx), flx y=7Ffx)f) 1 glxigly).

The last four functional equations are the addition theorems for the trigenometric
functions f(x) = cos x and g(x) = sin x.

Usually a functional equation has many solutions, and it is quite difficult to
find all of them. On the other hand it is often easy to find all solutions with
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some additional properties, for example, all continuous, monotonic, bounded, or
differentiable solutions.

Without additional assumptions, it may be possible to find only certain properties
of the functions. We give some examples:

E1. First we consider the equation

Jxy) = fx)+ £ (1)

One solution is easy to guess: f(x) = 0 for all x. This is the only solution which
is defined for x = 0. If x = 0 belongs to the domain of f, then wecanset y =0
in (1), andweget f(0) = f(x)+ f(0), implying f(x) = Oforallx. Letx = 1be
in the domainof f. Withx =y =1, weget f(1) =2f(1), or

f)=0. (2)
If both 1 and —1 belong to the domain, then f is an even function, i.e., f(—x) =
f(x) for all x. To prove this, we setx = y = —1 in (1), and because of (2), we get

SO —=2f(-1)—0—= f(—1)— 0.
Setting y = —1in (1), we get f(—x) = f(x)+ f(1), or
f(—=x) = f{x) forall x.

Assume that f is differentiable for x > 0. We keep y fixed and differentiate for
x. Then we get vf'(xy) = f'(x). For x = 1, one gets yf'(y) = f'(1). Change of
notation leads to f'(x) = f'(1)/x, or

Fx) = / f’f” di = () x.
1

If the function is also defined for x < 0, then we have f(x) = f(1)In |x|.
E2. A famous classical functional equation is
fx+y=fx)+ f). (1)

First, we try to get out of (1) as much information as possible without any additional
assumptions. y = Oyields f(x) = f(x) + f(0), thatis,

f(0) =0. (2)
Fory = —x,weget0 = f(x)+ f(—x),or
f=x) = —f(x). (3)

Now we can confine our attention to x = 0. For y = x, we get f(2x) = 2f(x),
and by induction,
fnx) =nf(x) foralln < N. 4)
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For rational x = %, that is, n - x = m - 1, by (4) we get f(n-x) = f(m - 1),
nfix) =mf(l), and
@) == Q). (5)

If we set f(1) = ¢, then, from (2), (3), (5), we get f(x) = cx forrational x. That
is all we can get without additional assumptions.

(a) Suppose f is continuous. If x is irrational, then we choose a rational sequence
x, with limit x. Because of the continuity of f, we have

fix)y= lim fix,) = lim cx, = cx.
Then we have f(x) = cx for all x.

(b) Let f be monotonically increasing. If x is irrational, then we choose an in-
creasing and a decreasing sequence r, and R, of rational numbers, which converge
toward x. Then we have

cry = flra) = f(x) = f(R,) = cR,.

For n — oo, both cr,, and cR,, converge to cx. Thus f(x) = cx for all x.
(c) Let f be bounded on [a, £], that is,

| f(xX)] < M forallx < [a, b].

We shaw that f is also hounded on [0, b — a]. Tf x ¢ [0, b — a], then
x4+ a€la,b]. From f(x) = f(x + a)— f(a), we get

| f(x)| < 2M.

Ifwesetbh —a = d, then f is bounded on [0, 4]. Let ¢ = f(d)/d and g(x) =
f{x)—cx. Then
glx —y) =gx)+ gy

Furtherinore, we have g(d) = f(d) —cd = 0 and

glx +d)=gx)+ gld) = glx),

that is, g is periodic with period 4. As the difference of two bounded functions,
¢ is also bounded on [0, d]. From the periodicity, it follows that g is bounded on
the whole number line. Suppose there is an xg, so that g(xo) 7 0. Then g(nxy) =
ng(xy). By choosing n sufficiently large, we can make |ng (x;)| as large as we warnt.
This contradicts the boundedness of g. Hence, g(x) = O for all x, that is,

f(x)=-cx forall x.

In 1905 G. Hamel discovered “wild” functions that are nowhere bounded and also
satisfy the functional equation f(x + y) = f(x)+ f(v). Weare locking for “tame”
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solutions. If we succeed in finding a solution for all rationals, then we can extend
them to reals by continuity or monotonicity, efc.

E3. Another classical equation is

Fx+y) = fx)fFy. (1)

If there is an @ such that f(a) = O, then fix + @) = f(x)f(a) = O for all x,
that is, f is identically zero. For all other solutions, f(x) # U everywhere. For
x =y=1t/2, wecgct

w > f =
f(f):f“(a) > 0.
The solutions we are looking for are everywhere positive. For y = 0, we get

fx) = f(x)f(0) from (1), that is, £(0) = 1. For x = y, we get f(2x) = f2(x),
and by induction

fnx) = f"(x). (2)

Let x = % (m,n € N), that is, n - x = m - 1. Applying (2), we get f(nx) =
fm-D= f"x)= A1) = fx) = f»). If weset (1) = 4, then

/()=

that is, f(x) = a”* for rational x. With a weak additional assumption (continuity,
monotonicity, boundedness), as in E2, we can show that

fx)=a" forall x.

The following procedure is simpler: Since f(x) > 0 for all x, we can take loga-
rithms in (1):
Inof(x +y) —Inof(x)+ Ino f(y).

Letlnof = g. Thengx + y) = glx) + g(y) = glx) = cx = Inofx) = ex,
and

flx)=e”,
E4. We treat the following equation more generally:

Jfay)=f)+ £, x,y=>0 (1)

Wesetx =¢&*, y=2¢", f(e¥) = g(u). Then (1) is transformed into g(u + v) =
g(u)+ g(v) with solution g(#) = cu, and f(x) = ¢ In x, as in E1, where we used
differentiability.

ES. Next we consider the last Cauchy equation

Jxy) = Fx)f () (1)
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We assume x > UOand y > 0. Thenweset x = &%, y = €, f(e") = g(u) and get
¢(u +v) = glu) + g(v) with the solution g(u) = e = ()" = x“.

flEr=x"

and with the trivial solution f(x) = 0 tor all x.
If werequire (1) forallx #0, y £ 0,thenx = y=randx = y = —¢ give

A= f®) = f=nf0)

and
; f@)y =1 (or0),
et "‘):{ TP ——

In this case the general continuous solutions are

(@ f&)=IxI° @) fx)=sgnx- x| () flx)=0.

E6. Now we come to Jensen’s functional equation

f(xjy) _ L8 50 "
Weset f(0) =aand y = 0 and get £ (2) = Y% Then
FO+FO) L (x+y\ fea+y+a
— 2 )=
JFx+y)=flo+ f)—a
With g{x) = f(x) —a, wegetglx + y) = glx) + g(y), glx) = cx, and
Fx) =exn 4.
E7. Now we come to our last and most complicated example
Fx+y)+ flx—y)=2Fx)f (). (1)

We want to find the continuous solutions of (1). First we eliminate the trivial
solution f(x) = 0 for all x. Now

y=0=2fx)=2f(x)f0) = fO)=1,
x=0=fWM+ =) =2fOf) = f=y) =,

that is, f is an even [unclion. For x = ny, we gel

Fln+ Dyl =2fnfmy) — fln— Dyl (2)
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For y = x, we get f(2x) + f(0) = 2f2(x). From this we conclude with r = 2x

that i

(2) and (3) are satisfied by the functions cos and cosh. Since f(0) = 1 and f
is continuous, we have f(x) > 0 in [—a, a] for sufficiently small ¢ > 0. Thus,

fla) = 0.

(a) First case. 0 < f(a) = 1. Then there will be a ¢ from 0 < ¢ < Z, so that

f(a) = cos ¢. We show that, for any number of the form x = (n/2")a,

£(x) = cos gx. @)

For x = a, this is valid by definition of ¢. Because of (3), for x = a/?2,

. /1 fla)y+ 1 cos ¢+ 1 2 €
f° (_) = = = Ccos” —.
2 2 2 2
Because of f{a/2) = 0, cos % = 0, we conclude that
f (%) = COS % (5)

Suppose (5) is valid for x = @/2™. Then (3) implies

fo.(a):f(a%)‘I'l g, &

2m+1 = COs

g am+l
or

[ [
! (goer) = 08 g

that is, f (a/2™) = cos (¢/2™) for every natural number m. Because of (2) for

n=12,
F(3a) =13 3) =2 ()7 () - (35)

_» c % ¢ 3
COs Qfm COSs W — COs 2_’?1 COs Qfm .
Since (4) is valid for x = [(m — 1)/2"]a and x = (/2" )a, we conclude from (2)
forx =[(mn —1)/2"]a and x = (n/2™)a, that

Hence, we have

f{2ra)=cos e form me (01,23
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Since f is continuous and even, we have
c

f(x)=cos —x forallx.
a

Second case. If f(a) > 1, thenthereis a ¢ > 0, so that

fla) = coshe.

One can show exactly as in the first case that
c
f(x)=cosh—x forallx.
a

Thus, the functional equation (1) has the following continuous solutions:
fix)=0, fi{x)=cos bhx, f(x)=coshbhx.

This list also contains f(x) =1 for b = 0.

(b) We wart to find all differentiable solutions of (1). Since differentiability is a
far more powerful property than continuity, it will be quite easy to find all solutions
of fx+v)+ flx —y) =2f(x)f(y). Wedifferentiate twice with respect to each
variable:

Withrespectto x: f“(x + y)+ f'(x — y) = 2"x) f(y).
With respectto y: f"(x + y) + f"(x — y) = 2f () f"(y).

From both equations we conclude that

, f'x) _ ")
x) - = fx) " = =3 ) =af(x )
Fr'x)-fy)=fx)- ff) = 0 FO) = f'(x) = cf(x)
c=—w? = f(x) = acos wx + b sin wx,

c=w* = f(x) = acoshwx + bsinhwx.

fO) =1and f(—x) = f(x) result in f{x) = cos wx and fi{x) = coshwx,
respectively.

Problems

Find some (all) functions f with the property f(x) = f (%) forall x € R.

Find all continuous solutions of f(x + y) = g(x) + A(y).

Find all solutions of the functional equation f(x + y)+ f(x — yj =2 f(x)cos y.
The function f is periodic, if, for fixed « and any x,

1+ f(x)

1— flx)

5. HFindall polynomials p satisfying p(x + 1) = p(x)+ 2x + 1.

£ e b =

flx+a)=
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6. Findall functions f which are defined for all x € R and, for any x, y, satisfy
xfM+yfx) =&+ y)f)fy).
7. Find all real, not identically vanishing functions f with the property

FOOf() = fx—y) forallx, y.

8. Find a function f defined for x = 0, sothat f(xy) = xf(y) + yf(x).

9. The rational function f has the property f(x) — f(1/x). Show that f is a rational
function of x +1/x.

Remark. A rational function is the quotient of two polynomials.
10. Find all “tame” soluticns of f(x + y)+ f(x —y)=2[f(x)+ f(y)].
11. Findall “tame” soluticns of f(x 4+ y) — f(x — y) =2 f(y).
12. Find all “tame” soluticns of fix + y) + f(x — y) =2 f(x).
13. Find all tame solutions of
X
fx+y)= TR

S+ Fy)
14. Find all tame solutions of f#(x) = f(x + y)f(x — y). Note the similarity to 11.
15. Find the function f which satisfies the functional equation

1
f(x)+f(:) =x forallx#0, 1.

16. Find all continuous solutions of f{x — y) = f(x) f(y) + g(x)g(y).

17. Let f be a real-valued function defined for all real numbers x such that, for some
positive constant a, the equation

1 -
fata)=5 +V @ - f)

holds for all x.

(a) Prove that the function f is periodic, i.e., there exists a positive number & such
that f{x+ &) = f(x) for all x.

(b) For a = 1, give an example of a nonconstant function with the required properties
(IMQO 1968).

18. Fiud all coutinuous functious salisfying fix +y) f(x — yi= [f(x)f(y)]?'.

19. Let f(n)be a function defined on the set of all positive integers and with all its values
in the same set. Prove that if

S+ 1) = ff(n)]
for each positive integer n, then f(n) = n for each n (IMQ 1977).

20. Find all continuous functions in O which satisty the relations

fx+y)=fE+fO)+xyx+y), x yek
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Find all functions f defined on the set of positive real numbers which take positive
real values and satisfy the conditions:

@ flxf(]=yf(x) forall positive x, y;
i) f@&x)—=>0 a x— oo (IMO1983)

. Findall functions f, defined on the nonnegative real numbers and taking nonnegative

real values, such that

1) flxfO fO)= fix+y) forallx, y =0
(i) Ff(2)=10;
(i) f(x)#0 foO0<x <2 (IMO1986).

Find a tunction f : Q7 + U, which satisfies, forall x, y € QQ7, the equation

fxfy)=fx)/y (IMO1990).

. Find all functions f : R + R such that

fE+ O] =y +1f®P forallx, ye R (IMO 1992},

Does there exist a function f : N + N such that

FD—2, FIFM] — fFo)+n, f(n) < fFr+1) foralln e N (IMO 1993)?

Find all continuous functions f : R + R, which transform three terms of the
arithmetic progression x, x — y, x + 2y into corresponding terms f(x), f(x +
y), flx —+ 2y) of a geometric progression, that ig,

[fx+ 1 = f(x) - fx+2y).
Find all continuous functions f satisfying f(x + y) = f(x)+ f(y) + f(x) f(y).

Guess a simple function f satisfying f2(x) = 1 + xf(x + 1).

Find all continuous functions which transform three terms of an arithmetic progres-
sion into three terms of an arithmetic progression.

Find all continuous functions f satisfying 3f2x + 1) = f(x) + 5x.
Which function is characterized by the equation x f(x) 4+ 2xf(—x) = —17
Find the class of continuous functions satisfying f(x + y) = f(x)+ f(y)+ xy.

Leta #£ £1. Solve f (x/(x — 1)) = af(x) + ¢(x), where ¢(x) is a given function,
which is defined for x #= 1.

The function f is defined on the set of positive integers as follows:

Sf=1, [fB)=3, [f@n)=fmn),
FEn+ D =2f2n+1)— f), f@n+3)=3fCn+1)—2f@®).

Find all values of n with f(n) =nand 1 <n < 1988 (IMO 1988).
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A function f is defined on the set of rational numbers as follows:

f2x)/4 for 0 <x <1

a0

FO=0, fh=1, f(x)_{ P L fCx— D4 forl<ww L.
Leta = 0.515,b; - - - be the binary representation of «. Find f(a).
Find all polynomials over C satisfying f(x)f(—x) = f(x%).

The strictly increasing function f(#) is defined on the positive integers andit assumes
positive integral values for all # > 1. In addition, it satisfies the condition f[ f(n)] =
3-n. Find £(1994) (1IM 1994).

(a) The function f(x)is defined for all x > 0 and satisfies the conditions
(1) fix) is strictly increasing on (0, +co),
2) fix)=> —-1/xforx =0,
3) fix)- f(fix)4+1/x)=1forallx > 0.

Find f(1).
(b) Give an example of a function f(x) which satisfies (a).

Find all sequences f(x) of positive integers satisfying
SULF @I+ fFLF@] + f(n) = 3n.
Find all functions f : Ny + N, such that
flm+ fo] = fIfm)]+ fn) forallm,n e Ny (IMO 1996).

Solutions

1.

Any constant function has the required property. Another example is the function f
defined by fi{x) = |x|/x, x # 0. For O, one can define f arbitrarily.

There are infinitely many solutions. One can get all solutions as follows: Take any
interval of the form [«, 2a]. For instance, let us take [1, 2]. Define f in this interval,
arbitrarily, except f(1) = fi{2). Then f is defined for all real x > 0. Take the
graph of f in [1, 2], and stretch it horizontally by the factor 2" (z an integer). Then
you gel (he graph of f i (e iuterval [2%, 2°71]. We can define f(0) as we pleuse.
For negative x we can again choose an interval [, 28], & < 0, define f in this
interval arbitrarily except f(b) = f(2b), and extend the definition to all negative x
by stretching it.

This equation can be reduced to Cauchy's equation. Sety = 0, A(0) = . You get
f(x) =)+ b, 8(x) = f(x)—b.

For x = 0, g(0) = a we get f(y) = a + h(y), h(y) = f(y) — a. Thus,
S+ =)+ fiy) —a— b Sowith fo(x) = f(x) — a — b, we have

Jolx + y) = folx) + foly),
ie., fo(x) = cx,and

fxy=cx+a+b, gx)=cx+a hix)=cx+5b.
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9

= m/2, the right side disappears. We substimte x = 0, y = ¢, x = % + £,
w = %,y = %—i—t,andweget

Ji)+ fi—t)=2acos t, flm+6)+f(t)=0, [flmz+t)+ f(—¢t)= —2bsint,
where a = f(0), b= f(%). Hence,

f)=wa cos ¢+ b sin {.

. We find that fix + 24) = —1/f(x),1e., f(x +4a) = f(x). Thus 4a is a period
of f.

. 'We can guess the solution p(x) = x2. Is it the only one? A standard method for
answering this question is to introduce the difference f(x) = p(x) — x>. The given
functional equation becomes f(x + 1) = f(x). So f(x) = ¢, a constant. Thus
p(x) = x* + c. We must check if this solution satisfies the original equation, which
is indeed the case.

oy =x = f(x) = fix) = f(x)(f(x)—1) = 0for all x. Continuous solutions
are f(x) =0, f(x)= 1. There are many more discontinuous solutions. On any
subset A of R, set f(x) = 0.0On R A, set f(x) = 1. But there is a restriction, which
we find by setting y = —.. It shows that f(—x) = f(x) for all x,i.e., fis an even
function.

. ¥y=0= f(x)f(0) = f(x) forall x. Since f is not identically vanishing, we must
have f(0) =1y =x = fix)f(x) =1 forall x. We get two continuous functions
Jixy=1and f{x) = —1. There are many discontinuous functions, e.g., f(x) =1
on any subset A of R, and f(x) = —1lon R\ A.

. Tet g(x) = (f(x))/x. Then we get the Cauchy equation g{xy) — g(x) 4+ g(y) with
the solution g(x) = ¢ In x. This implies f(x) = cx1n x.

. Suppose

. xk(aoxn +axt T+ 4 )

Jx) = ; )
x'(buxm + et bm)

wherte aq, ba, 6., b, are not zero. Using the relation f(x) = f(1/x), we get

x’)‘.(ﬂ—k)—}—m—m(anxm s aO) _ a@l'”' s Eil
(bne-rm+“‘+b0) _boxm_‘_“‘_‘_bm.

(1

From here we getm n = 2(k [), where iz and » have the same parity. From (1)
we conclude that

Pux)=bpyx™ + . +bo=box™ + ...+ by

and
P (x) _arzxn+“‘+aOEann+“‘+am

le, a0 =a,, a1 = @Gp_1, ++, bg=b,, by = b,_4,.... Hence P,(x) and P,(x) are
reciprocal polynomials, which can be represented as follows: For even n: n = 2r,
then P,,(x) = x"g,(z), where z = x — 1 /x and g(z) is a polynomial of degree r. If n
isodd: n = 2r + 1, then P,y -(x) — (x + 1)x" ke (2}, where z — x + 1/x, and k,(2)
is a polynomial of degree r.

Furthermore, there are two possibilities:
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(aym —2s, n = 2r. Then

i oL EE) gl
= e~ b

(bym=2s+1, n=2r+ 1. Then

@D g) g

S = e D~ b

Fory = 0,we get2f(x) =2 f(x)+ 2f(0), or j(0) = 0. For x = y, we have
F(2x) — 4 f(x). We prove by induction that f(nx) — n’ f(x) for all x. Now let
x=p/q.Thengx = p-1, flgr) = f(p-1),q° f(x) = p* f(1). With f(1) = a, we
get f(x) = ax? for all rational x. By continuity we can extend this to all continuous
functions. By putting f(x) = ax? into the original equation, we see thatit is indeed
satisfied.

For y = 0, we get fix) — f(x) = 2F(0), or f(() = 0. For y = x, we get
J(2x) = 2 f(x) for all x. By induction we prove that f(nx) = nf(x). Now let
x=p/gorgx = p-1.Then f(gx) = f(p-1) = qf(x) =pf(1)= flx)= f()x
for all rational x. By continuity this can be extended to all real x. Putting f(x) = ax
into the functional equation, we see that it is the solution.

We want to solve the functional equation f(x + y)+ flx —y) =2f(x). y = x
yields f2x) + f(0) = 2f(x), or f2x) = 2f(x) + b with & = — f(0). Now
JRx4+x)+ fx—x)=2fQx)yields fBx)+ f(x) =22 f(x)+ b),0r f(3x) =
3f(x)+2b. We guess f(nx) = nf(x)+(n—1)b, and we prove thisby induction. Now
letx = p/q < gqx = p-lwith p, g € N.Then f(gx) = f(p-1), orgfix)+(q —
Db = pf()+(p—1b,or f(x) = fix+E—1)b,0r f(x) = [FO)+ f(1)]x—b.
With f(0)+ f(1) =« and f(0) = b, we finally get f(x) = ax + b. A chack shows
that this is indeed a solution.

Setting g(x) = 1/ f(x), we get Cauchy’s equation g(x + y) = g(x) + g(y) with the
solution g(x) = ex. Thus f(x) = 1/cx is the general continuous solution.

Taking logarithms on both sides, we get 2g(x) = g(x + y) + g(x — y). Here g(x) =
Ino f(x), thatis, g(x) = ax — b. Thus f(zx) = ™", or f(x) = rs*.

We repeatedly replace x £ /(1 —x) and get

2 1 2 1
X 1—— X.
1—x X

We get the following equations:

f'ix)+f(%):x,f( : )+f(1—l)= : ,f(1—1)+f(x)
g 1 = . 2] {esg x

=] ==

X

T ¢ 1 . 1 1 1 1
Elumnatmgf(1—)andJf 1— Wegetf(x):a T X .
1 — X

x x l—=
A check shows that this function indeed satisfies the functional equation.
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16. Hint: Interchanging x with y, we see that f(—x) = f(x) for all x. Setting y = 0, we

get f(0) = fYx)+g*(x). x = y = Oimplies £(0) = f*(0)+g*(0). y = O implies
Jx) = f(x)f(0) + g(x)g(0). Now f(0) = 0 wouldimply g(0) = O and f(x) =0
for all x. Thus, f(0) = 0. But f(x)[1 — f(0)] = g(x)g(0). Thus, f(0) = 1, and
hence g(0) = 0. y = —x implies f(2x) = f(x) + g(x)g(—x). We should get
F(x) =cos x and g(x) = sin x.

17. Wc have f(x + a) = %, and so f(x) = % for all x. If we sct g(x) = f(x) — %,WC

18.

have g(x) = O for all x. The given functional equation now becomes

/1
gx+a)=4/ - —[g@)]*

[s(x +a) = % — [g(x)]* for all x, (1)

Squaring, we get

and thus also 1
[g(x+2a)] = g [g(x + a)]*.

These two equations imply [g(x +2a)]* = [g(x)]*. Since g(x) = 0 for all x, we can
take square roots to get g(x 4 2a) = g(x), or

1_

) 1
fa+2a)--=f@)-2,

and
flx +2a)= f(x) forallx.
This shows that f(x) is periodic with period 2a.
(b) To find all solutions, we set A(x) = 4[g(x)]* — é Now (1) becomes

h(x —a) = —hix). (2)

Conversely, if i(x) = % and satisfies (2), then g(x) satisfies (1). An example for
a = 1 is furnished by the function z(x) = sin® ‘—;x — % which satisfies (2) with
a=1.For this &z, g(x) = %| sin(wx/2)| and

1 T 1
flx)= —|sin — 8
f(x) 5 2x +2

In fact, (x) can be defined arbitrarily in 0 < x < « subject to the condition
|hix)| = % andextended to all x by (2).

To find the solution of f(x — y) f(x + y) = [ f(x)f(y)]?, we observe that we can
assume f to be nomnegative. In fact, all we can say about a positive f is also valid
for a negative f.The three trivial solutions fi{x) =0, 1, —1 will be excluded from
nowon y = 0= f(x) = fix)’f(0)* = f(0P =1= f(0O)=1.

x=0= f(y)f(—y)= f(y)* = fly)= f(—y). Thus, fis an even function,

x =y = f(2x) = f(x)*. By induction we get f(nx) = j‘(x')ﬂg'. This can be
extended to rationals and then reals as in K2. Finally, we get

fx) = FAY for all x.

Anotherapproachintreduces ¢ = Inc ftoget g(x+y)+glx—y) =2 (g(x) + g(¥)).
This suggests the identity (x+ y)? 4+-(x — y)* = 2(x*+y?). Thos we guess g(x) = ax?
and f(x) = ¢ Tt remains to be proved that the guess is unique.
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19. j has a nnique minimum at » = 1. For,ifn > 1, wehave j(n) > f[f(n — 1)]. By
the same reasoning, we see that the second smallest value is f(2), etc. Hence,

FD < fF@ < fB <.

Since fin) = 1 for all n, we also have f(n) = n. Suppose that, for some positive
integer k, we have f(k) = k. Then f(k) = k4 1. Since f is increasing, f (f (k)) =
Flk 4 1), coulradicting the giveu inequality. Heuce f(rn) = n [or all .

20. It is easy to guess the solution from this property. The function x*/3 satisfies the
relationship. So we consider 2(x) = f(x) — x*/3. For ¢ we get the functional
equation g(x + y) = g(x) + g(y). Since g(x) = cx 18 the only continuous solution
in 0, we have f(x) = cx + x°/3.

21. We show thial 1 is iu the rauge of f. For an arbitrary xq = 0, lel yo = 1/ f(xg).
Then (i) vields f [xof(yc)] = 1, s0 1 is in the range of f. In the same way, we can
show that any positive real isin the range of f. Hence there is a value y such that
J(y) = 1. Together with x = 1 in (i), this gives f(1 - 1) = f{1) = yf(1). Since
J(1) = 0 by hypothesis, it follows that y = 1,and f(1) = 1. We set y = x in (i)
and get

flxflx)]=xf(x) foralx =0 (1)
Hence, xf(x)isafixedpointof f. If g and & are fixed points of f, thatis, if f{a) =«
and f(&) = b, then (i) with x = @, y = & implics that f(ab) = ba, soabis also a
fixed point of f. Thus the set of fixed points of f is closed under multiplication. In
particular, if @ is a fixed point, all nonnegative integral powers of ¢ are fixed points.
Since fix) — 0 for x — oo by (ii), there can be no fixed points > 1. Since xf(x)
is a fixed point, follows that

1
xflx) =1 fix)<— forall=x. 2)
X
Leta = zf(2),50 f(a) =a. Now setx = 1/g and y = ¢ in (i) to give

1 Lrw|= ry=1=ar(Ly, s(1)=1 L ]=_L
- -1 D). o) k]

This shows that 1 /x f(x) is also a fixed point of f for all x = O. Thus, f(x) = 1/x.
Together with (2) this implies that

1
Jx)=—. (3)
X
The function (3) is the only solution satisfying the hypothesis.
22. No solution.

23, If f(y1) = f(y,), the functional equation implies that y, = y,. For y = 1, we get
F(I) = 1. Forx = 1, we get £f{f(y) = }% for all y ¢ QF. Applying f to this
implies that £ (1/y) = 1/ f(y) for all y ¢ Q. Finally setting y = f (1/¢) yields
fxt) = f(x)- f() forall x, ¢ € QT

Conversely, it is easy to see that any [ satisfying
(a) f(xt) = fx)f(t), (b)) flfx)]=1/x forallx, t cQF

solves the functional equation.
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A function f : QF + QT satisfying (a) can be constructed by defining arbitrarily
on prime numbers and extending as

FP0 Pt o) = LA O™ LA™ - - [f (pl™,

where p; denotes the jth prime and n; € Z. Such a function will satisfy (&) for each
prime.
A possible construction is as follows:

( p ifjisodd,
Hey) = p% if j is even.

Extending it as above, we geta function f : QT 1> QF. Clearly F[f(p)] = 1/p
for each prime p. Hence f satisfies the functional equation.

No solution.

Startingwith f(1) = 2 and using the rule f[f(n)] = f(n)+n, we get, successively,
F@Q)=2+1=3, f3)=34+2=5,f(5)=54+3=8,fB) =8+5=13,...
that is, the map of a ['ibonacci number is the next [ibonacci number. Complete this
by induction.

[t remains to assign other positive integers to the remaining numbers satisfying the
functional equation. We use Zeckendorf’s theorem, which says that every positive
intcger # has a uniquc represcentation as a sum of non-ncighboring Fibonacci num-
bers. We have proved this in Chapter 8, problem 29. We write this representation in

the form
m
=¥ By ey 150
=1
where the summands have increasing indices. We will prove that the function f(n) —
E’:f:l F; 1 satisfies all conditions of the problem. Indeed, since 1 represents itself
as a Fibonacci number, we have f(1) = 2, the next Fibonacci number. Then

FLIm)] = Zﬁu1=2a9=2mﬁ—ﬂ
=1 i=1

: +1
=D Fyn+) F,=f)+n
i=1 i=1

Now we distinguish two cases.

(a) The Fibonacci representation of » contains neither F, nor /,. Then the represen-
tation of # 4 1 contains the additional summand 1. The representations of f(»n) and
J(n 4 1) differ also by an additional summandin f(z + 1), so that f(n) < f(mn+1).
(b) The Fibonacci representation of n contains either 7 or F3. On adding of 1, some
summands will become bigger Fibonacei numbers. The representation of # + 1 has a
largest Fibonacci number which is larger than the largest Fibonacci representation of
n. This property remains invariant after the applicationof f. Hence f(n+1) > f(n),
since the summands in the representation of f(r2) arc nonncighboring Fibonacei
mumbers and cannot add up to the greatest Fibonacei number in f(xn + 1).

Remark. The function f is not uniquely determined by the three conditions.
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26. Replacing x — x — y, we get the equation

FxY = flx = nf+y).
We can assume that f is positive. By introdneing g = Ilno f, we get
glx —y)+gx +y)=2gx),
which we solved in problem 13. A similar one was solvedin 11.

27. By setting f(x) = g(x) — 1, we can radically simplify the functional equation

glx +y) = g(x)g(y).

This is the functional equation of the exponential function g(x) = a*, or
fx)=a* — 1.

28. The only solutionis fix) = x + 1. See [21], problem 18.

29. We sl solve (be equation f(x) + fix + 2y) = 2 fix 4+ y). The resullis f(x) =
ax + b.

30. The unique solutionis f(x) —=x — % Show this vourself,

31. Wereplace x by —x and get —xf(—x)—2xf(x) = —1. Thos, we have two equations
for f(x)and f(—x). Solving for f(x), we get f(x)=1/x.

32, We guess f(x) = ax? + bx + c. Inserting this guess into the equation, we get
alx +y)¥ — ax*+ay*+xy,orax’+ay*+2axy+b(x+y)+c —ax’*+bx+c+
ay? -+ bv + c+xy, which is satisfied for 2 = 1/2 and ¢ = 0. By more conventional
methods, show that f(x) = x*/2 -+ cis the only continuous solution.

33. Lety = %7 Thenx = Z7. Thus f(y) = (agp(y) + ¢(y/y — 1))/(1 — a*).

34. Any positive integer n can be written in the binary system, e.g., 1988 =
11111000100,. By induction on the number in the binary system, we will prove
the following assertion: if

n=a2*+a 21+ dax, ao,...,ax €{0,1}, ag =1,

then
Sfln) = a2 a4 g

For1 =1;, 2 =10,, 3 = 11, the assertion is true because of the first three points
in (1). Now, suppose that the assertion is true for all numbers with less than (k 4 1)
digits in the binary system. Let

n=a2*+a2" ' +. 4+a. as=1.

We consider three cases: (a)a, = 0, (b, = 1,41 = 0and (©) ap, = a;,_; = 1.
We only consider the case (b), the remaining cases can be handled similarly. In case
(byrn = 4m | 1, where

m:ag2k2+‘~—|—ak_2, 2m—|—l:ao2k1—|—<~—|—a;;_22—|—l.
Because of (4), we have f(n) =2f(2m + 1) — f(m). By the induction hypothesis

fm)=a 2"+ tay, [f2m+1)=2"+4_,2"
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Hence,

F) =2 4+2a, 2,22+ 4 ag) — @22+ -+ a)
= 2k —|—ak_22k_2 4+ 4 dog = ak2k + ak_12k_1 4+ .+ ai,

g.e.d. The problem was to find the number ofintegers <0 1988 with symmetric binary
representation. We observe that this number is 21~ 1/2) We also see that only two
symmetric 11-digitnumbers 11111111111, and 11111011111, are larger than 1988.

Hence the number we are seeking is
(I+14242422 4224 4254204+ 2) -2 =2’ - D+ (2°-1)—-2 =92.

Let x = 0.b1byb; - --. If by = 0, then x < 1 and f(x) = 0.b,6, + if(o.bgbg e
If6y = 1,thenx > 7,and f(x) = 0.byby + 5 f(0.b,b; - - -). From this we conclude
that f(x) — 0.b161b,b:b3b5 - - -.

If z is a root of f, thenalso z?is. I |z| £ 1, there are infinitely many roots, which is
a contradiction. Hence all roots lie at the origin or on the unit circle. 0, 1 and third
roots of unity have the closure property for squaring, Hence x¥(x — 1)4(1 +x +x?)
also hias the closure propertly. Iuserting iuto e fuuclional equation, we see lial, iu
addition, p + ¢ must be even:

Flx) —x"(x— DA +x+x%, p. g, reNy, p+g=0mod?2.

Hint: We have f(1) < f(2) <= f(3) < -...Inaddition we have f(1) < f[f(1)] =
3. Thus f(1) =2, f(2) = 3. Prove that f(3r) = 3/ (n). In fact, f(n) = n + 3* for
3F <pn < 2.3, and f(n) = 3n—3 1 for2.3* < n < 3*T1 Hence £(1994) = 3795,
(ayLet f{(l) =t Forx = 1, wehave tf(t + 1) = 1and f(t +1) = 1/¢. Now
x=¢t+1 yields

Since f isincreasing, wehave 1/¢+1/(t+1)=1,0r¢ = (1+£+/5)/2. Butif ¢ were
positive, we would have the contradiction 1 « ¢ = f(1) <« f(14+¢) =1/t = 1.
Hence t = (1 — +/5)/2 is the only possibility.

(b) Similar to the computation of f(1), we can prove that f(x) = ¢/x, where t =
(1 — +/5)/2. Again we must check that this function indeed satisfies all conditions
of the problem.

Obviously the sequence f(n) — n satisfies the condition. We prove that there are no
other solutions. We observe that the function f is injective. Indeed,

f@) = fy) = IOl = jIrml= AN = £ AT
= SN+ FLA@L+ F&) = AN+ FLFGDT+ fiy)
—3x =3y

which implies x = y. For n = 1, we easily get f(1) = 1. Suppose that, for n < k,
we have f(n) = n. We prove that f(k) =k.If p = f(k) < k then by the induction
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hypothesis f(p) = p = f(k), and this contradicts the injectivity of f. If f(k) > k,
then f[f(k)] = k. If we had f[f{k)] < k, then, as before, we would get the
contradiction

U@L = flf@l, fLAR] = fk),  fl) =k

Similarly, we have f{f[f(k)]} = k. Hence, f{f[f(K)]} — f[f(&)] + f(k) > 3k,
which contradicts the original condition. Thus f(k) = k.



