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8
LEARNING GOALS

By studying this chapter, you will

learn:

• The meaning of the momentum of a

particle, and how the impulse of the

net force acting on a particle causes

its momentum to change.

• The conditions under which the total

momentum of a system of particles

is constant (conserved).

• How to solve problems in which two

bodies collide with each other.

• The important distinction among

elastic, inelastic, and completely

inelastic collisions.

• The definition of the center of mass

of a system, and what determines

how the center of mass moves.

• How to analyze situations such as

rocket propulsion in which the mass

of a body changes as it moves.

MOMENTUM, IMPULSE,
AND COLLISIONS

There are many questions involving forces that cannot be answered by
directly applying Newton’s second law, For example, when a
moving van collides head-on with a compact car, what determines which

way the wreckage moves after the collision? In playing pool, how do you decide
how to aim the cue ball in order to knock the eight ball into the pocket? And
when a meteorite collides with the earth, how much of the meteorite’s kinetic
energy is released in the impact?

A common theme of all these questions is that they involve forces about which
we know very little: the forces between the car and the moving van, between the
two pool balls, or between the meteorite and the earth. Remarkably, we will find
in this chapter that we don’t have to know anything about these forces to answer
questions of this kind!

Our approach uses two new concepts, momentum and impulse, and a new con-
servation law, conservation of momentum. This conservation law is every bit as
important as the law of conservation of energy. The law of conservation of
momentum is valid even in situations in which Newton’s laws are inadequate,
such as bodies moving at very high speeds (near the speed of light) or objects on a
very small scale (such as the constituents of atoms). Within the domain of Newtonian
mechanics, conservation of momentum enables us to analyze many situations
that would be very difficult if we tried to use Newton’s laws directly. Among
these are collision problems, in which two bodies collide and can exert very large
forces on each other for a short time.

8.1 Momentum and Impulse
In Chapter 6 we re-expressed Newton’s second law for a particle, in
terms of the work–energy theorem. This theorem helped us tackle a great number
of physics problems and led us to the law of conservation of energy. Let’s now
return to and see yet another useful way to restate this fundamental law.gF
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? Which could potentially do greater damage to this carrot: a .22-caliber bullet
moving at 220 m s as shown here, or a lightweight bullet of the same length
and diameter but half the mass moving at twice the speed?
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Newton’s Second Law in Terms of Momentum
Consider a particle of constant mass m. (Later in this chapter we’ll see how to
deal with situations in which the mass of a body changes.) Because 
we can write Newton’s second law for this particle as

(8.1)

We can move the mass m inside the derivative because it is constant. Thus New-
ton’s second law says that the net force acting on a particle equals the time
rate of change of the combination the product of the particle’s mass and
velocity. We’ll call this combination the momentum, or linear momentum, of
the particle. Using the symbol for momentum, we have

(definition of momentum) (8.2)

The greater the mass m and speed of a particle, the greater is its magnitude of
momentum Keep in mind, however, that momentum is a vector quantity with
the same direction as the particle’s velocity (Fig. 8.1). Hence a car driving north
at and an identical car driving east at have the same magnitude of
momentum but different momentum vectors because their directions
are different.

We often express the momentum of a particle in terms of its components. 
If the particle has velocity components and then its momentum compo-
nents and (which we also call the x-momentum, y-momentum, and
z-momentum) are given by

(8.3)

These three component equations are equivalent to Eq. (8.2).
The units of the magnitude of momentum are units of mass times speed; the SI

units of momentum are The plural of momentum is “momenta.”
If we now substitute the definition of momentum, Eq. (8.2), into Eq. (8.1), 

we get

(Newton’s second law in terms of momentum) (8.4)

The net force (vector sum of all forces) acting on a particle equals the time
rate of change of momentum of the particle. This, not is the
form in which Newton originally stated his second law (although he called
momentum the “quantity of motion”). This law is valid only in inertial frames
of reference.

According to Eq. (8.4), a rapid change in momentum requires a large 
net force, while a gradual change in momentum requires less net force. This
principle is used in the design of automobile safety devices such as air bags
(Fig. 8.2).

The Impulse–Momentum Theorem
A particle’s momentum and its kinetic energy both depend
on the mass and velocity of the particle. What is the fundamental difference
between these two quantities? A purely mathematical answer is that momentum
is a vector whose magnitude is proportional to speed, while kinetic energy is a
scalar proportional to the speed squared. But to see the physical difference
between momentum and kinetic energy, we must first define a quantity closely
related to momentum called impulse.
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8.1 The velocity and momentum vectors
of a particle.

8.2 If a fast-moving automobile stops
suddenly in a collision, the driver’s
momentum (mass times velocity) changes
from a large value to zero in a short time.
An air bag causes the driver to lose
momentum more gradually than would an
abrupt collision with the steering wheel,
reducing the force exerted on the driver as
well as the possibility of injury.

Momentum p is a vector quantity;
a particle’s momentum has the same
direction as its velocity v.
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Let’s first consider a particle acted on by a constant net force during a
time interval from to (We’ll look at the case of varying forces shortly.)
The impulse of the net force, denoted by is defined to be the product of the net
force and the time interval:

(assuming constant net force) (8.5)

Impulse is a vector quantity; its direction is the same as the net force Its
magnitude is the product of the magnitude of the net force and the length of time
that the net force acts. The SI unit of impulse is the newton-second 
Because an alternative set of units for impulse is the
same as the units of momentum.

To see what impulse is good for, let’s go back to Newton’s second law as
restated in terms of momentum, Eq. (8.4). If the net force is constant, then

is also constant. In that case, is equal to the total change in momen-
tum during the time interval divided by the interval:

Multiplying this equation by we have

Comparing with Eq. (8.5), we end up with a result called the impulse–momentum
theorem:

(impulse–momentum theorem) (8.6)

The change in momentum of a particle during a time interval equals the impulse
of the net force that acts on the particle during that interval.

The impulse–momentum theorem also holds when forces are not constant. To
see this, we integrate both sides of Newton’s second law over time
between the limits and 

The integral on the left is defined to be the impulse of the net force during
this interval:

(general definition of impulse) (8.7)

With this definition, the impulse–momentum theorem Eq. (8.6), is
valid even when the net force varies with time.

We can define an average net force such that even when is not con-
stant, the impulse is given by

(8.8)

When is constant, and Eq. (8.8) reduces to Eq. (8.5).
Figure 8.3a shows the x-component of net force as a function of time

during a collision. This might represent the force on a soccer ball that is in con-
tact with a player’s foot from time to The x-component of impulse during
this interval is represented by the red area under the curve between and Thist2.t1
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S Application Woodpecker Impulse

The pileated woodpecker (Dryocopus pileatus)
has been known to strike its beak against a
tree up to 20 times a second and up to
12,000 times a day. The impact force can be
as much as 1200 times the weight of the
bird’s head. Because the impact lasts such a
short time, the impulse—the product of the
net force during the impact multiplied by the
duration of the impact—is relatively small. (The
woodpecker has a thick skull of spongy bone
as well as shock-absorbing cartilage at the
base of the lower jaw, and so avoids injury.)

8.3 The meaning of the area under a
graph of versus t.gFx

Area 5 Jx 5 1oFxdt
t2

t1

Area 5 Jx
       5 (Fav)x(t2 2 t1)

The area under the curve of net force versus
time equals the impulse of the net force:

We can also calculate the
impulse by replacing the
varying net force with an
average net force:

(a)

(b)

t

ΣFx

(Fa v)x

t
t1

Large force that acts
for a short time

Smaller force that
acts for a longer time

The area under both curves
is the same, so both forces
deliver the same impulse.

t2
t2 � t1

ΣFx



area is equal to the green rectangular area bounded by and so
is equal to the impulse of the actual time-varying force during the

same interval. Note that a large force acting for a short time can have the same
impulse as a smaller force acting for a longer time if the areas under the force–time
curves are the same (Fig. 8.3b). In this language, an automobile airbag (see Fig. 8.2)
provides the same impulse to the driver as would the steering wheel or the dash-
board by applying a weaker and less injurious force for a longer time.

Impulse and momentum are both vector quantities, and Eqs. (8.5)–(8.8) are all
vector equations. In specific problems, it is often easiest to use them in compo-
nent form:

(8.9)

and similarly for the z-component.

Momentum and Kinetic Energy Compared
We can now see the fundamental difference between momentum and kinetic
energy. The impulse–momentum theorem says that changes in a
particle’s momentum are due to impulse, which depends on the time over which
the net force acts. By contrast, the work–energy theorem tells us
that kinetic energy changes when work is done on a particle; the total work
depends on the distance over which the net force acts. Consider a particle that
starts from rest at so that . Its initial momentum is and
its initial kinetic energy is Now let a constant net force equal to

act on that particle from time until time During this interval, the particle
moves a distance s in the direction of the force. From Eq. (8.6), the particle’s
momentum at time is

where is the impulse that acts on the particle. So the momentum
of a particle equals the impulse that accelerated it from rest to its present speed;
impulse is the product of the net force that accelerated the particle and the time
required for the acceleration. By comparison, the kinetic energy of the particle at

is the total work done on the particle to accelerate it from
rest. The total work is the product of the net force and the distance required to
accelerate the particle (Fig. 8.4).

Here’s an application of the distinction between momentum and kinetic
energy. Suppose you have a choice between catching a 0.50-kg ball moving at

or a 0.10-kg ball moving at Which will be easier to catch? Both
balls have the same magnitude of momentum, 

However, the two balls have different values10.10 kg2120 m>s2 = 2.0 kg # m>s.
p = mv = 10.50 kg214.0 m>s2 =

20 m>s.4.0 m>s
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?

8.4 The kinetic energy of a pitched base-
ball is equal to the work the pitcher does
on it (force multiplied by the distance 
the ball moves during the throw). The
momentum of the ball is equal to the
impulse the pitcher imparts to it (force
multiplied by the time it took to bring 
the ball up to speed).

Kinetic energy gained
by ball 5 ΣF · s

S S

Momentum gained by ball 5 ΣF Dt
S

Net force ΣF
S

Displacement s in time Dt
S

of kinetic energy the large, slow-moving ball has while
the small, fast-moving ball has Since the momentum is the same for
both balls, both require the same impulse to be brought to rest. But stopping the
0.10-kg ball with your hand requires five times more work than stopping the 0.50-kg
ball because the smaller ball has five times more kinetic energy. For a given force
that you exert with your hand, it takes the same amount of time (the duration of
the catch) to stop either ball, but your hand and arm will be pushed back five times
farther if you choose to catch the small, fast-moving ball. To minimize arm strain,
you should choose to catch the 0.50-kg ball with its lower kinetic energy.

Both the impulse–momentum and work–energy theorems are relationships
between force and motion, and both rest on the foundation of Newton’s laws.
They are integral principles, relating the motion at two different times separated

K = 20 J.
K = 4.0 J,K = 1

2 mv2;

ActivPhysics 6.1: Momentum and Energy
Change
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by a finite interval. By contrast, Newton’s second law itself (in either of the forms
or ) is a differential principle, relating the forces to the

rate of change of velocity or momentum at each instant.
gF

S
� d pS>dtgF

S
� maS

Conceptual Example 8.1 Momentum versus kinetic energy

Consider again the race described in Conceptual Example 6.5
(Section 6.2) between two iceboats on a frictionless frozen lake.
The boats have masses m and 2m, and the wind exerts the same
constant horizontal force on each boat (see Fig. 6.14). The boats
start from rest and cross the finish line a distance s away. Which
boat crosses the finish line with greater momentum?

SOLUTION

In Conceptual Example 6.5 we asked how the kinetic energies of
the boats compare when they cross the finish line. We answered
this by remembering that a body’s kinetic energy equals the total
work done to accelerate it from rest. Both boats started from rest,
and the total work done was the same for both boats (because the
net force and the displacement were the same for both). Hence
both boats had the same kinetic energy at the finish line.

Similarly, to compare the momenta of the boats we use the idea
that the momentum of each boat equals the impulse that accelerated

F
S

it from rest. As in Conceptual Example 6.5, the net force on each
boat equals the constant horizontal wind force Let be the
time a boat takes to reach the finish line, so that the impulse on the
boat during that time is Since the boat starts from rest,
this equals the boat’s momentum at the finish line:

Both boats are subjected to the same force but they take dif-
ferent times to reach the finish line. The boat of mass 2m accel-
erates more slowly and takes a longer time to travel the distance s;
thus there is a greater impulse on this boat between the starting and
finish lines. So the boat of mass 2m crosses the finish line with a
greater magnitude of momentum than the boat of mass m (but with
the same kinetic energy). Can you show that the boat of mass 2m
has times as much momentum at the finish line as the boat of
mass m?
12
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Example 8.2 A ball hits a wall

You throw a ball with a mass of 0.40 kg against a brick wall. It
hits the wall moving horizontally to the left at and
rebounds horizontally to the right at (a) Find the
impulse of the net force on the ball during its collision with the
wall. (b) If the ball is in contact with the wall for 0.010 s, find
the average horizontal force that the wall exerts on the ball dur-
ing the impact.

SOLUTION

IDENTIFY and SET UP: We’re given enough information to deter-
mine the initial and final values of the ball’s momentum, so we can
use the impulse–momentum theorem to find the impulse. We’ll
then use the definition of impulse to determine the average force.
Figure 8.5 shows our sketch. We need only a single axis because
the motion is purely horizontal. We’ll take the positive x-direction
to be to the right. In part (a) our target variable is the 
x-component of impulse, which we’ll find from the x-components
of momentum before and after the impact, using Eqs. (8.9). In part (b),
our target variable is the average x-component of force once
we know we can also find this force by using Eqs. (8.9).Jx,

1Fav2x;

Jx,

20 m>s.
30 m>s

Continued

EXECUTE: (a) With our choice of x-axis, the initial and final 
x-components of momentum of the ball are

From the x-equation in Eqs. (8.9), the x-component of impulse
equals the change in the x-momentum:

(b) The collision time is From the 
x-equation in Eqs. (8.9), so

EVALUATE: The x-component of impulse is positive—that is, to
the right in Fig. 8.5. This is as it should be: The impulse represents
the “kick” that the wall imparts to the ball, and this “kick” is cer-
tainly to the right.

CAUTION Momentum is a vector Because momentum is a 
vector, we had to include the negative sign in writing 

Had we carelessly omitted it, we would have calcu-
lated the impulse to be 

This would say that the wall had somehow given the ball a
kick to the left! Make sure that you account for the direction of
momentum in your calculations. ❙

The force that the wall exerts on the ball must have such a large
magnitude (2000 N, equal to the weight of a 200-kg object) to

m>s.
-4 kg #8.0 kg # m>s - 112 kg # m>s2 =

-12 kg # m>s.
p1x =

Jx

1Fav2x =
Jx

¢t
=

20 N # s
0.010 s

= 2000 N

Jx = 1Fav2x1t2 - t12 = 1Fav2x ¢t,
t2 - t1 = ¢t = 0.010 s.

= 8.0 kg # m>s - 1-12 kg # m>s2 = 20 kg # m>s = 20 N # s
Jx = p2x - p1x

p2x = mv2x = 10.40 kg21+20 m>s2 = +8.0 kg # m>s
p1x = mv1x = 10.40 kg21-30 m>s2 = -12 kg # m>s

8.5 Our sketch for this problem.
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change the ball’s momentum in such a short time. Other forces that
act on the ball during the collision are comparatively weak; for
instance, the gravitational force is only 3.9 N. Thus, during the
short time that the collision lasts, we can ignore all other forces on
the ball. Figure 8.6 shows the impact of a tennis ball and racket.

Note that the 2000-N value we calculated is the average horizon-
tal force that the wall exerts on the ball during the impact. It corre-
sponds to the horizontal line in Fig. 8.3a. The horizontal force
is zero before impact, rises to a maximum, and then decreases to
zero when the ball loses contact with the wall. If the ball is relatively
rigid, like a baseball or golf ball, the collision lasts a short time and
the maximum force is large, as in the blue curve in Fig. 8.3b. If the
ball is softer, like a tennis ball, the collision time is longer and the
maximum force is less, as in the orange curve in Fig. 8.3b.

(Fav)x

8.6 Typically, a tennis ball is in contact with the racket for
approximately 0.01 s. The ball flattens noticeably due to the
tremendous force exerted by the racket.

Example 8.3 Kicking a soccer ball

A soccer ball has a mass of 0.40 kg. Initially it is moving to the left
at but then it is kicked. After the kick it is moving at 45°
upward and to the right with speed (Fig. 8.7a). Find the
impulse of the net force and the average net force, assuming a col-
lision time 

SOLUTION

IDENTIFY and SET UP: The ball moves in two dimensions, so we
must treat momentum and impulse as vector quantities. We take
the x-axis to be horizontally to the right and the y-axis to be verti-
cally upward. Our target variables are the components of the net

¢t = 0.010 s.

30 m>s
20 m>s,

impulse on the ball, and and the components of the average
net force on the ball, and We’ll find them using the
impulse–momentum theorem in its component form, Eqs. (8.9).

EXECUTE: Using cos 45° � sin 45° � 0.707, we find the ball’s
velocity components before and after the kick:

From Eqs. (8.9), the impulse components are

From Eq. (8.8), the average net force components are

The magnitude and direction of the average net force are

The ball was not initially at rest, so its final velocity does not have
the same direction as the average force that acted on it.

EVALUATE: includes the force of gravity, which is very small;
the weight of the ball is only 3.9 N. As in Example 8.2, the aver-
age force acting during the collision is exerted almost entirely by
the object that the ball hit (in this case, the soccer player’s foot).
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Jy,Jx

8.7 (a) Kicking a soccer ball. (b) Finding the average force on
the ball from its components.

u

(a) Before-and-after diagram

(b) Average force on the ball

45°

BEFORE

AFTER

v1 5 20 m/s

m 5 0.40 kg

v2 5 30 m/s
y

O
x

Fav
S

(Fav)x

(Fav)y

Test Your Understanding of Section 8.1 Rank the following situations
according to the magnitude of the impulse of the net force, from largest value to small-
est value. In each situation a 1000-kg automobile is moving along a straight east–west
road. (i) The automobile is initially moving east at and comes to a stop in 10 s. 
(ii) The automobile is initially moving east at and comes to a stop in 5 s. (iii) The
automobile is initially at rest, and a 2000-N net force toward the east is applied to it for 10 s. 
(iv) The automobile is initially moving east at and a 2000-N net force toward the
west is applied to it for 10 s. (v) The automobile is initially moving east at Over a 
30-s period, the automobile reverses direction and ends up moving west at ❙25 m>s.

25 m>s.
25 m>s,

25 m>s
25 m>s
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8.2 Conservation of Momentum
The concept of momentum is particularly important in situations in which we
have two or more bodies that interact. To see why, let’s consider first an idealized
system of two bodies that interact with each other but not with anything else—for
example, two astronauts who touch each other as they float freely in the zero-
gravity environment of outer space (Fig. 8.8). Think of the astronauts as particles.
Each particle exerts a force on the other; according to Newton’s third law, the two
forces are always equal in magnitude and opposite in direction. Hence, the
impulses that act on the two particles are equal and opposite, and the changes in
momentum of the two particles are equal and opposite.

Let’s go over that again with some new terminology. For any system, the forces
that the particles of the system exert on each other are called internal forces. Forces
exerted on any part of the system by some object outside it are called external forces.
For the system shown in Fig. 8.8, the internal forces are exerted by
particle B on particle A, and exerted by particle A on particle B. There are no
external forces; when this is the case, we have an isolated system.

The net force on particle A is and the net force on particle B is
so from Eq. (8.4) the rates of change of the momenta of the two particles are

(8.10)

The momentum of each particle changes, but these changes are related to each
other by Newton’s third law: The two forces and are always equal
in magnitude and opposite in direction. That is, so 

Adding together the two equations in Eq. (8.10), we have

(8.11)

The rates of change of the two momenta are equal and opposite, so the rate of
change of the vector sum is zero. We now define the total momentum

of the system of two particles as the vector sum of the momenta of the individual
particles; that is,

(8.12)

Then Eq. (8.11) becomes, finally,

(8.13)

The time rate of change of the total momentum is zero. Hence the total
momentum of the system is constant, even though the individual momenta of the
particles that make up the system can change.

If external forces are also present, they must be included on the left side of 
Eq. (8.13) along with the internal forces. Then the total momentum is, in general,
not constant. But if the vector sum of the external forces is zero, as in Fig. 8.9,
these forces have no effect on the left side of Eq. (8.13), and is again zero.
Thus we have the following general result:

If the vector sum of the external forces on a system is zero, the total momentum
of the system is constant.

This is the simplest form of the principle of conservation of momentum. This
principle is a direct consequence of Newton’s third law. What makes this principle
useful is that it doesn’t depend on the detailed nature of the internal forces that
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8.8 Two astronauts push each other as
they float freely in the zero-gravity 
environment of space.

8.9 Two ice skaters push each other as
they skate on a frictionless, horizontal 
surface. (Compare to Fig. 8.8.)

A B

No external forces act on the two-astronaut
system, so its total momentum is conserved.

The forces the astronauts exert on each
other form an action–reaction pair.

y

x
FB on A

y

x
FA on B

S S

x

y

FB on A
S

nA
S

wA
S

x

y

FA on B
S

nB
S

wB
S

The forces the skaters exert on each
other form an action–reaction pair.

Although the normal and gravitational
forces are external, their vector sum is zero,
so the total momentum is conserved.



act between members of the system. This means that we can apply conservation
of momentum even if (as is often the case) we know very little about the internal
forces. We have used Newton’s second law to derive this principle, so we have to
be careful to use it only in inertial frames of reference.

We can generalize this principle for a system that contains any number of par-
ticles A, B, C, . . . interacting only with one another. The total momentum of such
a system is

(8.14)P
S

� pSA � pSB � Á � mAvSA � mBvSB � Á
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(total momentum of 
a system of particles)

We make the same argument as before: The total rate of change of momentum
of the system due to each action–reaction pair of internal forces is zero. Thus the
total rate of change of momentum of the entire system is zero whenever the vector
sum of the external forces acting on it is zero. The internal forces can change the
momenta of individual particles in the system but not the total momentum of the
system.

CAUTION Conservation of momentum means conservation of its components When you
apply the conservation of momentum to a system, remember that momentum is a vector
quantity. Hence you must use vector addition to compute the total momentum of a system
(Fig. 8.10). Using components is usually the simplest method. If and are the
components of momentum of particle A, and similarly for the other particles, then 
Eq. (8.14) is equivalent to the component equations

(8.15)

If the vector sum of the external forces on the system is zero, then and are all
constant. ❙

In some ways the principle of conservation of momentum is more general than
the principle of conservation of mechanical energy. For example, mechanical
energy is conserved only when the internal forces are conservative—that is, when
the forces allow two-way conversion between kinetic and potential energy—but
conservation of momentum is valid even when the internal forces are not conser-
vative. In this chapter we will analyze situations in which both momentum and
mechanical energy are conserved, and others in which only momentum is con-
served. These two principles play a fundamental role in all areas of physics, and
we will encounter them throughout our study of physics.

PzPy ,Px ,

 Pz = pAz + pBz + Á
 Py = pAy + pBy + Á
 Px = pAx + pBx + Á

pAzpAy ,pAx ,

Problem-Solving Strategy 8.1 Conservation of Momentum

IDENTIFY the relevant concepts: Confirm that the vector sum of
the external forces acting on the system of particles is zero. If it
isn’t zero, you can’t use conservation of momentum.

SET UP the problem using the following steps:
1. Treat each body as a particle. Draw “before” and “after”

sketches, including velocity vectors. Assign algebraic symbols
to each magnitude, angle, and component. Use letters to label
each particle and subscripts 1 and 2 for “before” and “after”
quantities. Include any given values such as magnitudes,
angles, or components.

2. Define a coordinate system and show it in your sketches; define
the positive direction for each axis.

3. Identify the target variables.

EXECUTE the solution:
1. Write an equation in symbols equating the total initial and final

x-components of momentum, using for each particle.
Write a corresponding equation for the y-components. Velocity
components can be positive or negative, so be careful with
signs!

2. In some problems, energy considerations (discussed in Sec-
tion 8.4) give additional equations relating the velocities.

3. Solve your equations to find the target variables.

EVALUATE your answer: Does your answer make physical sense?
If your target variable is a certain body’s momentum, check that
the direction of the momentum is reasonable.

px = mvx

8.10 When applying conservation of
momentum, remember that momentum is
a vector quantity!

pB
S

pA
S B

A
pA 5 18 kg · m/s
pB 5 24 kg · m/s

A system of two
particles with
momenta in
different directions

P 5 pA 1 pB � 42 kg · m/s

P 5 0 pA 1 pB 0 
    5 30 kg · m/s at u 5 37°

pA
S

pB
S

P � pA 1 pB
S S S

u

You CANNOT find the magnitude of the total
momentum by adding the magnitudes of the
individual momenta!

Instead, use vector addition:

S S

ActivPhysics 6.3: Momentum Conservation
and Collisions
ActivPhysics 6.7: Explosion Problems
ActivPhysics 6.10: Pendulum Person-
Projectile Bowling
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Example 8.4 Recoil of a rifle

A marksman holds a rifle of mass loosely, so it can
recoil freely. He fires a bullet of mass horizontally
with a velocity relative to the ground of What is
the recoil velocity of the rifle? What are the final momentum
and kinetic energy of the bullet and rifle?

SOLUTION

IDENTIFY and SET UP: If the marksman exerts negligible hori-
zontal forces on the rifle, then there is no net horizontal force on
the system (the bullet and rifle) during the firing, and the total
horizontal momentum of the system is conserved. Figure 8.11
shows our sketch. We take the positive x-axis in the direction of
aim. The rifle and the bullet are initially at rest, so the initial 
x-component of total momentum is zero. After the shot is fired, the
bullet’s x-momentum is and the rifle’s x-momentumpBx = mBvBx

vRx

vBx = 300 m>s.
mB = 5.00 g

mR = 3.00 kg is Our target variables are and the
final kinetic energies and .

EXECUTE: Conservation of the x-component of total momentum
gives

The negative sign means that the recoil is in the direction opposite
to that of the bullet.

The final momenta and kinetic energies are

EVALUATE: The bullet and rifle have equal and opposite final
momenta thanks to Newton’s third law: They experience equal and
opposite interaction forces that act for the same time, so the
impulses are equal and opposite. But the bullet travels a much
greater distance than the rifle during the interaction. Hence the
force on the bullet does more work than the force on the rifle, giving
the bullet much greater kinetic energy than the rifle. The 600:1 ratio
of the two kinetic energies is the inverse of the ratio of the masses;
in fact, you can show that this always happens in recoil situations
(see Exercise 8.26).

KR = 1
2 mRvRx

2 = 1
213.00 kg21-0.500 m>s22 = 0.375 J

pRx = mRvRx = 13.00 kg21-0.500 m>s2 = -1.50 kg # m>s
KB = 1

2 mBvBx
2 = 1

2 10.00500 kg21300 m>s22 = 225 J

pBx = mBvBx = 10.00500 kg21300 m>s2 = 1.50 kg # m>s

vRx = -
mB

mR
vBx = - ¢0.00500 kg

3.00 kg
≤1300 m>s2 = -0.500 m>s

Px = 0 = mBvBx + mRvRx

KR = 1
2 mRvRx

2KB = 1
2 mBvBx

2
pRx,pBx,vRx,pRx = mRvRx.

8.11 Our sketch for this problem.

Example 8.5 Collision along a straight line

Two gliders with different masses move toward each other on a
frictionless air track (Fig. 8.12a). After they collide (Fig. 8.12b),
glider B has a final velocity of (Fig. 8.12c). What is the
final velocity of glider A? How do the changes in momentum and
in velocity compare?

+2.0 m>s

8.12 Two gliders colliding on an air track.

mA 5 0.50 kg

vA1x 5 2.0 m/s vB1x 5 22.0 m/s

vA2x vB2x 5 2.0 m/s

mB 5 0.30 kg

x

x

x

(a) Before collision

(b) Collision

(c) After collision

BA

BA

BA

SOLUTION

IDENTIFY and SET UP: As for the skaters in Fig. 8.9, the total ver-
tical force on each glider is zero, and the net force on each individ-
ual glider is the horizontal force exerted on it by the other glider.
The net external force on the system of two gliders is zero, so their
total momentum is conserved. We take the positive x-axis to be to
the right. We are given the masses and initial velocities of both
gliders and the final velocity of glider B. Our target variables are

the final x-component of velocity of glider A, and the changes
in momentum and in velocity of the two gliders (the value after the
collision minus the value before the collision).

EXECUTE: The x-component of total momentum before the collision is

= 0.40 kg # m>s
= 10.50 kg212.0 m>s2 + 10.30 kg21-2.0 m>s2

Px = mAvA1x + mBvB1x

vA2x,

This is positive (to the right in Fig. 8.12) because A has a greater
magnitude of momentum than B. The x-component of total momen-
tum has the same value after the collision, so

Continued

Px = mAvA2x + mBvB2x



We solve for 

The changes in the x-momenta are

- 10.30 kg21-2.0 m>s2 = +1.2 kg # m>s
mBvB2x - mBvB1x = 10.30 kg212.0 m>s2

- 10.50 kg212.0 m>s2 = -1.2 kg # m>s
mAvA2x - mAvA1x = 10.50 kg21-0.40 m>s2

= -0.40 m>s

vA2x =
Px - mBvB2x

mA
=

0.40 kg # m>s - 10.30 kg212.0 m>s2

0.50 kg

vA2x:
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The changes in x-velocities are

EVALUATE: The gliders were subjected to equal and opposite
interaction forces for the same time during their collision. By
the impulse–momentum theorem, they experienced equal and
opposite impulses and therefore equal and opposite changes in
momentum. But by Newton’s second law, the less massive glider

had a greater magnitude of acceleration and hence a greater
velocity change.
1B2

vB2x - vB1x = 2.0 m>s - 1-2.0 m>s) = +4.0 m>s

vA2x - vA1x = 1-0.40 m>s2 - 2.0 m>s = -2.4 m>s

Example 8.6 Collision in a horizontal plane

Figure 8.13a shows two battling robots on a frictionless surface.
Robot A, with mass 20 kg, initially moves at parallel to the
x-axis. It collides with robot B, which has mass 12 kg and is ini-
tially at rest. After the collision, robot A moves at in a
direction that makes an angle with its initial direction
(Fig. 8.13b). What is the final velocity of robot B?

SOLUTION

IDENTIFY and SET UP: There are no horizontal external forces, so
the x- and y-components of the total momentum of the system are
both conserved. Momentum conservation requires that the sum of
the x-components of momentum before the collision (subscript 1)
must equal the sum after the collision (subscript 2), and similarly
for the sums of the y-components. Our target variable is the
final velocity of robot B.

vSB2,

a = 30°
1.0 m>s

2.0 m>s
EXECUTE: The momentum-conservation equations and their solu-
tions for and are

Figure 8.13b shows the motion of robot B after the collision. The
magnitude of is

and the angle of its direction from the positive x-axis is

EVALUATE: We can check our answer by confirming that the
components of total momentum before and after the collision are
equal. Initially robot A has x-momentum

and zero y-momentum; robot B has
zero momentum. After the collision, the momentum compo-
nents are
and the total x-
momentum is the same as before the collision. The
final y-components are

and
the total y-component of momentum is zero, the same as before the
collision.

mBvB2y = 112 kg21-0.83 m>s2 = -10 kg # m>s;10 kg # m>s
mAvA2y = 120 kg211.0 m>s21sin 30°2 =

40 kg # m>s,
112 kg211.89 m>s2 = 23 kg # m>s;mBvB2x =

120 kg211.0 m>s21cos 30°2 = 17 kg # m>smAvA2x =

12.0 m>s2 = 40 kg # m>s
mAvA1x = 120 kg2

b = arctan
-0.83 m>s

1.89 m>s
= -24°

vB2 = 211.89 m>s22 + 1-0.83 m>s22 = 2.1 m>s

vSB2

= -0.83 m>s

=
B120 kg2102 + 112 kg2102

- 120 kg211.0 m>s21sin30°2
R

12 kg

vB2y =
mAvA1y + mBvB1y - mAvA2y

mB

mAvA1y + mBvB1y = mAvA2y + mBvB2y

= 1.89 m>s

=
B120 kg212.0 m>s2 + 112 kg2102

- 120 kg211.0 m>s21cos30°2
R

12 kg

vB2x =
mAvA1x + mBvB1x - mAvA2x

mB

mAvA1x + mBvB1x = mAvA2x + mBvB2x

vB2yvB2x

8.13 Views from above of the velocities (a) before and 
(b) after the collision.

(a) Before collision

vA2

y

O
x

A

B

y

O

vA1
B

x

A

(b) After collision

a

a

b

b

S

S

vA2y

vA2x

vB2x

vB2
S

vB2y
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8.3 Momentum Conservation and Collisions
To most people the term collision is likely to mean some sort of automotive dis-
aster. We’ll use it in that sense, but we’ll also broaden the meaning to include any
strong interaction between bodies that lasts a relatively short time. So we include
not only car accidents but also balls colliding on a billiard table, neutrons hitting
atomic nuclei in a nuclear reactor, the impact of a meteor on the Arizona desert,
and a close encounter of a spacecraft with the planet Saturn.

If the forces between the bodies are much larger than any external forces, as is
the case in most collisions, we can neglect the external forces entirely and treat the
bodies as an isolated system. Then momentum is conserved and the total momen-
tum of the system has the same value before and after the collision. Two cars col-
liding at an icy intersection provide a good example. Even two cars colliding on
dry pavement can be treated as an isolated system during the collision if the forces
between the cars are much larger than the friction forces of pavement against tires.

Elastic and Inelastic Collisions
If the forces between the bodies are also conservative, so that no mechanical
energy is lost or gained in the collision, the total kinetic energy of the system is the
same after the collision as before. Such a collision is called an elastic collision. A
collision between two marbles or two billiard balls is almost completely elastic.
Figure 8.14 shows a model for an elastic collision. When the gliders collide, their
springs are momentarily compressed and some of the original kinetic energy is
momentarily converted to elastic potential energy. Then the gliders bounce apart,
the springs expand, and this potential energy is converted back to kinetic energy.

A collision in which the total kinetic energy after the collision is less than before
the collision is called an inelastic collision. A meatball landing on a plate of
spaghetti and a bullet embedding itself in a block of wood are examples of inelastic
collisions. An inelastic collision in which the colliding bodies stick together and
move as one body after the collision is often called a completely inelastic collision.
Figure 8.15 shows an example; we have replaced the spring bumpers in Fig. 8.14
with Velcro®, which sticks the two bodies together.

CAUTION An inelastic collision doesn’t have to be completely inelastic It’s a common
misconception that the only inelastic collisions are those in which the colliding bodies
stick together. In fact, inelastic collisions include many situations in which the bodies do
not stick. If two cars bounce off each other in a “fender bender,” the work done to deform
the fenders cannot be recovered as kinetic energy of the cars, so the collision is inelastic
(Fig. 8.16). ❙

Remember this rule: In any collision in which external forces can be neglected,
momentum is conserved and the total momentum before equals the total momentum
after; in elastic collisions only, the total kinetic energy before equals the total kinetic
energy after.

Completely Inelastic Collisions
Let’s look at what happens to momentum and kinetic energy in a completely
inelastic collision of two bodies (A and B), as in Fig. 8.15. Because the two bod-
ies stick together after the collision, they have the same final velocity :

vSA2 � vSB2 � vS2

vS2

Test Your Understanding of Section 8.2 A spring-loaded toy sits at
rest on a horizontal, frictionless surface. When the spring releases, the toy breaks
into three equal-mass pieces, A, B, and C, which slide along the surface. Piece A
moves off in the negative x-direction, while piece B moves off in the negative y-direction.
(a) What are the signs of the velocity components of piece C? (b) Which of the three
pieces is moving the fastest? ❙

8.14 Two gliders undergoing an elastic
collision on a frictionless surface. Each
glider has a steel spring bumper that exerts
a conservative force on the other glider.

8.15 Two gliders undergoing a com-
pletely inelastic collision. The spring
bumpers on the gliders are replaced by
Velcro®, so the gliders stick together after
collision.

Kinetic energy is stored as potential
energy in compressed springs.

The system of the two gliders has the same
kinetic energy after the collision as before it.

vA1 vB1

Springs

(a) Before collision

(b) Elastic collision

(c) After collision

BA

BA

S S

vA2 vB2
S S

BA

The gliders stick together.

The system of the two gliders has less kinetic
energy after the collision than before it.

BA

BA

BA

vA1 vB1

Velcro®

(a) Before collision

(b) Completely inelastic collision

(c) After collision

S S

v2
S



Conservation of momentum gives the relationship

(completely inelastic collision) (8.16)

If we know the masses and initial velocities, we can compute the common final
velocity

Suppose, for example, that a body with mass and initial x-component of
velocity collides inelastically with a body with mass that is initially at
rest From Eq. (8.16) the common x-component of velocity of
both bodies after the collision is

(8.17)v2x =
mA

mA + mB
vA1x

v2x1vB1x = 02.
mBvA1x

mA

vS2.

mAvSA1 � mBvSB1 � 1mA + mB2v
S

2
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Example 8.7 A completely inelastic collision

We repeat the collision described in Example 8.5 (Section 8.2), but
this time equip the gliders so that they stick together when they
collide. Find the common final x-velocity, and compare the initial
and final kinetic energies of the system.

SOLUTION

IDENTIFY and SET UP: There are no external forces in the x-direction,
so the x-component of momentum is conserved. Figure 8.17 shows
our sketch. Our target variables are the final x-velocity and the
initial and final kinetic energies and .K2K1

v2x

EXECUTE: From conservation of momentum,

Because is positive, the gliders move together to the right after
the collision. Before the collision, the kinetic energies are

The total kinetic energy before the collision is 
The kinetic energy after the collision is

= 0.10 J

K2 = 1
21mA + mB2v2x

2 = 1
210.50 kg + 0.30 kg210.50 m>s22

1.6 J.
KB =K1 = KA +

KB = 1
2 mBvB1x

2 = 1
210.30 kg21-2.0 m>s22 = 0.60 J

KA = 1
2 mAvA1x

2 = 1
210.50 kg212.0 m>s22 = 1.0 J

v2x

= 0.50 m>s

=
10.50 kg212.0 m>s2 + 10.30 kg21-2.0 m>s2

0.50 kg + 0.30 kg

v2x =
mAvA1x + mBvB1x

mA + mB

mAvA1x + mBvB1x = 1mA + mB2v2x

8.17 Our sketch for this problem.

8.16 Automobile collisions are intended
to be inelastic, so that the structure of the
car absorbs as much of the energy of the
collision as possible. This absorbed energy
cannot be recovered, since it goes into a
permanent deformation of the car.

(completely inelastic collision,
B initially at rest)

Let’s verify that the total kinetic energy after this completely inelastic colli-
sion is less than before the collision. The motion is purely along the x-axis, so the
kinetic energies and before and after the collision, respectively, are

The ratio of final to initial kinetic energy is

(8.18)
K2

K1
=

mA

mA + mB

K2 = 1
21mA + mB2v2x

2 = 1
21mA + mB2a

mA

mA + mB
b

2

vA1x
2

K1 = 1
2 mAvA1x

2

K2K1

(completely inelastic collision,
B initially at rest)

The right side is always less than unity because the denominator is always
greater than the numerator. Even when the initial velocity of is not zero, it is
not hard to verify that the kinetic energy after a completely inelastic collision is
always less than before.

Please note: We don’t recommend memorizing Eq. (8.17) or (8.18). We
derived them only to prove that kinetic energy is always lost in a completely
inelastic collision.

mB
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EVALUATE: The final kinetic energy is only of the original; is
converted from mechanical energy to other forms. If there is a wad of
chewing gum between the gliders, it squashes and becomes warmer.
If there is a spring between the gliders that is compressed as they lock

15
16

1
16 together, the energy is stored as potential energy of the spring. In both

cases the total energy of the system is conserved, although kinetic
energy is not. In an isolated system, however, momentum is always
conserved whether the collision is elastic or not.

Example 8.8 The ballistic pendulum

Figure 8.18 shows a ballistic pendulum, a simple system for meas-
uring the speed of a bullet. A bullet of mass makes a com-
pletely inelastic collision with a block of wood of mass which
is suspended like a pendulum. After the impact, the block swings
up to a maximum height y. In terms of y, and what is the
initial speed of the bullet?

SOLUTION

IDENTIFY: We’ll analyze this event in two stages: (1) the embed-
ding of the bullet in the block and (2) the pendulum swing of the
block. During the first stage, the bullet embeds itself in the
block so quickly that the block does not move appreciably. The
supporting strings remain nearly vertical, so negligible external
horizontal force acts on the bullet–block system, and the hori-
zontal component of momentum is conserved. Mechanical
energy is not conserved during this stage, however, because a
nonconservative force does work (the force of friction between
bullet and block).

In the second stage, the block and bullet move together. The
only forces acting on this system are gravity (a conservative
force) and the string tensions (which do no work). Thus, as the
block swings, mechanical energy is conserved. Momentum is not

v1

mW,mB,

mW,
mB

conserved during this stage, however, because there is a net exter-
nal force (the forces of gravity and string tension don’t cancel
when the strings are inclined).

SET UP: We take the positive x-axis to the right and the positive 
y-axis upward. Our target variable is Another unknown quan-
tity is the speed of the system just after the collision. We’ll
use momentum conservation in the first stage to relate to 
and we’ll use energy conservation in the second stage to relate

to y.

EXECUTE: In the first stage, all velocities are in the �x-direction.
Momentum conservation gives

At the beginning of the second stage, the system has kinetic energy
The system swings up and comes to rest for

an instant at a height y, where its kinetic energy is zero and the
potential energy is it then swings back down.
Energy conservation gives

We substitute this expression for into the momentum equation:

EVALUATE: Let’s plug in the realistic numbers 
and We

then have

The speed of the block just after impact is

The speeds and seem realistic. The kinetic energy of the 
bullet before impact is Just

after impact the kinetic energy of the system is 
Nearly all the kinetic energy disap-

pears as the wood splinters and the bullet and block become
warmer.

0.590 J.10.767 m>s22 =

1
212.005 kg2

1
210.00500 kg21307 m>s22 = 236 J.

v2v1

= 0.767 m>s

v2 = 22gy = 2219.80 m>s2210.0300 m2

v2

= 307 m>s

v1 =
0.00500 kg + 2.00 kg

0.00500 kg
2219.80 m>s2210.0300 m2

y = 3.00 cm = 0.0300 m.mW = 2.00 kg,0.00500 kg,
mB = 5.00 g =

v1 =
mB + mW

mB
22gy

v2

v2 = 22gy

1
21mB + mW2v

2
2 = 1mB + mW2gy

1mB + mW2gy;

K = 1
21mB + mW2v

2
2 .

v1 =
mB + mW

mB
v2

mBv1 = 1mB + mW2v2

v2

v2,v1

v2

v1.

8.18 A ballistic pendulum.

Before collision

Immediately
after collision

Top of swing

y

v2

mB 1 mW

mB
mW

v1
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Example 8.9 An automobile collision

A 1000-kg car traveling north at collides with a 2000-kg
truck traveling east at The occupants, wearing seat belts,
are uninjured, but the two vehicles move away from the impact
point as one. The insurance adjustor asks you to find the velocity
of the wreckage just after impact. What is your answer?

SOLUTION

IDENTIFY and SET UP: We’ll treat the cars as an isolated system,
so that the momentum of the system is conserved. We can do so
because (as we show below) the magnitudes of the horizontal
forces that the cars exert on each other during the collision are
much larger than any external forces such as friction. Figure 8.19
shows our sketch and the coordinate axes. We can find the total
momentum before the collision using Eqs. (8.15). The momen-
tum has the same value just after the collision; hence we can find
the velocity just after the collision (our target variable) using

where is the mass of the
wreckage.

EXECUTE: From Eqs. (8.15), the components of are

The magnitude of is

and its direction is given by the angle shown in Fig. 8.19:

tan u =
Py

Px
=

1.5 * 104 kg # m>s
2.0 * 104 kg # m>s = 0.75   u = 37°

u

= 2.5 * 104 kg # m>s
P = 212.0 * 104 kg # m>s22 + 11.5 * 104 kg # m>s22

P
S

= 1.5 * 104 kg # m>s
= 11000 kg2115 m>s2 + 12000 kg2102

Py = pCy + pTy = mCvCy + mTvTy

= 2.0 * 104 kg # m>s
= 11000 kg2102 + 12000 kg2110 m>s2

Px = pCx + pTx = mCvCx + mTvTx

P
S

M = mC + mT = 3000 kgP
S

� MV
S

,
V
S

P
S

10 m>s.
15 m>s

From the direction of the velocity just after the collision
is also . The velocity magnitude is

EVALUATE: This is an inelastic collision, so we expect the total
kinetic energy to be less after the collision than before. As you can
show, the initial kinetic energy is and the final value is

We can now justify our neglect of the external forces on the vehi-
cles during the collision. The car’s weight is about 10,000 N; if the
coefficient of kinetic friction is 0.5, the friction force on the car
during the impact is about 5000 N. The car’s initial kinetic energy is

so of work
must be done to stop it. If the car crumples by 0.20 m 
in stopping, a force of magnitude 11.1 * 105 J2>10.20 m2 =

-1.1 * 105 J1
211000 kg2115 m>s22 = 1.1 * 105 J,

1.0 * 105 J.
2.1 * 105 J

V =
P

M
=

2.5 * 104 kg # m>s
3000 kg

= 8.3 m>s

u = 37°
V
S

P
S

� MV
S

,

8.19 Our sketch for this problem.

Classifying Collisions
It’s important to remember that we can classify collisions according to energy
considerations (Fig. 8.20). A collision in which kinetic energy is conserved is
called elastic. (We’ll explore these in more depth in the next section.) A collision
in which the total kinetic energy decreases is called inelastic. When the two bodies
have a common final velocity, we say that the collision is completely inelastic.
There are also cases in which the final kinetic energy is greater than the initial
value. Rifle recoil, discussed in Example 8.4 (Section 8.2), is an example.

Elastic:
Kinetic energy
conserved.

Inelastic:
Some kinetic
energy lost.

Completely inelastic:
Bodies have same
final velocity.

B

A B

A

A B
vA1
S vB1

S

vB2
SvA2

S
A B

A B
vA1
S vB1

S

vB2
SvA2

S

BA

A B
vA1
S

v2
S

vB1
S

BA

BA

8.20 Collisions are classified according to energy considerations.

would be needed; that’s 110 times the friction force.
So it’s reasonable to treat the external force of friction as negligible
compared with the internal forces the vehicles exert on each other.

5.5 * 105 N
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Finally, we emphasize again that we can sometimes use momentum conserva-
tion even when there are external forces acting on the system, if the net external
force acting on the colliding bodies is small in comparison with the internal
forces during the collision (as in Example 8.9)

Test Your Understanding of Section 8.3 For each situation, state
whether the collision is elastic or inelastic. If it is inelastic, state whether it is com-
pletely inelastic. (a) You drop a ball from your hand. It collides with the floor and
bounces back up so that it just reaches your hand. (b) You drop a different ball from your
hand and let it collide with the ground. This ball bounces back up to half the height from
which it was dropped. (c) You drop a ball of clay from your hand. When it collides with
the ground, it stops. ❙

8.4 Elastic Collisions
We saw in Section 8.3 that an elastic collision in an isolated system is one in
which kinetic energy (as well as momentum) is conserved. Elastic collisions
occur when the forces between the colliding bodies are conservative. When two
billiard balls collide, they squash a little near the surface of contact, but then they
spring back. Some of the kinetic energy is stored temporarily as elastic potential
energy, but at the end it is reconverted to kinetic energy (Fig. 8.21).

Let’s look at an elastic collision between two bodies A and B. We start with a
one-dimensional collision, in which all the velocities lie along the same line;
we choose this line to be the x-axis. Each momentum and velocity then has
only an x-component. We call the x-velocities before the collision and

and those after the collision and From conservation of kinetic
energy we have

and conservation of momentum gives

If the masses and and the initial velocities and are known, we
can solve these two equations to find the two final velocities and 

Elastic Collisions, One Body Initially at Rest
The general solution to the above equations is a little complicated, so we will
concentrate on the particular case in which body B is at rest before the collision 
so . Think of body B as a target for body A to hit. Then the kinetic

energy and momentum conservation equations are, respectively,

(8.19)

(8.20)

We can solve for and in terms of the masses and the initial velocity
This involves some fairly strenuous algebra, but it’s worth it. No pain, no

gain! The simplest approach is somewhat indirect, but along the way it uncovers
an additional interesting feature of elastic collisions.

First we rearrange Eqs. (8.19) and (8.20) as follows:

(8.21)

(8.22)

Now we divide Eq. (8.21) by Eq. (8.22) to obtain

(8.23)vB2x = vA1x + vA2x

mBvB2x = mA1vA1x - vA2x2

mBvB2x
2 = mA1vA1x

2 - vA2x
22 = mA1vA1x - vA2x21vA1x + vA2x2

vA1x.
vB2xvA2x

mAvA1x = mAvA2x + mBvB2x

1
2 mAvA1x

2 = 1
2 mAvA2x

2 + 1
2 mBvB2x

2

2vB1x = 01

vB2x.vA2x

vB1xvA1xmBmA

mAvA1x + mBvB1x = mAvA2x + mBvB2x

1
2 mAvA1x

2 + 1
2 mBvB1x

2 = 1
2 mAvA2x

2 + 1
2 mBvB2x

2

vB2x.vA2xvB1x,
vA1x

8.21 Billiard balls deform very little
when they collide, and they quickly 
spring back from any deformation they 
do undergo. Hence the force of interaction
between the balls is almost perfectly 
conservative, and the collision is almost
perfectly elastic.

ActivPhysics 6.2: Collisions and Elasticity
ActivPhysics 6.5: Car Collisions: Two 
Dimensions
ActivPhysics 6.9: Pendulum Bashes Box



We substitute this expression back into Eq. (8.22) to eliminate and then
solve for 

(8.24)

Finally, we substitute this result back into Eq. (8.23) to obtain

(8.25)

Now we can interpret the results. Suppose body A is a Ping-Pong ball and body
B is a bowling ball. Then we expect A to bounce off after the collision with a
velocity nearly equal to its original value but in the opposite direction (Fig. 8.22a),
and we expect B’s velocity to be much less. That’s just what the equations pre-
dict. When is much smaller than the fraction in Eq. (8.24) is approxi-
mately equal to so is approximately equal to The fraction in
Eq. (8.25) is much smaller than unity, so is much less than Figure 8.22b
shows the opposite case, in which A is the bowling ball and B the Ping-Pong ball
and is much larger than What do you expect to happen then? Check your
predictions against Eqs. (8.24) and (8.25).

Another interesting case occurs when the masses are equal (Fig. 8.23). If
then Eqs. (8.24) and (8.25) give and That is,

the body that was moving stops dead; it gives all its momentum and kinetic
energy to the body that was at rest. This behavior is familiar to all pool players.

Elastic Collisions and Relative Velocity
Let’s return to the more general case in which A and B have different masses.
Equation (8.23) can be rewritten as

(8.26)

Here is the velocity of B relative to A after the collision; from 
Eq. (8.26), this equals which is the negative of the velocity of B relative to A
before the collision. (We discussed relative velocity in Section 3.5.) The relative
velocity has the same magnitude, but opposite sign, before and after the collision.
The sign changes because A and B are approaching each other before the collision
but moving apart after the collision. If we view this collision from a second coordi-
nate system moving with constant velocity relative to the first, the velocities of the
bodies are different but the relative velocities are the same. Hence our statement
about relative velocities holds for any straight-line elastic collision, even when nei-
ther body is at rest initially. In a straight-line elastic collision of two bodies, the rel-
ative velocities before and after the collision have the same magnitude but opposite
sign. This means that if B is moving before the collision, Eq. (8.26) becomes

(8.27)

It turns out that a vector relationship similar to Eq. (8.27) is a general property
of all elastic collisions, even when both bodies are moving initially and the veloc-
ities do not all lie along the same line. This result provides an alternative and
equivalent definition of an elastic collision: In an elastic collision, the relative
velocity of the two bodies has the same magnitude before and after the collision.
Whenever this condition is satisfied, the total kinetic energy is also conserved.

When an elastic two-body collision isn’t head-on, the velocities don’t all lie
along a single line. If they all lie in a plane, then each final velocity has two
unknown components, and there are four unknowns in all. Conservation of energy
and conservation of the x- and y-components of momentum give only three equa-
tions. To determine the final velocities uniquely, we need additional information,
such as the direction or magnitude of one of the final velocities.

vB2x - vA2x = -1vB1x - vA1x2

vA1x,
vB2x - vA2x

vA1x = vB2x - vA2x

vB2x = vA1x.vA2x = 0mA = mB,

mB.mA

vA1x.vB2x

-vA1x.vA2x1-12,
mB,mA

vB2x =
2mA

mA + mB
vA1x

vA2x =
mA - mB

mA + mB
vA1x

mB1vA1x + vA2x2 = mA1vA1x - vA2x2

vA2x:
vB2x
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8.22 Collisions between (a) a moving
Ping-Pong ball and an initially stationary
bowling ball, and (b) a moving bowling ball
and an initially stationary Ping-Pong ball.

x

A

(a) Ping-Pong ball strikes bowling ball.

(b) Bowling ball strikes Ping-Pong ball.

x
B

A

B
x

A

x

B

B

BEFORE

AFTER

BEFORE

AFTER

A

vA1x

vA1x

vB2x

vB2x
vA2x < 2vA1x

vA2x

8.23 A one-dimensional elastic collision
between bodies of equal mass.

vA1x

vA2x 5 0 vB2x 5 vA1x

When a moving object A has a 1-D
elastic collision with an equal-mass,
motionless object B …

… all of A’s momentum and kinetic
energy are transferred to B.

A B

A B

x

x



8.4 Elastic Collisions 257

Example 8.10 An elastic straight-line collision

We repeat the air-track collision of Example 8.5 (Section 8.2), but
now we add ideal spring bumpers to the gliders so that the colli-
sion is elastic. What are the final velocities of the gliders?

SOLUTION

IDENTIFY and SET UP: The net external force on the system is
zero, so the momentum of the system is conserved. Figure 8.24
shows our sketch. We’ll find our target variables, and 
using Eq. (8.27), the relative-velocity relationship for an elastic
collision, and the momentum-conservation equation.

EXECUTE: From Eq. (8.27),

From conservation of momentum,

(To get the last equation we divided both sides of the equation
just above it by the quantity 1 kg. This makes the units the same
as in the first equation.) Solving these equations simultaneously,
we find

vA2x = -1.0 m>s    vB2x = 3.0 m>s

0.50vA2x + 0.30vB2x = 0.40 m>s

= 10.50 kg2vA2x + 10.30 kg2vB2x

10.50 kg212.0 m>s2 + 10.30 kg21-2.0 m>s2

mAvA1x + mBvB1x = mAvA2x + mBvB2x

= -1-2.0 m>s - 2.0 m>s2 = 4.0 m>s

vB2x - vA2x = -1vB1x - vA1x2

vB2x,vA2x

EVALUATE: Both bodies reverse their directions of motion; A
moves to the left at and B moves to the right at 
This is unlike the result of Example 8.5 because that collision was
not elastic. The more massive glider A slows down in the collision
and so loses kinetic energy. The less massive glider B speeds up
and gains kinetic energy. The total kinetic energy before the colli-
sion (which we calculated in Example 8.7) is 1.6 J. The total
kinetic energy after the collision is

As expected, the kinetic energies before and after this elastic colli-
sion are equal. Kinetic energy is transferred from A to B, but none
of it is lost.

CAUTION Be careful with the elastic collision equations You could
not have solved this problem using Eqs. (8.24) and (8.25), which
apply only if body B is initially at rest. Always be sure that you
solve the problem at hand using equations that are applicable! ❙

1
210.50 kg21-1.0 m>s22 + 1

210.30 kg213.0 m>s22 = 1.6 J

3.0 m>s.1.0 m>s

8.24 Our sketch for this problem.

Example 8.11 Moderating fission neutrons in a nuclear reactor

The fission of uranium nuclei in a nuclear reactor produces high-
speed neutrons. Before such neutrons can efficiently cause addi-
tional fissions, they must be slowed down by collisions with nuclei
in the moderator of the reactor. The first nuclear reactor (built 
in 1942 at the University of Chicago) used carbon (graphite) as 
the moderator. Suppose a neutron (mass 1.0 u) traveling at 

undergoes a head-on elastic collision with a carbon nucleus
(mass 12 u) initially at rest. Neglecting external forces during the
collision, find the velocities after the collision. (1 u is the atomic
mass unit, equal to )

SOLUTION

IDENTIFY and SET UP: We neglect external forces, so momentum
is conserved in the collision. The collision is elastic, so kinetic

1.66 * 10-27 kg.

107 m>s
2.6 *

energy is also conserved. Figure 8.25 shows our sketch. We take
the x-axis to be in the direction in which the neutron is moving ini-
tially. The collision is head-on, so both particles move along this
same axis after the collision. The carbon nucleus is initially at rest,
so we can use Eqs. (8.24) and (8.25); we replace A by n (for the
neutron) and B by C (for the carbon nucleus). We have

and . The target
variables are the final velocities and .

EXECUTE: You can do the arithmetic. (Hint: There’s no reason to
convert atomic mass units to kilograms.) The results are

EVALUATE: The neutron ends up with 
of its initial speed, and the speed of the recoiling carbon nucleus

is of the neutron’s initial speed. Kinetic
energy is proportional to speed squared, so the neutron’s final
kinetic energy is of its original value. After a second
head-on collision, its kinetic energy is or about half its
original value, and so on. After a few dozen collisions (few of
which are head-on), the neutron speed will be low enough that it
can efficiently cause a fission reaction in a uranium nucleus.

10.7222,
111

132
2 L 0.72

ƒ2mn>1mn + mC2 ƒ = 2
13

11
13

ƒ 1mn - mC2>1mn +mC2 ƒ =

vn2x = -2.2 * 107 m>s    vC2x = 0.4 * 107 m>s

vC2xvn2x

vn1x = 2.6 * 107 m>smC = 12 u,mn = 1.0 u,

8.25 Our sketch for this problem.



8.5 Center of Mass
We can restate the principle of conservation of momentum in a useful way by
using the concept of center of mass. Suppose we have several particles with
masses and so on. Let the coordinates of be those of be

and so on. We define the center of mass of the system as the point that
has coordinates given by

(center of mass) (8.28)

ycm =
m1y1 + m2y2 + m3y3 + Á

m1 + m2 + m3 + Á =
a

i
miyi

a
i

mi

xcm =
m1x1 + m2x2 + m3x3 + Á

m1 + m2 + m3 + Á =
a

i
mix i

a
i

mi

1xcm, ycm2
1x2, y22,

m21x1, y12,m1m2,m1,
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Example 8.12 A two-dimensional elastic collision

Figure 8.26 shows an elastic collision of two pucks (masses
and ) on a frictionless air-hockey

table. Puck A has an initial velocity of in the positive x-
direction and a final velocity of in an unknown direction

. Puck B is initially at rest. Find the final speed of puck B and
the angles and .

SOLUTION

IDENTIFY and SET UP: We’ll use the equations for conservation
of energy and conservation of x- and y-momentum. These three
equations should be enough to solve for the three target variables
given in the problem statement.

EXECUTE: The collision is elastic, so the initial and final kinetic
energies of the system are equal:

Conservation of the x- and y-components of total momentum gives

- 10.300 kg214.47 m>s21sin b2

0 = 10.500 kg212.00 m>s21sin a2

0 = mAvA2y + mBvB2y

+ 10.300 kg214.47 m>s21cos b2

10.500 kg214.00 m>s2 = 10.500 kg212.00 m>s21cos a2

mAvA1x = mAvA2x + mBvB2x

vB2 = 4.47 m>s

=
10.500 kg214.00 m>s22 - 10.500 kg212.00 m>s22

0.300 kg

vB2
2 =

mAvA1
2 - mAvA2

2

mB

1
2 mAvA1

2 = 1
2 mAvA2

2 + 1
2 mBvB2

2

ba

vB2a

2.00 m>s
4.00 m>s

mB = 0.300 kgmA = 0.500 kg

a

b

BEFORE

AFTER

vA1 5 4.00 m/s
x

y

O

A
B

B (at rest)

mA 5 0.500 kg mB 5 0.300 kg

vA2 5 2.00 m/s

x

y

O
A

vB2

B

These are two simultaneous equations for and We’ll leave it to
you to supply the details of the solution. (Hint: Solve the first equa-
tion for and the second for square each equation and
add. Since this eliminates and leaves an
equation that you can solve for and hence for Substitute
this value into either of the two equations and solve for ) The
results are

EVALUATE: To check the answers we confirm that the y-momentum,
which was zero before the collision, is in fact zero after the colli-
sion. The y-momenta are

and their sum is indeed zero.

pB2y = -10.300 kg214.47 m>s21sin 26.6°2 = -0.600 kg # m>s
pA2y = 10.500 kg212.00 m>s21sin 36.9°2 = +0.600 kg # m>s

a = 36.9°    b = 26.6°

b.
a.cos a

bsin2b + cos2b = 1,
sin b;cos b

b.a

8.26 An elastic collision that isn’t head-on.

Test Your Understanding of Section 8.4 Most present-day nuclear reactors
use water as a moderator (see Example 8.11). Are water molecules (mass ) a
better or worse moderator than carbon atoms? (One advantage of water is that it also acts
as a coolant for the reactor’s radioactive core.) ❙

mw = 18.0 u
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The position vector of the center of mass can be expressed in terms of the
position vectors . . . of the particles as

(center of mass) (8.29)

In statistical language, the center of mass is a mass-weighted average position of
the particles.

rScm �
m1 rS1 � m2 rS2 � m3 rS3 � Á

m1 + m2 + m3 + Á �
a

i
mi r

S
i

a
i

mi

rS2,rS1,
rScm

Example 8.13 Center of mass of a water molecule

Figure 8.27 shows a simple model of a water molecule. The oxygen-
hydrogen separation is Each hydrogen atom
has mass 1.0 u, and the oxygen atom has mass 16.0 u. Find the
position of the center of mass.

SOLUTION

IDENTIFY and SET UP: Nearly all the mass of each atom is con-
centrated in its nucleus, whose radius is only about times the
overall radius of the atom. Hence we can safely represent each atom
as a point particle. Figure 8.27 shows our coordinate system, with

10-5

d = 9.57 * 10-11 m.

y

x

Hydrogen

Hydrogen

O

d

d

Oxygen

105°cm

the x-axis chosen to lie along the molecule’s symmetry axis. We’ll
use Eqs. (8.28) to find and 

EXECUTE: The oxygen atom is at The x-coordinate
of each hydrogen atom is the y-coordinates are

From Eqs. (8.28),

Substituting we find

EVALUATE: The center of mass is much closer to the oxygen atom
(located at the origin) than to either hydrogen atom because the
oxygen atom is much more massive. The center of mass lies along
the molecule’s axis of symmetry. If the molecule is rotated 180°
around this axis, it looks exactly the same as before. The position
of the center of mass can’t be affected by this rotation, so it must
lie on the axis of symmetry.

xcm = 10.068219.57 * 10-11 m2 = 6.5 * 10-12 m

d = 9.57 * 10-11 m,

ycm =
B 11.0 u21d sin52.5°2 + 11.0 u2

* 1-d sin52.5°2 + 116.0 u2102
R

1.0 u + 1.0 u + 16.0 u
= 0

xcm =
B11.0 u21d cos52.5°2 + 11.0 u2

* 1dcos52.5°2 + 116.0 u2102
R

1.0 u + 1.0 u + 16.0 u
= 0.068d

�d sin1105°>22.
dcos1105°>22;

y = 0.x = 0,

ycm.xcm

8.27 Where is the center of mass of a water molecule?

8.28 Locating the center of mass of a
symmetrical object.

Cube Sphere Cylinder

Center of mass

If a homogeneous object has a geometric center,
that is where the center of mass is located.

Axis of symmetry

Disk Donut

If an object has an axis of symmetry, the center
of mass lies along it. As in the case of the donut,
the center of mass may not be within the object.

For solid bodies, in which we have (at least on a macroscopic level) a contin-
uous distribution of matter, the sums in Eqs. (8.28) have to be replaced by inte-
grals. The calculations can get quite involved, but we can say three general
things about such problems (Fig. 8.28). First, whenever a homogeneous body
has a geometric center, such as a billiard ball, a sugar cube, or a can of frozen
orange juice, the center of mass is at the geometric center. Second, whenever a
body has an axis of symmetry, such as a wheel or a pulley, the center of mass
always lies on that axis. Third, there is no law that says the center of mass has to
be within the body. For example, the center of mass of a donut is right in the
middle of the hole.

We’ll talk a little more about locating the center of mass in Chapter 11 in con-
nection with the related concept of center of gravity.

Motion of the Center of Mass
To see the significance of the center of mass of a collection of particles, we must
ask what happens to the center of mass when the particles move. The x- and 
y-components of velocity of the center of mass, and are the time de-
rivatives of and Also, is the x-component of velocity of particle 1,dx1>dtycm.xcm

vcm-y,vcm-x



and so on, so and so on. Taking time derivatives of Eqs. (8.28), 
we get

(8.30)

These equations are equivalent to the single vector equation obtained by taking
the time derivative of Eq. (8.29):

(8.31)

We denote the total mass by M. We can then rewrite Eq. (8.31) as

(8.32)

The right side is simply the total momentum of the system. Thus we have
proved that the total momentum is equal to the total mass times the velocity of the
center of mass. When you catch a baseball, you are really catching a collection of
a very large number of molecules of masses The impulse you
feel is due to the total momentum of this entire collection. But this impulse is 
the same as if you were catching a single particle of mass 

moving with velocity the velocity of the collection’s center
of mass. So Eq. (8.32) helps to justify representing an extended body as a particle.

For a system of particles on which the net external force is zero, so that the
total momentum is constant, the velocity of the center of mass is
also constant. Suppose we mark the center of mass of a wrench and then slide the
wrench with a spinning motion across a smooth, horizontal tabletop (Fig. 8.29).
The overall motion appears complicated, but the center of mass follows a straight
line, as though all the mass were concentrated at that point.

vScm � P
S
>MP

S

vScm,m2 + m3 + Á
M = m1 +

m3, . Ám2,m1,

P
S

MvScm � m1vS1 � m2vS2 � m3vS3 � Á � P
S

m1 + m2 + Á

vScm �
m1vS1 � m2vS2 � m3vS3 � Á

m1 + m2 + m3 + Á

vcm-y =
m1v1y + m2v2y + m3v3y + Á

m1 + m2 + m3 + Á

vcm-x =
m1v1x + m2v2x + m3v3x + Á

m1 + m2 + m3 + Á

dx1>dt = v1x,
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8.29 The center of mass of this wrench
is marked with a white dot. The net 
external force acting on the wrench is
almost zero. As the wrench spins on a
smooth horizontal surface, the center of
mass moves in a straight line with nearly
constant velocity.

Example 8.14 A tug-of-war on the ice

James (mass 90.0 kg) and Ramon (mass 60.0 kg) are 20.0 m apart
on a frozen pond. Midway between them is a mug of their favorite
beverage. They pull on the ends of a light rope stretched between
them. When James has moved 6.0 m toward the mug, how far and
in what direction has Ramon moved?

SOLUTION

IDENTIFY and SET UP: The surface is horizontal and (we assume)
frictionless, so the net external force on the system of James,
Ramon, and the rope is zero; their total momentum is conserved.
Initially there is no motion, so the total momentum is zero. The
velocity of the center of mass is therefore zero, and it remains at
rest. Let’s take the origin at the position of the mug and let the 
�x-axis extend from the mug toward Ramon. Figure 8.30 shows

8.30 Our sketch for this problem.

our sketch. We use Eq. (8.28) to calculate the position of the center
of mass; we neglect the mass of the light rope.

EXECUTE: The initial x-coordinates of James and Ramon are
and respectively, so the x-coordinate of the

center of mass is

When James moves 6.0 m toward the mug, his new x-coordinate is
we’ll call Ramon’s new x-coordinate The center of

mass doesn’t move, so

James has moved 6.0 m and is still 4.0 m from the mug, but
Ramon has moved 9.0 m and is only 1.0 m from it.

EVALUATE: The ratio of the distances moved, 
is the inverse ratio of the masses. Can you see why? Because the

surface is frictionless, the two men will keep moving and collide at
the center of mass; Ramon will reach the mug first. This is inde-
pendent of how hard either person pulls; pulling harder just makes
them move faster.

2
3,

19.0 m2 =16.0 m2>

x2 = 1.0 m

xcm =
190.0 kg21-4.0 m2 + 160.0 kg2x2

90.0 kg + 60.0 kg
= -2.0 m

x2.-4.0 m;

x cm =
190.0 kg21-10.0 m2 + 160.0 kg2110.0 m2

90.0 kg + 60.0 kg
= -2.0 m

+10.0 m,-10.0 m
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External Forces and Center-of-Mass Motion
If the net external force on a system of particles is not zero, then total momentum
is not conserved and the velocity of the center of mass changes. Let’s look at the
relationship between the motion of the center of mass and the forces acting on the
system.

Equations (8.31) and (8.32) give the velocity of the center of mass in terms of
the velocities of the individual particles. We take the time derivatives of these
equations to show that the accelerations are related in the same way. Let

be the acceleration of the center of mass; then we find

(8.33)

Now is equal to the vector sum of forces on the first particle, and so on,
so the right side of Eq. (8.33) is equal to the vector sum of all the forces on
all the particles. Just as we did in Section 8.2, we can classify each force as
external or internal. The sum of all forces on all the particles is then

Because of Newton’s third law, the internal forces all cancel in pairs, and
What survives on the left side is the sum of only the external forces:

(body or collection of particles) (8.34)

When a body or a collection of particles is acted on by external forces, the center
of mass moves just as though all the mass were concentrated at that point and it
were acted on by a net force equal to the sum of the external forces on the system.

This result may not sound very impressive, but in fact it is central to the whole
subject of mechanics. In fact, we’ve been using this result all along; without it,
we would not be able to represent an extended body as a point particle when we
apply Newton’s laws. It explains why only external forces can affect the motion
of an extended body. If you pull upward on your belt, your belt exerts an equal
downward force on your hands; these are internal forces that cancel and have no
effect on the overall motion of your body.

Suppose a cannon shell traveling in a parabolic trajectory (neglecting air
resistance) explodes in flight, splitting into two fragments with equal mass (Fig.
8.31a). The fragments follow new parabolic paths, but the center of mass contin-
ues on the original parabolic trajectory, just as though all the mass were still con-
centrated at that point. A skyrocket exploding in air (Fig. 8.31b) is a spectacular
example of this effect.
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aScm � dvScm>dt

8.31 (a) A shell explodes into two fragments in flight. If air resistance is ignored, the center of mass continues on the same trajectory
as the shell’s path before exploding. (b) The same effect occurs with exploding fireworks.

Shell explodes
After the shell explodes, the two fragments

follow individual trajectories,
but the center of mass

continues to follow the
shell’s original

trajectory.

(a) (b)

cm

cm

cm



This property of the center of mass is important when we analyze the motion
of rigid bodies. We describe the motion of an extended body as a combination of
translational motion of the center of mass and rotational motion about an axis
through the center of mass. We will return to this topic in Chapter 10. This prop-
erty also plays an important role in the motion of astronomical objects. It’s not
correct to say that the moon orbits the earth; rather, the earth and moon both
move in orbits around their center of mass.

There’s one more useful way to describe the motion of a system of particles.
Using we can rewrite Eq. (8.33) as

(8.35)

The total system mass M is constant, so we’re allowed to move it inside the
derivative. Substituting Eq. (8.35) into Eq. (8.34), we find

(extended body or system of particles) (8.36)

This equation looks like Eq. (8.4). The difference is that Eq. (8.36) describes a
system of particles, such as an extended body, while Eq. (8.4) describes a single
particle. The interactions between the particles that make up the system can
change the individual momenta of the particles, but the total momentum of the
system can be changed only by external forces acting from outside the system.

Finally, we note that if the net external force is zero, Eq. (8.34) shows that the
acceleration of the center of mass is zero. So the center-of-mass velocity 
is constant, as for the wrench in Fig. 8.29. From Eq. (8.36) the total momentum 

is also constant. This reaffirms our statement in Section 8.3 of the principle of
conservation of momentum.
P
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vScmaScm
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Test Your Understanding of Section 8.5 Will the center of mass in Fig. 8.31a
continue on the same parabolic trajectory even after one of the fragments hits the ground?
Why or why not? ❙

8.6 Rocket Propulsion
Momentum considerations are particularly useful for analyzing a system in which
the masses of parts of the system change with time. In such cases we can’t use
Newton’s second law directly because m changes. Rocket propulsion
offers a typical and interesting example of this kind of analysis. A rocket is pro-
pelled forward by rearward ejection of burned fuel that initially was in the rocket
(which is why rocket fuel is also called propellant). The forward force on the
rocket is the reaction to the backward force on the ejected material. The total
mass of the system is constant, but the mass of the rocket itself decreases as
material is ejected.

As a simple example, consider a rocket fired in outer space, where there is no
gravitational force and no air resistance. Let m denote the mass of the rocket,
which will change as it expends fuel. We choose our x-axis to be along the
rocket’s direction of motion. Figure 8.32a shows the rocket at a time t, when its
mass is m and its x-velocity relative to our coordinate system is (For simplicity,
we will drop the subscript x in this discussion.) The x-component of total
momentum at this instant is In a short time interval dt, the mass of the
rocket changes by an amount dm. This is an inherently negative quantity because
the rocket’s mass m decreases with time. During dt, a positive mass of
burned fuel is ejected from the rocket. Let be the exhaust speed of this material
relative to the rocket; the burned fuel is ejected opposite the direction of motion,

vex

-dm

P1 = mv.

v.

gF
S

� m aS

Application Jet Propulsion in Squids
Both a jet engine and a squid use variations in
their mass to provide propulsion: They
increase their mass by taking in fluid at low
speed (air for a jet engine, water for a squid),
then decrease their mass by ejecting that fluid
at high speed. The net result is a propulsive
force.

ActivPhysics 6.6: Saving an Astronaut
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so its x-component of velocity relative to the rocket is The x-velocity
of the burned fuel relative to our coordinate system is then

and the x-component of momentum of the ejected mass is

Figure 8.32b shows that at the end of the time interval dt, the x-velocity of the
rocket and unburned fuel has increased to and its mass has decreased to

(remember that dm is negative). The rocket’s momentum at this time is

Thus the total x-component of momentum of the rocket plus ejected fuel at
time is

According to our initial assumption, the rocket and fuel are an isolated sys-
tem. Thus momentum is conserved, and the total x-component of momentum of
the system must be the same at time t and at time Hence

This can be simplified to

We can neglect the term because it is a product of two small quantities
and thus is much smaller than the other terms. Dropping this term, dividing by dt,
and rearranging, we find

(8.37)

Now is the acceleration of the rocket, so the left side of this equation
(mass times acceleration) equals the net force F, or thrust, on the rocket:

(8.38)

The thrust is proportional both to the relative speed of the ejected fuel and to
the mass of fuel ejected per unit time, (Remember that is nega-
tive because it is the rate of change of the rocket’s mass, so F is positive.)

The x-component of acceleration of the rocket is

(8.39)a =
dv
dt

= -
vex

m

dm

dt

dm>dt-dm>dt.
vex

F = -vex
dm

dt

dv>dt

m
dv
dt

= -vex
dm

dt

1-dm dv2

m dv = -dm vex - dm dv

mv = 1m + dm21v + dv2 + 1-dm21v - vex2

P1 = P2.t + dt:

P2 = 1m + dm21v + dv2 + 1-dm21v - vex2

t + dt
P2

1m + dm21v + dv2

m + dm
v + dv,

1-dm2vfuel = 1-dm21v - vex2

1-dm2

vfuel = v + 1-vex2 = v - vex

vfuel-vex.

8.32 A rocket moving in gravity-free outer space at (a) time t and (b) time t + dt.

At time t 1 dt , the rocket has mass m 1 dm (where
dm is inherently negative) and x-component of velocity
v 1 dv. The burned fuel has x-component of velocity
vfuel 5 v 2 vex and mass 2dm. (The minus sign is
needed to make 2dm positive because dm is negative.)

At time t, the rocket has mass m
and x-component of velocity v.

1x-direction
Rocket
v 1 dv

m 1 dm2dm

Burned fuel
vfuel 5 v 2 vex

Rocket
v

m

(a) (b)



This is positive because is positive (remember, it’s the exhaust speed ) and
is negative. The rocket’s mass m decreases continuously while the fuel is

being consumed. If and are constant, the acceleration increases until all
the fuel is gone.

Equation (8.38) tells us that an effective rocket burns fuel at a rapid rate
(large ) and ejects the burned fuel at a high relative speed (large ),
as in Fig. 8.33. In the early days of rocket propulsion, people who didn’t
understand conservation of momentum thought that a rocket couldn’t function
in outer space because “it doesn’t have anything to push against.” On the 
contrary, rockets work best in outer space, where there is no air resistance!
The launch vehicle in Fig. 8.33 is not “pushing against the ground” to get into
the air.

If the exhaust speed is constant, we can integrate Eq. (8.39) to find a
relationship between the velocity at any time and the remaining mass m.
At time let the mass be and the velocity Then we rewrite 
Eq. (8.39) as

We change the integration variables to and so we can use and m as the
upper limits (the final speed and mass). Then we integrate both sides, using limits

to and to m, and take the constant outside the integral:

(8.40)

The ratio is the original mass divided by the mass after the fuel has been
exhausted. In practical spacecraft this ratio is made as large as possible to maxi-
mize the speed gain, which means that the initial mass of the rocket is almost all
fuel. The final velocity of the rocket will be greater in magnitude (and is often
much greater) than the relative speed if —that is, if

We’ve assumed throughout this analysis that the rocket is in gravity-free outer
space. However, gravity must be taken into account when a rocket is launched
from the surface of a planet, as in Fig. 8.33 (see Problem 8.112).

m0>m 7 e = 2.71828. Á
ln1m0>m2 7 1vex

m0>m

v - v0 = -vex ln
m
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= vex ln

m0

m

L
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dv¿ = - L
m

m0
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dm¿
m¿

= -vexL
m

m0

dm¿
m¿

vexm0vv0

vm¿,v¿

dv = -vex
dm

m

v0.m0t = 0,
v
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8.33 To provide enough thrust to lift its
payload into space, this Atlas V launch
vehicle ejects more than 1000 kg of
burned fuel per second at speeds of nearly
4000 m>s.

Example 8.15 Acceleration of a rocket

The engine of a rocket in outer space, far from any planet, is turned
on. The rocket ejects burned fuel at a constant rate; in the first sec-
ond of firing, it ejects of its initial mass at a relative speed of

What is the rocket’s initial acceleration?

SOLUTION

IDENTIFY and SET UP: We are given the rocket’s exhaust speed 
and the fraction of the initial mass lost during the first second of
firing, from which we can find . We’ll use Eq. (8.39) to find
the acceleration of the rocket.

EXECUTE: The initial rate of change of mass is

dm

dt
= -

m0>120

1 s
= -

m0

120 s

dm>dt

vex

2400 m>s.
m0

1
120

From Eq. (8.39),

EVALUATE: The answer doesn’t depend on If is the same,
the initial acceleration is the same for a 120,000-kg spacecraft that
ejects as for a 60-kg astronaut equipped with a small
rocket that ejects 0.5 kg>s.

1000 kg>s

vexm0.

a = -
vex

m0

dm

dt
= -

2400 m>s

m0
a -

m0

120 s
b = 20 m>s2
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Example 8.16 Speed of a rocket

Suppose that of the initial mass of the rocket in Example 8.15 is
fuel, so that the fuel is completely consumed at a constant rate in 90 s.
The final mass of the rocket is If the rocket starts from
rest in our coordinate system, find its speed at the end of this time.

SOLUTION

IDENTIFY, SET UP, and EXECUTE: We are given the initial velocity
the exhaust speed and the final mass m

as a fraction of the initial mass We’ll use Eq. (8.40) to find the
final speed :

v = v0 + vexln
m0

m
= 0 + 12400 m>s21ln 42 = 3327 m>s

v
m0.

vex = 2400 m>s,v0 = 0,

m = m0>4.

3
4 EVALUATE: Let’s examine what happens as the rocket gains speed.

(To illustrate our point, we use more figures than are significant.)
At the start of the flight, when the velocity of the rocket is zero, the
ejected fuel is moving backward at relative to our frame
of reference. As the rocket moves forward and speeds up, the fuel’s
speed relative to our system decreases; when the rocket speed
reaches , this relative speed is zero. [Knowing the rate of
fuel consumption, you can solve Eq. (8.40) to show that this occurs
at about t � 75.6 s.] After this time the ejected burned fuel moves
forward, not backward, in our system. Relative to our frame of
reference, the last bit of ejected fuel has a forward velocity of
3327 m>s - 2400 m>s = 927 m>s.

2400 m>s

2400 m>s

Test Your Understanding of Section 8.6 (a) If a rocket in gravity-free
outer space has the same thrust at all times, is its acceleration constant, increasing,
or decreasing? (b) If the rocket has the same acceleration at all times, is the thrust
constant, increasing, or decreasing? ❙
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Impulse and momentum: If a constant net force acts
on a particle for a time interval from to the

impulse of the net force is the product of the net force
and the time interval. If varies with time, is the
integral of the net force over the time interval. In any
case, the change in a particle’s momentum during a time
interval equals the impulse of the net force that acted on
the particle during that interval. The momentum of a par-
ticle equals the impulse that accelerated it from rest to its
present speed. (See Examples 8.1–8.3.)
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Conservation of momentum: An internal force is a force
exerted by one part of a system on another. An external
force is a force exerted on any part of a system by some-
thing outside the system. If the net external force on a
system is zero, the total momentum of the system (the
vector sum of the momenta of the individual particles
that make up the system) is constant, or conserved. Each
component of total momentum is separately conserved.
(See Examples 8.4–8.6.)

P
S

Collisions: In collisions of all kinds, the initial and final total momenta are equal. In an elastic colli-
sion between two bodies, the initial and final total kinetic energies are also equal, and the initial and
final relative velocities have the same magnitude. In an inelastic two-body collision, the total
kinetic energy is less after the collision than before. If the two bodies have the same final velocity,
the collision is completely inelastic. (See Examples 8.7–8.12.)
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Center of mass: The position vector of the center of
mass of a system of particles, is a weighted aver-
age of the positions of the individual parti-
cles. The total momentum of a system equals its total
mass M multiplied by the velocity of its center of mass,

The center of mass moves as though all the mass
M were concentrated at that point. If the net external
force on the system is zero, the center-of-mass velocity

is constant. If the net external force is not zero, the
center of mass accelerates as though it were a particle
of mass M being acted on by the same net external
force. (See Examples 8.13 and 8.14.)
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Rocket propulsion: In rocket propulsion, the mass of a rocket changes as the fuel is used up 
and ejected from the rocket. Analysis of the motion of the rocket must include the momentum
carried away by the spent fuel as well as the momentum of the rocket itself. (See Examples 8.15
and 8.16.)
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v 1 dv

m 1 dm2dm

vfuel 5 v 2 vex

Momentum of a particle: The momentum of a particle
is a vector quantity equal to the product of the particle’s
mass m and velocity Newton’s second law says that
the net force on a particle is equal to the rate of change
of the particle’s momentum.
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Sphere A of mass 0.600 kg is initially moving to the right at
Sphere B, of mass 1.80 kg, is initially to the right of

sphere A and moving to the right at After the two
spheres collide, sphere B is moving at in the same direc-
tion as before. (a) What is the velocity (magnitude and direction)
of sphere A after this collision? (b) Is this collision elastic or inelas-
tic? (c) Sphere B then has an off-center collision with sphere C,
which has mass 1.20 kg and is initially at rest. After this collision,
sphere B is moving at 19.0° to its initial direction at 
What is the velocity (magnitude and direction) of sphere C after
this collision? (d) What is the impulse (magnitude and direction)
imparted to sphere B by sphere C when they collide? (e) Is this
second collision elastic or inelastic? (f) What is the velocity (mag-
nitude and direction) of the center of mass of the system of three
spheres (A, B, and C) after the second collision? No external forces
act on any of the spheres in this problem.

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY AND SET UP
1. Momentum is conserved in these collisions. Can you explain

why?
2. Choose the x- and y-axes, and assign subscripts to values

before the first collision, after the first collision but before the
second collision, and after the second collision.

3. Make a list of the target variables, and choose the equations
that you’ll use to solve for these.

2.00 m>s.

3.00 m>s
2.00 m>s.

4.00 m>s.
EXECUTE
4. Solve for the velocity of sphere A after the first collision. Does

A slow down or speed up in the collision? Does this make
sense?

5. Now that you know the velocities of both A and B after the
first collision, decide whether or not this collision is elastic.
(How will you do this?)

6. The second collision is two-dimensional, so you’ll have to
demand that both components of momentum are conserved.
Use this to find the speed and direction of sphere C after the
second collision. (Hint: After the first collision, sphere B
maintains the same velocity until it hits sphere C.)

7. Use the definition of impulse to find the impulse imparted to
sphere B by sphere C. Remember that impulse is a vector.

8. Use the same technique that you employed in step 5 to decide
whether or not the second collision is elastic.

9. Find the velocity of the center of mass after the second 
collision.

EVALUATE
10. Compare the directions of the vectors you found in steps 6 and

7. Is this a coincidence? Why or why not?
11. Find the velocity of the center of mass before and after the first

collision. Compare to your result from step 9. Again, is this a
coincidence? Why or why not?

BRIDGING PROBLEM One Collision After Another

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q8.1 In splitting logs with a hammer and wedge, is a heavy ham-
mer more effective than a lighter hammer? Why?
Q8.2 Suppose you catch a baseball and then someone invites you
to catch a bowling ball with either the same momentum or the
same kinetic energy as the baseball. Which would you choose?
Explain.
Q8.3 When rain falls from the sky, what happens to its momentum
as it hits the ground? Is your answer also valid for Newton’s
famous apple?
Q8.4 A car has the same kinetic energy when it is traveling south
at as when it is traveling northwest at Is the
momentum of the car the same in both cases? Explain.
Q8.5 A truck is accelerating as it speeds down the highway. One
inertial frame of reference is attached to the ground with its origin
at a fence post. A second frame of reference is attached to a police
car that is traveling down the highway at constant velocity. Is the
momentum of the truck the same in these two reference frames?
Explain. Is the rate of change of the truck’s momentum the same in
these two frames? Explain.

30 m>s.30 m>s

Q8.6 (a) When a large car collides with a small car, which one under-
goes the greater change in momentum: the large one or the small
one? Or is it the same for both? (b) In light of your answer to part (a),
why are the occupants of the small car more likely to be hurt than
those of the large car, assuming that both cars are equally sturdy?
Q8.7 A woman holding a large rock stands on a frictionless, hori-
zontal sheet of ice. She throws the rock with speed at an angle 
above the horizontal. Consider the system consisting of the woman
plus the rock. Is the momentum of the system conserved? Why or
why not? Is any component of the momentum of the system con-
served? Again, why or why not?
Q8.8 In Example 8.7 (Section 8.3), where the two gliders in Fig. 8.15
stick together after the collision, the collision is inelastic because

In Example 8.5 (Section 8.2), is the collision inelastic?
Explain.
Q8.9 In a completely inelastic collision between two objects,
where the objects stick together after the collision, is it possible for
the final kinetic energy of the system to be zero? If so, give an
example in which this would occur. If the final kinetic energy is
zero, what must the initial momentum of the system be? Is the ini-
tial kinetic energy of the system zero? Explain.

K2 6 K1.

av0

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.

www.masteringphysics.com
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Q8.10 Since for a particle the kinetic energy is given by 
and the momentum by it is easy to show that

How, then, is it possible to have an event during
which the total momentum of the system is constant but the total
kinetic energy changes?
Q8.11 In each of Examples 8.10, 8.11, and 8.12 (Section 8.4), ver-
ify that the relative velocity vector of the two bodies has the same
magnitude before and after the collision. In each case what hap-
pens to the direction of the relative velocity vector?
Q8.12 A glass dropped on the floor is more likely to break if the
floor is concrete than if it is wood. Why? (Refer to Fig. 8.3b.)
Q8.13 In Fig. 8.22b, the kinetic energy of the Ping-Pong ball is
larger after its interaction with the bowling ball than before. From
where does the extra energy come? Describe the event in terms of
conservation of energy.
Q8.14 A machine gun is fired at a steel plate. Is the average force
on the plate from the bullet impact greater if the bullets bounce off
or if they are squashed and stick to the plate? Explain.
Q8.15 A net force of 4 N acts on an object initially at rest for 0.25 s
and gives it a final speed of How could a net force of 2 N
produce the same final speed?
Q8.16 A net force with x-component acts on an object from
time to time The x-component of the momentum of the object
is the same at as it is at but is not zero at all times between

and What can you say about the graph of versus t?
Q8.17 A tennis player hits a tennis ball with a racket. Consider the
system made up of the ball and the racket. Is the total momentum
of the system the same just before and just after the hit? Is the total
momentum just after the hit the same as 2 s later, when the ball is
in midair at the high point of its trajectory? Explain any differ-
ences between the two cases.
Q8.18 In Example 8.4 (Section 8.2), consider the system consist-
ing of the rifle plus the bullet. What is the speed of the system’s
center of mass after the rifle is fired? Explain.
Q8.19 An egg is released from rest from the roof of a building and
falls to the ground. As the egg falls, what happens to the momen-
tum of the system of the egg plus the earth?
Q8.20 A woman stands in the middle of a perfectly smooth, fric-
tionless, frozen lake. She can set herself in motion by throwing
things, but suppose she has nothing to throw. Can she propel her-
self to shore without throwing anything?
Q8.21 In a zero-gravity environment, can a rocket-propelled space-
ship ever attain a speed greater than the relative speed with which
the burnt fuel is exhausted?
Q8.22 When an object breaks into two pieces (explosion, radioac-
tive decay, recoil, etc.), the lighter fragment gets more kinetic energy
than the heavier one. This is a consequence of momentum conserva-
tion, but can you also explain it using Newton’s laws of motion?
Q8.23 An apple falls from a tree and feels no air resistance. As it is
falling, which of these statements about it are true? (a) Only its
momentum is conserved; (b) only its mechanical energy is con-
served, (c) both its momentum and its mechanical energy are con-
served, (d) its kinetic energy is conserved.
Q8.24 Two pieces of clay collide and stick together. During the
collision, which of these statements are true? (a) Only the momen-
tum of the clay is conserved, (b) only the mechanical energy of the
clay is conserved, (c) both the momentum and the mechanical
energy of the clay are conserved, (d) the kinetic energy of the clay
is conserved.
Q8.25 Two marbles are pressed together with a light ideal spring
between them, but they are not attached to the spring in any way.

gFxt2.t1

gFxt2,t1

t2.t1

gFx

5 m>s.

K = p2>2m.
pS � mvS,

K = 1
2 mv2 They are then released on a frictionless horizontal table and soon

move free of the spring. As the marbles are moving away from each
other, which of these statements about them are true? (a) Only the
momentum of the marbles is conserved, (b) only the mechanical
energy of the marbles is conserved, (c) both the momentum and
the mechanical energy of the marbles are conserved, (d) the kinetic
energy of the marbles is conserved.
Q8.26 A very heavy SUV collides head-on with a very light com-
pact car. Which of these statements about the collision are correct?
(a) The amount of kinetic energy lost by the SUV is equal to the
amount of kinetic energy gained by the compact, (b) the amount of
momentum lost by the SUV is equal to the amount of momentum
gained by the compact, (c) the compact feels a considerably
greater force during the collision than the SUV does, (d) both cars
lose the same amount of kinetic energy.

EXERCISES
Section 8.1 Momentum and Impulse
8.1 . (a) What is the magnitude of the momentum of a 10,000-kg
truck whose speed is (b) What speed would a 2000-kg
SUV have to attain in order to have (i) the same momentum? 
(ii) the same kinetic energy?
8.2 . In a certain men’s track and field event, the shotput has 
a mass of 7.30 kg and is released with a speed of at 
40.0° above the horizontal over a man’s straight left leg. What are
the initial horizontal and vertical components of the momentum of
this shotput?
8.3 .. (a) Show that the kinetic energy K and the momentum
magnitude p of a particle with mass m are related by 
(b) A 0.040-kg cardinal (Richmondena cardinalis) and a 0.145-kg
baseball have the same kinetic energy. Which has the greater mag-
nitude of momentum? What is the ratio of the cardinal’s magnitude
of momentum to the baseball’s? (c) A 700-N man and a 450-N
woman have the same momentum. Who has the greater kinetic
energy? What is the ratio of the man’s kinetic energy to that of the
woman?
8.4 . Two vehicles are approaching an intersection. One is a 2500-kg
pickup traveling at from east to west (the �x-direction),
and the other is a 1500-kg sedan going from south to north (the

(a) Find the x- and y-components of the
net momentum of this system. (b) What are the magnitude and
direction of the net momentum?
8.5 . One 110-kg football lineman is running to the right at

while another 125-kg lineman is running directly toward
him at What are (a) the magnitude and direction of the net
momentum of these two athletes, and (b) their total kinetic energy?
8.6 .. BIO Biomechanics. The mass of a regulation tennis ball
is 57 g (although it can vary slightly), and tests have shown that
the ball is in contact with the tennis racket for 30 ms. (This number
can also vary, depending on the racket and swing.) We shall assume
a 30.0-ms contact time for this exercise. The fastest-known served
tennis ball was served by “Big Bill” Tilden in 1931, and its speed
was measured to be (a) What impulse and what force
did Big Bill exert on the tennis ball in his record serve? (b) If Big
Bill’s opponent returned his serve with a speed of what
force and what impulse did he exert on the ball, assuming only
horizontal motion?
8.7 . Force of a Golf Swing. A 0.0450-kg golf ball initially at
rest is given a speed of when a club strikes. If the club
and ball are in contact for 2.00 ms, what average force acts on the

25.0 m>s

55 m>s,

73.14 m>s .

2.60 m>s.
2.75 m>s

+y-direction) at 23.0 m>s.

14.0 m>s

K = p2>2m.

15.0 m>s

12.0 m>s?



Exercises 269

ball? Is the effect of the ball’s weight during the time of contact
significant? Why or why not?
8.8 . Force of a Baseball Swing. A baseball has mass 0.145 kg.
(a) If the velocity of a pitched ball has a magnitude of 
and the batted ball’s velocity is in the opposite direction,
find the magnitude of the change in momentum of the ball and of
the impulse applied to it by the bat. (b) If the ball remains in con-
tact with the bat for 2.00 ms, find the magnitude of the average
force applied by the bat.
8.9 . A 0.160-kg hockey puck is moving on an icy, frictionless,
horizontal surface. At the puck is moving to the right at

(a) Calculate the velocity of the puck (magnitude and
direction) after a force of 25.0 N directed to the right has been
applied for 0.050 s. (b) If, instead, a force of 12.0 N directed to the
left is applied from to what is the final velocity
of the puck?
8.10 . An engine of the orbital maneuvering system (OMS) on a
space shuttle exerts a force of for 3.90 s, exhausting
a negligible mass of fuel relative to the 95,000-kg mass of the
shuttle. (a) What is the impulse of the force for this 3.90 s? (b)
What is the shuttle’s change in momentum from this impulse? 
(c) What is the shuttle’s change in velocity from this impulse? 
(d) Why can’t we find the resulting change in the kinetic energy of
the shuttle?
8.11 . CALC At time a 2150-kg rocket in outer space fires
an engine that exerts an increasing force on it in the 
This force obeys the equation where t is time, and has a
magnitude of 781.25 N when (a) Find the SI value of
the constant A, including its units. (b) What impulse does the
engine exert on the rocket during the 1.50-s interval starting 2.00 s
after the engine is fired? (c) By how much does the rocket’s veloc-
ity change during this interval?
8.12 .. A bat strikes a 0.145-kg baseball. Just before impact, the
ball is traveling horizontally to the right at and it leaves
the bat traveling to the left at an angle of above horizontal with
a speed of If the ball and bat are in contact for 1.75 ms,
find the horizontal and vertical components of the average force on
the ball.
8.13 . A 2.00-kg stone is sliding
to the right on a frictionless hori-
zontal surface at when
it is suddenly struck by an object
that exerts a large horizontal
force on it for a short period of
time. The graph in Fig. E8.13
shows the magnitude of this force
as a function of time. (a) What
impulse does this force exert on
the stone? (b) Just after the force stops acting, find the magnitude
and direction of the stone’s velocity if the force acts (i) to the right
or (ii) to the left.
8.14 .. BIO Bone Fracture. Experimental tests have shown
that bone will rupture if it is subjected to a force density of

. Suppose a 70.0-kg person carelessly roller-
skates into an overhead metal beam that hits his forehead and com-
pletely stops his forward motion. If the area of contact with the
person’s forehead is what is the greatest speed with which
he can hit the wall without breaking any bone if his head is in con-
tact with the beam for 10.0 ms?
8.15 .. To warm up for a match, a tennis player hits the 57.0-g
ball vertically with her racket. If the ball is stationary just

1.5 cm2,

1.03 * 108 N>m2

5.00 m>s

65.0 m>s.
30°

50.0 m>s,

t = 1.25 s.
Fx = At 2,

+x-direction.
t = 0,

≥n126,700 N2

t = 0.050 s,t = 0

3.00 m>s.
t = 0,

55.0 m>s
45.0 m>s

before it is hit and goes 5.50 m high, what impulse did she
impart to it?
8.16 .. CALC Starting at , a horizontal net force 

is applied to a box that
has an initial momentum 

. What is the momentum of the box at ?

Section 8.2 Conservation of Momentum
8.17 .. The expanding gases that leave the muzzle of a rifle also
contribute to the recoil. A .30-caliber bullet has mass 0.00720 kg
and a speed of relative to the muzzle when fired from a
rifle that has mass 2.80 kg. The loosely held rifle recoils at a speed
of relative to the earth. Find the momentum of the pro-
pellant gases in a coordinate system attached to the earth as they
leave the muzzle of the rifle.
8.18 . A 68.5-kg astronaut is doing a repair in space on the orbit-
ing space station. She throws a 2.25-kg tool away from her at

relative to the space station. With what speed and in
what direction will she begin to move?
8.19 . BIO Animal Propulsion. Squids and octopuses propel
themselves by expelling water. They do this by keeping water in a
cavity and then suddenly contracting the cavity to force out the
water through an opening. A 6.50-kg squid (including the water in
the cavity) at rest suddenly sees a dangerous predator. (a) If the
squid has 1.75 kg of water in its cavity, at what speed must it
expel this water to suddenly achieve a speed of to
escape the predator? Neglect any drag effects of the surrounding
water. (b) How much kinetic energy does the squid create by this
maneuver?
8.20 .. You are standing on a sheet of ice that covers the football
stadium parking lot in Buffalo; there is negligible friction between
your feet and the ice. A friend throws you a 0.400-kg ball that is
traveling horizontally at Your mass is 70.0 kg. (a) If you
catch the ball, with what speed do you and the ball move after-
ward? (b) If the ball hits you and bounces off your chest, so after-
ward it is moving horizontally at in the opposite direction,
what is your speed after the collision?
8.21 .. On a frictionless, horizontal air table, puck A (with mass
0.250 kg) is moving toward puck B (with mass 0.350 kg), which is
initially at rest. After the collision, puck A has a velocity of

to the left, and puck B has a velocity of to
the right. (a) What was the speed of puck A before the collision?
(b) Calculate the change in the total kinetic energy of the system
that occurs during the collision.
8.22 .. When cars are equipped with flexible bumpers, they will
bounce off each other during low-speed collisions, thus causing
less damage. In one such accident, a 1750-kg car traveling to the
right at collides with a 1450-kg car going to the left at

Measurements show that the heavier car’s speed just
after the collision was in its original direction. You can
ignore any road friction during the collision. (a) What was the
speed of the lighter car just after the collision? (b) Calculate the
change in the combined kinetic energy of the two-car system dur-
ing this collision.
8.23 .. Two identical 1.50-kg masses are pressed against oppo-
site ends of a light spring of force constant compress-
ing the spring by 20.0 cm from its normal length. Find the speed of
each mass when it has moved free of the spring on a frictionless
horizontal table.
8.24 . Block A in Fig. E8.24 has mass 1.00 kg, and block B has
mass 3.00 kg. The blocks are forced together, compressing a spring
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� 14.00 kg #ınpS � 1-3.00 kg # m>s2

≥n� 1-0.450 N>s22t2ın10.280 N>s2t
F
S

�t = 0

F (kN)

t (ms)

2.50

O 15.0 16.0

Figure E8.13



270 CHAPTER 8 Momentum, Impulse, and Collisions

S between them; then the system is released from rest on a level,
frictionless surface. The spring, which has negligible mass, is not
fastened to either block and drops to the surface after it has
expanded. Block B acquires a speed of (a) What is the
final speed of block A? (b) How much potential energy was stored
in the compressed spring?

1.20 m>s.

which was initially at rest, trav-
els at 45.0° to the original direc-
tion of A (Fig. E8.31). (a) Find
the speed of each asteroid after
the collision. (b) What fraction
of the original kinetic energy of
asteroid A dissipates during this
collision?

Section 8.3 Momentum Conservation and Collisions
8.32 . Two skaters collide and grab on to each other on friction-
less ice. One of them, of mass 70.0 kg, is moving to the right at

while the other, of mass 65.0 kg, is moving to the left at
What are the magnitude and direction of the velocity of

these skaters just after they collide?
8.33 .. A 15.0-kg fish swimming at suddenly gobbles
up a 4.50-kg fish that is initially stationary. Neglect any drag
effects of the water. (a) Find the speed of the large fish just after it
eats the small one. (b) How much mechanical energy was dissi-
pated during this meal?
8.34 . Two fun-loving otters are sliding toward each other on a
muddy (and hence frictionless) horizontal surface. One of them, of
mass 7.50 kg, is sliding to the left at while the other, of
mass 5.75 kg, is slipping to the right at They hold fast to
each other after they collide. (a) Find the magnitude and direction
of the velocity of these free-spirited otters right after they collide.
(b) How much mechanical energy dissipates during this play?
8.35 . Deep Impact Mission. In July 2005, NASA’s “Deep
Impact” mission crashed a 372-kg probe directly onto the surface
of the comet Tempel 1, hitting the surface at The
original speed of the comet at that time was about 
and its mass was estimated to be in the range 

Use the smallest value of the estimated mass. (a) What
change in the comet’s velocity did this collision produce? Would
this change be noticeable? (b) Suppose this comet were to hit the
earth and fuse with it. By how much would it change our planet’s
velocity? Would this change be noticeable? (The mass of the earth
is )
8.36 . A 1050-kg sports car is moving westbound at on
a level road when it collides with a 6320-kg truck driving east on the
same road at The two vehicles remain locked together
after the collision. (a) What is the velocity (magnitude and direction)
of the two vehicles just after the collision? (b) At what speed should
the truck have been moving so that it and the car are both stopped in
the collision? (c) Find the change in kinetic energy of the system of
two vehicles for the situations of part (a) and part (b). For which sit-
uation is the change in kinetic energy greater in magnitude?
8.37 .. On a very muddy football field, a 110-kg linebacker tack-
les an 85-kg halfback. Immediately before the collision, the line-
backer is slipping with a velocity of north and the halfback
is sliding with a velocity of east. What is the velocity
(magnitude and direction) at which the two players move together
immediately after the collision?
8.38 .. Accident Analysis. Two cars collide at an intersection.
Car A, with a mass of 2000 kg, is going from west to east, while
car B, of mass 1500 kg, is going from north to south at As
a result of this collision, the two cars become enmeshed and move
as one afterward. In your role as an expert witness, you inspect the
scene and determine that, after the collision, the enmeshed cars
moved at an angle of 65° south of east from the point of impact. 
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S

8.25 .. A hunter on a frozen, essentially frictionless pond uses a
rifle that shoots 4.20-g bullets at The mass of the hunter
(including his gun) is 72.5 kg, and the hunter holds tight to the gun
after firing it. Find the recoil velocity of the hunter if he fires the
rifle (a) horizontally and (b) at 56.0° above the horizontal.
8.26 . An atomic nucleus suddenly bursts apart (fissions) into
two pieces. Piece A, of mass travels off to the left with speed

Piece B, of mass travels off to the right with speed 
(a) Use conservation of momentum to solve for in terms of 

and (b) Use the results of part (a) to show that
where and are the kinetic energies of the

two pieces.
8.27 .. Two ice skaters, Daniel (mass 65.0 kg) and Rebecca
(mass 45.0 kg), are practicing. Daniel stops to tie his shoelace and,
while at rest, is struck by Rebecca, who is moving at 
before she collides with him. After the collision, Rebecca has a
velocity of magnitude at an angle of from her
initial direction. Both skaters move on the frictionless, horizon-
tal surface of the rink. (a) What are the magnitude and direction
of Daniel’s velocity after the collision? (b) What is the change 
in total kinetic energy of the two skaters as a result of the 
collision?
8.28 .. You are standing on a large sheet of frictionless ice and
holding a large rock. In order to get off the ice, you throw the rock
so it has velocity relative to the earth at an angle of 
above the horizontal. If your mass is 70.0 kg and the rock’s mass is
15.0 kg, what is your speed after you throw the rock? (See Discus-
sion Question Q8.7.)
8.29 . Changing Mass. An open-topped freight car with mass
24,000 kg is coasting without friction along a level track. It is rain-
ing very hard, and the rain is falling vertically downward. Origi-
nally, the car is empty and moving with a speed of (a)
What is the speed of the car after it has collected 3000 kg of rain-
water? (b) Since the rain is falling downward, how is it able to
affect the horizontal motion of the car?
8.30 . An astronaut in space cannot use a conventional means,
such as a scale or balance, to determine the mass of an object. But
she does have devices to measure distance and time accurately.
She knows her own mass is 78.4 kg, but she is unsure of the mass
of a large gas canister in the airless rocket. When this canister is
approaching her at she pushes against it, which slows it
down to (but does not reverse it) and gives her a speed of

What is the mass of this canister?
8.31 .. Asteroid Collision. Two asteroids of equal mass in the
asteroid belt between Mars and Jupiter collide with a glancing
blow. Asteroid A, which was initially traveling at is
deflected 30.0° from its original direction, while asteroid B,
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(a) How fast were the enmeshed cars moving just after the colli-
sion? (b) How fast was car A going just before the collision?
8.39 . Two cars, one a compact with mass 1200 kg and the other
a large gas-guzzler with mass 3000 kg, collide head-on at typical
freeway speeds. (a) Which car has a greater magnitude of momen-
tum change? Which car has a greater velocity change? (b) If the
larger car changes its velocity by calculate the change in the
velocity of the small car in terms of (c) Which car’s occupants
would you expect to sustain greater injuries? Explain.
8.40 .. BIO Bird Defense. To protect their young in the nest,
peregrine falcons will fly into birds of prey (such as ravens) at high
speed. In one such episode, a 600-g falcon flying at hit a
1.50-kg raven flying at The falcon hit the raven at right
angles to its original path and bounced back at (These fig-
ures were estimated by the author as he watched this attack occur
in northern New Mexico.) (a) By what angle did the falcon change
the raven’s direction of motion? (b) What was the raven’s speed
right after the collision?
8.41 . At the intersection of
Texas Avenue and University
Drive, a yellow subcompact car
with mass 950 kg traveling east
on University collides with a red
pickup truck with mass 1900 kg
that is traveling north on Texas
and has run a red light (Fig.
E8.41). The two vehicles stick
together as a result of the colli-
sion, and the wreckage slides at

in the direction 
east of north. Calculate the
speed of each vehicle before the collision. The collision occurs
during a heavy rainstorm; you can ignore friction forces between
the vehicles and the wet road.
8.42 .. A 5.00-g bullet is fired horizontally into a 1.20-kg
wooden block resting on a horizontal surface. The coefficient of
kinetic friction between block and surface is 0.20. The bullet
remains embedded in the block, which is observed to slide 0.230 m
along the surface before stopping. What was the initial speed of the
bullet?
8.43 .. A Ballistic Pendulum. A 12.0-g rifle bullet is fired with
a speed of into a ballistic pendulum with mass 6.00 kg,
suspended from a cord 70.0 cm long (see Example 8.8 in Section
8.3). Compute (a) the vertical height through which the pendulum
rises, (b) the initial kinetic energy of the bullet, and (c) the kinetic
energy of the bullet and pendulum immediately after the bullet
becomes embedded in the pendulum.
8.44 .. Combining Conservation Laws. A 15.0-kg block is
attached to a very light horizontal spring of force constant

and is resting on a frictionless horizontal table. 
(Fig. E8.44). Suddenly it is struck by a 3.00-kg stone traveling hor-
izontally at to the right, whereupon the stone rebounds at

horizontally to the left. Find the maximum distance that
the block will compress the spring after the collision.
2.00 m>s

8.00 m>s

500.0 N>m
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8.45 .. CP A 5.00-kg ornament is hanging by a 1.50-m wire
when it is suddenly hit by a 3.00-kg missile traveling horizontally
at The missile embeds itself in the ornament during the
collision. What is the tension in the wire immediately after the
collision?

Section 8.4 Elastic Collisions
8.46 .. A 0.150-kg glider is moving to the right on a frictionless,
horizontal air track with a speed of It has a head-on col-
lision with a 0.300-kg glider that is moving to the left with a speed
of Find the final velocity (magnitude and direction) of
each glider if the collision is elastic.
8.47 .. Blocks A (mass 2.00 kg) and B (mass 10.00 kg) move on
a frictionless, horizontal surface. Initially, block B is at rest and
block A is moving toward it at The blocks are equipped
with ideal spring bumpers, as in Example 8.10 (Section 8.4). The
collision is head-on, so all motion before and after the collision is
along a straight line. (a) Find the maximum energy stored in the
spring bumpers and the velocity of each block at that time. (b) Find
the velocity of each block after they have moved apart.
8.48 . A 10.0-g marble slides
to the left with a velocity of
magnitude on the
frictionless, horizontal sur-
face of an icy New York side-
walk and has a head-on,
elastic collision with a larger
30.0-g marble sliding to the
right with a velocity of mag-
nitude (Fig. E8.48). (a) Find the velocity of each mar-
ble (magnitude and direction) after the collision. (Since the
collision is head-on, all the motion is along a line.) (b) Calculate
the change in momentum (that is, the momentum after the collision
minus the momentum before the collision) for each marble. Com-
pare the values you get for each marble. (c) Calculate the change
in kinetic energy (that is, the kinetic energy after the collision
minus the kinetic energy before the collision) for each marble.
Compare the values you get for each marble.
8.49 .. Moderators. Canadian nuclear reactors use heavy water
moderators in which elastic collisions occur between the neutrons
and deuterons of mass 2.0 u (see Example 8.11 in Section 8.4). 
(a) What is the speed of a neutron, expressed as a fraction of its origi-
nal speed, after a head-on, elastic collision with a deuteron that is ini-
tially at rest? (b) What is its kinetic energy, expressed as a fraction of
its original kinetic energy? (c) How many such successive collisions
will reduce the speed of a neutron to of its original value?
8.50 .. You are at the controls of a particle accelerator, sending a
beam of protons (mass m) at a gas target of an
unknown element. Your detector tells you that some protons
bounce straight back after a collision with one of the nuclei of the
unknown element. All such protons rebound with a speed of

Assume that the initial speed of the target
nucleus is negligible and the collision is elastic. (a) Find the mass
of one nucleus of the unknown element. Express your answer in
terms of the proton mass m. (b) What is the speed of the unknown
nucleus immediately after such a collision?

Section 8.5 Center of Mass
8.51 . Three odd-shaped blocks of chocolate have the following
masses and center-of-mass coordinates: (1) 0.300 kg, 10.200 m,
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(2) 0.400 kg, (3) 0.200 kg,
Find the coordinates of the center of mass

of the system of three chocolate blocks.
8.52 . Find the position of the center of mass of the system of the
sun and Jupiter. (Since Jupiter is more massive than the rest of the
planets combined, this is essentially the position of the center of
mass of the solar system.) Does the center of mass lie inside or out-
side the sun? Use the data in Appendix F.
8.53 .. Pluto and Charon. Pluto’s diameter is approximately
2370 km, and the diameter of its satellite Charon is 1250 km.
Although the distance varies, they are often about 19,700 km apart,
center to center. Assuming that both Pluto and Charon have the same
composition and hence the same average density, find the location of
the center of mass of this system relative to the center of Pluto.
8.54 . A 1200-kg station wagon is moving along a straight highway
at Another car, with mass 1800 kg and speed 
has its center of mass 40.0 m ahead of the center of mass of the sta-
tion wagon (Fig. E8.54). (a) Find the position of the center of mass of
the system consisting of the two automobiles. (b) Find the magnitude
of the total momentum of the system from the given data. (c) Find the
speed of the center of mass of the system. (d) Find the total momen-
tum of the system, using the speed of the center of mass. Compare
your result with that of part (b).

20.0 m>s,12.0 m>s.

1-0.300 m, 0.600 m2.
10.100 m, -0.400 m2;0.300 m2; 8.59 . CALC A radio-controlled model airplane has a momentum

given by 
. What are the x-, y-, and z-components of the net force on

the airplane?
8.60 .. BIO Changing Your Center of Mass. To keep the cal-
culations fairly simple, but still reasonable, we shall model a human
leg that is 92.0 cm long (measured from the hip joint) by assuming
that the upper leg and the lower leg (which includes the foot) have
equal lengths and that each of them is uniform. For a 70.0-kg per-
son, the mass of the upper leg would be 8.60 kg, while that of the
lower leg (including the foot) would be 5.25 kg. Find the location
of the center of mass of this leg, relative to the hip joint, if it is 
(a) stretched out horizontally and (b) bent at the knee to form a
right angle with the upper leg remaining horizontal.

Section 8.6 Rocket Propulsion
8.61 .. A 70-kg astronaut floating in space in a 110-kg MMU
(manned maneuvering unit) experiences an acceleration of

when he fires one of the MMU’s thrusters. (a) If the
speed of the escaping gas relative to the astronaut is 
how much gas is used by the thruster in 5.0 s? (b) What is the
thrust of the thruster?
8.62 . A small rocket burns 0.0500 kg of fuel per second, ejecting
it as a gas with a velocity relative to the rocket of magnitude

(a) What is the thrust of the rocket? (b) Would the
rocket operate in outer space where there is no atmosphere? If so,
how would you steer it? Could you brake it?
8.63 . A C6-5 model rocket engine has an impulse of 
while burning 0.0125 kg of propellant in 1.70 s. It has a maximum
thrust of 13.3 N. The initial mass of the engine plus propellant is
0.0258 kg. (a) What fraction of the maximum thrust is the average
thrust? (b) Calculate the relative speed of the exhaust gases,
assuming it is constant. (c) Assuming that the relative speed of the
exhaust gases is constant, find the final speed of the engine if it
was attached to a very light frame and fired from rest in gravity-
free outer space.
8.64 .. Obviously, we can make rockets to go very fast, but what
is a reasonable top speed? Assume that a rocket is fired from rest at
a space station in deep space, where gravity is negligible. (a) If the
rocket ejects gas at a relative speed of and you want the
rocket’s speed eventually to be where c is the speed
of light, what fraction of the initial mass of the rocket and fuel is
not fuel? (b) What is this fraction if the final speed is to be

8.65 .. A single-stage rocket is fired from rest from a deep-space
platform, where gravity is negligible. If the rocket burns its fuel in
50.0 s and the relative speed of the exhaust gas is 
what must the mass ratio be for a final speed of 
(about equal to the orbital speed of an earth satellite)?

PROBLEMS
8.66 .. CP CALC A young girl with mass 40.0 kg is sliding on a
horizontal, frictionless surface with an initial momentum that is
due east and that has magnitude . Starting at , a
net force with magnitude and direction due west
is applied to the girl. (a) At what value of t does the girl have a
westward momentum of magnitude ? (b) How much
work has been done on the girl by the force in the time interval
from to the time calculated in part (a)? (c) What is the
magnitude of the acceleration of the girl at the time calculated in
part (a)?
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40.0 m

8.55 . A machine part consists
of a thin, uniform 4.00-kg bar
that is 1.50 m long, hinged per-
pendicular to a similar vertical
bar of mass 3.00 kg and length
1.80 m. The longer bar has a
small but dense 2.00-kg ball at
one end (Fig. E8.55). By what
distance will the center of mass
of this part move horizontally
and vertically if the vertical bar
is pivoted counterclockwise
through 90° to make the entire part horizontal?
8.56 . At one instant, the center of mass of a system of two parti-
cles is located on the x-axis at and has a velocity of

. One of the particles is at the origin. The other particle
has a mass of 0.10 kg and is at rest on the x-axis at 
(a) What is the mass of the particle at the origin? (b) Calculate the
total momentum of this system. (c) What is the velocity of the par-
ticle at the origin?
8.57 .. In Example 8.14 (Section 8.5), Ramon pulls on the rope
to give himself a speed of What is James’s speed?
8.58 . CALC A system consists of two particles. At one par-
ticle is at the origin; the other, which has a mass of 0.50 kg, is on
the y-axis at At the center of mass of the system
is on the y-axis at The velocity of the center of mass is
given by . (a) Find the total mass of the system. 
(b) Find the acceleration of the center of mass at any time t.
(c) Find the net external force acting on the system at t = 3.0 s.

ın10.75 m>s32t 2
y = 2.4 m.

t = 0y = 6.0 m.

t = 0
0.70 m>s.

x = 8.0 m.
ın15.0 m>s2

x = 2.0 m

1.50 m

4.00 kg

3.00 kg

2.00 kg

1.80 m

Hinge

Figure E8.55

Figure E8.54
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8.67 .. A steel ball with mass 40.0 g is dropped from a height of
2.00 m onto a horizontal steel slab. The ball rebounds to a height
of 1.60 m. (a) Calculate the impulse delivered to the ball during
impact. (b) If the ball is in contact with the slab for 2.00 ms, find
the average force on the ball during impact.
8.68 . In a volcanic eruption, a 2400-kg boulder is thrown verti-
cally upward into the air. At its highest point, it suddenly explodes
(due to trapped gases) into two fragments, one being three times the
mass of the other. The lighter fragment starts out with only horizon-
tal velocity and lands 318 m directly north of the point of the explo-
sion. Where will the other fragment land? Neglect any air resistance.
8.69 .. Just before it is struck by a racket, a tennis ball weighing
0.560 N has a velocity of . During the
3.00 ms that the racket and ball are in contact, the net force on the
ball is constant and equal to . (a) What are
the x- and y-components of the impulse of the net force applied to
the ball? (b) What are the x- and y-components of the final velocity
of the ball?
8.70 . Three identical pucks on a horizontal air table have
repelling magnets. They are held together and then released simul-
taneously. Each has the same speed at any instant. One puck moves
due west. What is the direction of the velocity of each of the other
two pucks?
8.71 .. A 1500-kg blue convertible is traveling south, and a 2000-kg
red SUV is traveling west. If the total momentum of the system
consisting of the two cars is directed at west
of south, what is the speed of each vehicle?
8.72 .. A railroad handcar is moving along straight, frictionless
tracks with negligible air resistance. In the following cases, the car
initially has a total mass (car and contents) of 200 kg and is travel-
ing east with a velocity of magnitude Find the final
velocity of the car in each case, assuming that the handcar does not
leave the tracks. (a) A 25.0-kg mass is thrown sideways out of the
car with a velocity of magnitude relative to the car’s ini-
tial velocity. (b) A 25.0-kg mass is thrown backward out of the car
with a velocity of relative to the initial motion of the car.
(c) A 25.0-kg mass is thrown into the car with a velocity of

relative to the ground and opposite in direction to the ini-
tial velocity of the car.
8.73 . Spheres A B and C

are approaching the origin as they slide on a fric-
tionless air table (Fig. P8.73). The initial velocities of A and B are
given in the figure. All three spheres arrive at the origin at the same
time and stick together. (a) What must the x- and y-components of
the initial velocity of C be if all three objects are to end up moving
at in the after the collision? (b) If C has the
velocity found in part (a), what is the change in the kinetic energy
of the system of three spheres as a result of the collision?

+x-direction0.50 m>s

(mass 0.050 kg)
(mass 0.030 kg),(mass 0.020 kg),

6.00 m>s

5.00 m>s

2.00 m>s

5.00 m>s.

60.0°7200 kg # m>s

≥n� 1110 N2ın-1380 N2

≥n� 14.0 m>s2ın120.0 m>s2

8.74 ... You and your friends are doing physics experiments on a
frozen pond that serves as a frictionless, horizontal surface. Sam,
with mass 80.0 kg, is given a push and slides eastward. Abigail,
with mass 50.0 kg, is sent sliding northward. They collide, and
after the collision Sam is moving at north of east with a
speed of and Abigail is moving at south of east
with a speed of (a) What was the speed of each person
before the collision? (b) By how much did the total kinetic energy
of the two people decrease during the collision?
8.75 ... The nucleus of decays radioactively by emitting an
alpha particle (mass kg) with kinetic energy 

as measured in the laboratory reference frame. Assuming
that the Po was initially at rest in this frame, find the recoil velocity
of the nucleus that remains after the decay.
8.76 . CP At a classic auto show, a 840-kg 1955 Nash Metropoli-
tan motors by at followed by a 1620-kg 1957 Packard
Clipper purring past at (a) Which car has the greater
kinetic energy? What is the ratio of the kinetic energy of the Nash
to that of the Packard? (b) Which car has the greater magnitude of
momentum? What is the ratio of the magnitude of momentum of
the Nash to that of the Packard? (c) Let be the net force
required to stop the Nash in time t, and let be the net force
required to stop the Packard in the same time. Which is larger: 
or What is the ratio of these two forces? (d) Now let 
be the net force required to stop the Nash in a distance d, and let 
be the net force required to stop the Packard in the same distance.
Which is larger: or What is the ratio 
8.77 .. CP An 8.00-kg block of wood sits at the edge of a fric-
tionless table, 2.20 m above the floor. A 0.500-kg blob of clay
slides along the length of the table with a speed of ,
strikes the block of wood, and sticks to it. The combined object
leaves the edge of the table and travels to the floor. What hori-
zontal distance has the combined object traveled when it reaches
the floor?
8.78 ... CP A small wooden block with mass 0.800 kg is sus-
pended from the lower end of a light cord that is 1.60 m long. The
block is initially at rest. A bullet with mass 12.0 g is fired at the
block with a horizontal velocity . The bullet strikes the block
and becomes embedded in it. After the collision the combined
object swings on the end of the cord. When the block has risen a
vertical height of 0.800 m, the tension in the cord is 4.80 N. What
was the initial speed of the bullet?
8.79 .. Combining Conservation Laws. A 5.00-kg chunk of
ice is sliding at on the floor of an ice-covered valley
when it collides with and sticks to another 5.00-kg chunk of ice
that is initially at rest. (Fig. P8.79). Since the valley is icy, there is
no friction. After the collision, how high above the valley floor will
the combined chunks go?

12.0 m>s

v0

v0

24.0 m>s

FN>FP?FP?FN

FP

FNFN>FPFP?
FN

FP

FN

5.0 m>s.
9.0 m>s,

10-12 J,
1.23 *6.65 * 10-27

214Po

9.00 m>s.
23.0°6.00 m>s

37.0°

60°
O

y

x

B

vB 5 0.50 m/s

vA 5 1.50 m/s

vC

C

A

5.00 kg 5.00 kg12.0 m/s

Figure P8.79Figure P8.73

8.80 .. Automobile Accident Analysis. You are called as an
expert witness to analyze the following auto accident: Car B, of
mass 1900 kg, was stopped at a red light when it was hit from
behind by car A, of mass 1500 kg. The cars locked bumpers during
the collision and slid to a stop with brakes locked on all wheels.
Measurements of the skid marks left by the tires showed them to
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be 7.15 m long. The coefficient of kinetic friction between the tires
and the road was 0.65. (a) What was the speed of car A just before
the collision? (b) If the speed limit was 35 mph, was car A speed-
ing, and if so, by how many miles per hour was it exceeding the
speed limit?
8.81 .. Accident Analysis. A 1500-kg sedan goes through a
wide intersection traveling from north to south when it is hit by a
2200-kg SUV traveling from east to west. The two cars become
enmeshed due to the impact and slide as one thereafter. On-the-
scene measurements show that the coefficient of kinetic friction
between the tires of these cars and the pavement is 0.75, and the
cars slide to a halt at a point 5.39 m west and 6.43 m south of 
the impact point. How fast was each car traveling just before the
collision?
8.82 ... CP A 0.150-kg frame,
when suspended from a coil spring,
stretches the spring 0.070 m. A
0.200-kg lump of putty is dropped
from rest onto the frame from a
height of 30.0 cm (Fig. P8.82). Find
the maximum distance the frame
moves downward from its initial
position.
8.83 . A rifle bullet with mass 8.00 g
strikes and embeds itself in a block
with mass 0.992 kg that rests on a
frictionless, horizontal surface and is
attached to a coil spring (Fig. P8.83).
The impact compresses the spring 15.0 cm. Calibration of the
spring shows that a force of 0.750 N is required to compress the
spring 0.250 cm. (a) Find the magnitude of the block’s velocity
just after impact. (b) What was the initial speed of the bullet?

reaches the villain.) (a) With what speed do the entwined foes start
to slide across the floor? (b) If the coefficient of kinetic friction of
their bodies with the floor is how far do they slide?
8.86 .. CP Two identical masses
are released from rest in a smooth
hemispherical bowl of radius R
from the positions shown in 
Fig. P8.86. You can ignore friction
between the masses and the sur-
face of the bowl. If they stick
together when they collide, how
high above the bottom of the bowl
will the masses go after colliding?
8.87 .. A ball with mass M, moving horizontally at col-
lides elastically with a block with mass that is initially hanging
at rest from the ceiling on the end of a 50.0-cm wire. Find the
maximum angle through which the block swings after it is hit.
8.88 ... CP A 20.00-kg lead sphere is hanging from a hook by a
thin wire 3.50 m long and is free to swing in a complete circle.
Suddenly it is struck horizontally by a 5.00-kg steel dart that
embeds itself in the lead sphere. What must be the minimum initial
speed of the dart so that the combination makes a complete circu-
lar loop after the collision?
8.89 ... CP An 8.00-kg ball, hanging from the ceiling by a light
wire 135 cm long, is struck in an elastic collision by a 2.00-kg ball
moving horizontally at just before the collision. Find the
tension in the wire just after the collision.
8.90 .. A 7.0-kg shell at rest explodes into two fragments, one
with a mass of 2.0 kg and the other with a mass of 5.0 kg. If the
heavier fragment gains 100 J of kinetic energy from the explosion,
how much kinetic energy does the lighter one gain?
8.91 .. A 4.00-g bullet, traveling horizontally with a velocity of
magnitude is fired into a wooden block with mass
0.800 kg, initially at rest on a level surface. The bullet passes
through the block and emerges with its speed reduced to 
The block slides a distance of 45.0 cm along the surface from its
initial position. (a) What is the coefficient of kinetic friction
between block and surface? (b) What is the decrease in kinetic
energy of the bullet? (c) What is the kinetic energy of the block at
the instant after the bullet passes through it?
8.92 .. A 5.00-g bullet is shot through a 1.00-kg wood block sus-
pended on a string 2.00 m long. The center of mass of the block
rises a distance of 0.38 cm. Find the speed of the bullet as it
emerges from the block if its initial speed is 
8.93 .. A neutron with mass m makes a head-on, elastic collision
with a nucleus of mass M, which is initially at rest. (a) Show that if
the neutron’s initial kinetic energy is the kinetic energy that it
loses during the collision is (b) For what
value of M does the incident neutron lose the most energy? (c)
When M has the value calculated in part (b), what is the speed of
the neutron after the collision?
8.94 .. Energy Sharing in Elastic Collisions. A stationary
object with mass is struck head-on by an object with mass 
that is moving initially at speed (a) If the collision is elastic,
what percentage of the original energy does each object have after
the collision? (b) What does your answer in part (a) give for the
special cases (i) and (ii) (c) For what val-
ues, if any, of the mass ratio is the original kinetic energy
shared equally by the two objects after the collision?
8.95 .. CP In a shipping company distribution center, an open
cart of mass 50.0 kg is rolling to the left at a speed of 5.00 m>s

mA>mB

mA = 5mB?mA = mB

v0.
mAmB

4mMK0>1M + m22.
K0,

450 m>s.

190 m>s.

400 m>s,

5.00 m>s

3M
4.00 m>s,

mk = 0.250,

v

15.0 cm

30.0 cm

8.84 .. A Ricocheting Bullet. 0.100-kg stone rests on a fric-
tionless, horizontal surface. A bullet of mass 6.00 g, traveling hori-
zontally at strikes the stone and rebounds horizontally at
right angles to its original direction with a speed of (a)
Compute the magnitude and direction of the velocity of the stone
after it is struck. (b) Is the collision perfectly elastic?
8.85 .. A movie stuntman
(mass 80.0 kg) stands on a win-
dow ledge 5.0 m above the floor
(Fig. P8.85). Grabbing a rope
attached to a chandelier, he
swings down to grapple with
the movie’s villain (mass 70.0
kg), who is standing directly
under the chandelier. (Assume
that the stuntman’s center of
mass moves downward 5.0 m.
He releases the rope just as he

250 m>s.
350 m>s,

R

m 5 80.0 kg

m 5 70.0 kg

5.0 m

Figure P8.86

Figure P8.85

Figure P8.82

Figure P8.83
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and appears as kinetic energy of the proton and electron. The
mass of a proton is 1836 times the mass of an electron. What
fraction of the total energy released goes into the kinetic energy
of the proton?
8.102 .. A (thorium) nucleus at rest decays to a 
(radium) nucleus with the emission of an alpha particle. The total
kinetic energy of the decay fragments is An alpha
particle has 1.76% of the mass of a nucleus. Calculate the
kinetic energy of (a) the recoiling nucleus and (b) the alpha
particle.
8.103 . Antineutrino. In beta decay, a nucleus emits an elec-
tron. A (bismuth) nucleus at rest undergoes beta decay 
to (polonium). Suppose the emitted electron moves to the
right with a momentum of The nu-
cleus, with mass recoils to the left at a speed of

Momentum conservation requires that a second
particle, called an antineutrino, must also be emitted. Calculate the
magnitude and direction of the momentum of the antineutrino 
that is emitted in this decay.
8.104 .. Jonathan and Jane are sitting in a sleigh that is at rest on
frictionless ice. Jonathan’s weight is 800 N, Jane’s weight is 600 N,
and that of the sleigh is 1000 N. They see a poisonous spider on the
floor of the sleigh and immediately jump off. Jonathan jumps to the
left with a velocity of at above the horizontal (rela-
tive to the ice), and Jane jumps to the right at at 
above the horizontal (relative to the ice). Calculate the sleigh’s hor-
izontal velocity (magnitude and direction) after they jump out.
8.105 .. Two friends, Burt and Ernie, are standing at opposite
ends of a uniform log that is floating in a lake. The log is 3.0 m
long and has mass 20.0 kg. Burt has mass 30.0 kg and Ernie has
mass 40.0 kg. Initially the log and the two friends are at rest rela-
tive to the shore. Burt then offers Ernie a cookie, and Ernie walks
to Burt’s end of the log to get it. Relative to the shore, what dis-
tance has the log moved by the time Ernie reaches Burt? Neglect
any horizontal force that the water exerts on the log and assume
that neither Burt nor Ernie falls off the log.
8.106 .. A 45.0-kg woman stands up in a 60.0-kg canoe 5.00 m
long. She walks from a point 1.00 m from one end to a point 1.00 m
from the other end (Fig. P8.106). If you ignore resistance to
motion of the canoe in the water, how far does the canoe move
during this process?

36.9°7.00 m>s
30.0°5.00 m>s

103 m>s.1.14 *
3.50 * 10-25 kg,

210Po5.60 * 10-22 kg # m>s.

210Po

210Bi

228Ra

228Ra
6.54 * 10-13 J.

228Ra232Th

(Fig. P8.95). You can ignore
friction between the cart and the
floor. A 15.0-kg package slides
down a chute that is inclined at

from the horizontal and
leaves the end of the chute with
a speed of The pack-
age lands in the cart and they
roll off together. If the lower end
of the chute is a vertical distance
of 4.00 m above the bottom of
the cart, what are (a) the speed of the package just before it lands in
the cart and (b) the final speed of the cart?
8.96 . A blue puck with mass 0.0400 kg, sliding with a velocity
of magnitude on a frictionless, horizontal air table,
makes a perfectly elastic, head-on collision with a red puck with
mass m, initially at rest. After the collision, the velocity of the blue
puck is in the same direction as its initial velocity. Find
(a) the velocity (magnitude and direction) of the red puck after the
collision and (b) the mass m of the red puck.
8.97 ... Jack and Jill are standing on a crate at rest on the friction-
less, horizontal surface of a frozen pond. Jack has mass 75.0 kg, Jill
has mass 45.0 kg, and the crate has mass 15.0 kg. They remember
that they must fetch a pail of water, so each jumps horizontally
from the top of the crate. Just after each jumps, that person is mov-
ing away from the crate with a speed of relative to the
crate. (a) What is the final speed of the crate if both Jack and Jill
jump simultaneously and in the same direction? (Hint: Use an iner-
tial coordinate system attached to the ground.) (b) What is the final
speed of the crate if Jack jumps first and then a few seconds later
Jill jumps in the same direction? (c) What is the final speed of the
crate if Jill jumps first and then Jack, again in the same direction?
8.98 . Suppose you hold a small ball in contact with, and
directly over, the center of a large ball. If you then drop the small
ball a short time after dropping the large ball, the small ball
rebounds with surprising speed. To show the extreme case, ignore
air resistance and suppose the large ball makes an elastic colli-
sion with the floor and then rebounds to make an elastic collision
with the still-descending small ball. Just before the collision
between the two balls, the large ball is moving upward with
velocity and the small ball has velocity (Do you see why?)
Assume the large ball has a much greater mass than the small ball.
(a) What is the velocity of the small ball immediately after its col-
lision with the large ball? (b) From the answer to part (a), what is
the ratio of the small ball’s rebound distance to the distance it fell
before the collision?
8.99 ... Hockey puck B rests on a smooth ice surface and is
struck by a second puck A, which has the same mass. Puck A is ini-
tially traveling at and is deflected from its initial
direction. Assume that the collision is perfectly elastic. Find the
final speed of each puck and the direction of B’s velocity after the
collision.
8.100 ... Energy Sharing. An object with mass m, initially at
rest, explodes into two fragments, one with mass and the other
with mass where (a) If energy Q is released
in the explosion, how much kinetic energy does each fragment
have immediately after the explosion? (b) What percentage of the
total energy released does each fragment get when one fragment
has four times the mass of the other?
8.101 ... Neutron Decay. A neutron at rest decays (breaks
up) to a proton and an electron. Energy is released in the decay

mA + mB = m.mB,
mA

25.0°15.0 m>s

-vS.vS

4.00 m>s

0.050 m>s

0.200 m>s

3.00 m>s.

37°

4.00 m

37°

1.00 m

Start Finish

3.00 m1.00 m

8.107 .. You are standing on a concrete slab that in turn is resting
on a frozen lake. Assume there is no friction between the slab and
the ice. The slab has a weight five times your weight. If you begin
walking forward at relative to the ice, with what speed,
relative to the ice, does the slab move?
8.108 .. CP A 20.0-kg projectile is fired at an angle of 
above the horizontal with a speed of At the highest point80.0 m>s.

60.0°

2.00 m>s

Figure P8.106

Figure P8.95
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of its trajectory, the projectile explodes into two fragments with
equal mass, one of which falls vertically with zero initial speed.
You can ignore air resistance. (a) How far from the point of firing
does the other fragment strike if the terrain is level? (b) How much
energy is released during the explosion?
8.109 ... CP A fireworks rocket is fired vertically upward. At its
maximum height of 80.0 m, it explodes and breaks into two pieces:
one with mass 1.40 kg and the other with mass 0.28 kg. In the
explosion, 860 J of chemical energy is converted to kinetic energy
of the two fragments. (a) What is the speed of each fragment just
after the explosion? (b) It is observed that the two fragments hit the
ground at the same time. What is the distance between the points
on the ground where they land? Assume that the ground is level
and air resistance can be ignored.
8.110 ... A 12.0-kg shell is launched at an angle of above
the horizontal with an initial speed of When it is at its
highest point, the shell explodes into two fragments, one three
times heavier than the other. The two fragments reach the ground
at the same time. Assume that air resistance can be ignored. If the
heavier fragment lands back at the same point from which the shell
was launched, where will the lighter fragment land, and how much
energy was released in the explosion?
8.111 . CP A wagon with two boxes of gold, having total mass
300 kg, is cut loose from the horses by an outlaw when the wagon
is at rest 50 m up a slope (Fig. P8.111). The outlaw plans to
have the wagon roll down the slope and across the level ground,
and then fall into a canyon where his confederates wait. But in a
tree 40 m from the canyon edge wait the Lone Ranger (mass 75.0 kg)
and Tonto (mass 60.0 kg). They drop vertically into the wagon as it
passes beneath them. (a) If they require 5.0 s to grab the gold and
jump out, will they make it before the wagon goes over the edge?
The wagon rolls with negligible friction. (b) When the two heroes
drop into the wagon, is the kinetic energy of the system of the
heroes plus the wagon conserved? If not, does it increase or
decrease, and by how much?

6.0°

150 m>s.
55.0°

You can ignore air resistance. How does your answer compare
with the rocket speed calculated in Example 8.16?
8.113 .. A Multistage Rocket. Suppose the first stage of a two-
stage rocket has total mass 12,000 kg, of which 9000 kg is fuel.
The total mass of the second stage is 1000 kg, of which 700 kg is
fuel. Assume that the relative speed of ejected material is con-
stant, and ignore any effect of gravity. (The effect of gravity is
small during the firing period if the rate of fuel consumption is
large.) (a) Suppose the entire fuel supply carried by the two-stage
rocket is utilized in a single-stage rocket with the same total mass
of 13,000 kg. In terms of what is the speed of the rocket, start-
ing from rest, when its fuel is exhausted? (b) For the two-stage
rocket, what is the speed when the fuel of the first stage is
exhausted if the first stage carries the second stage with it to this
point? This speed then becomes the initial speed of the second
stage. At this point, the second stage separates from the first stage.
(c) What is the final speed of the second stage? (d) What value of

is required to give the second stage of the rocket a speed of

CHALLENGE PROBLEMS
8.114 . CALC A Variable-Mass Raindrop. In a rocket-propul-
sion problem the mass is variable. Another such problem is a rain-
drop falling through a cloud of small water droplets. Some of these
small droplets adhere to the raindrop, thereby increasing its mass
as it falls. The force on the raindrop is 

Suppose the mass of the raindrop depends on the distance x that it
has fallen. Then where k is a constant, and 
This gives, since 

Or, dividing by k,

This is a differential equation that has a solution of the form
where a is the acceleration and is constant. Take the initial

velocity of the raindrop to be zero. (a) Using the proposed solution
for find the acceleration a. (b) Find the distance the raindrop has
fallen in (c) Given that find the mass of
the raindrop at (For many more intriguing aspects of
this problem, see K. S. Krane, American Journal of Physics, Vol. 49
(1981), pp. 113–117.)
8.115 .. CALC In Section 8.5 we calculated the center of mass by
considering objects composed of a finite number of point masses
or objects that, by symmetry, could be represented by a finite num-
ber of point masses. For a solid object whose mass distribution
does not allow for a simple determination of the center of mass by
symmetry, the sums of Eqs. (8.28) must be generalized to integrals

where x and y are the coordinates of the small piece of the object
that has mass dm. The integration is over the whole of the object.
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8.112 .. CALC In Section 8.6, we considered a rocket fired in
outer space where there is no air resistance and where gravity is
negligible. Suppose instead that the rocket is accelerating verti-
cally upward from rest on the earth’s surface. Continue to ignore
air resistance and consider only that part of the motion where the
altitude of the rocket is small so that g may be assumed to be con-
stant. (a) How is Eq. (8.37) modified by the presence of the gravity
force? (b) Derive an expression for the acceleration a of the rocket,
analogous to Eq. (8.39). (c) What is the acceleration of the rocket
in Example 8.15 (Section 8.6) if it is near the earth’s surface rather
than in outer space? You can ignore air resistance. (d) Find the
speed of the rocket in Example 8.16 (Section 8.6) after 90 s if the
rocket is fired from the earth’s surface rather than in outer space.

Figure P8.111
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Chapter Opening Question ?
The two bullets have the same magnitude of momentum 
(the product of mass and speed), but the faster, lightweight bullet
has twice as much kinetic energy Hence, the light-
weight bullet can do twice as much work on the carrot (and twice as
much damage) in the process of coming to a halt (see Section 8.1).

Test Your Understanding Questions
8.1 Answer: (v), (i) and (ii) (tied for second place), (iii) and 
(iv) (tied for third place) We use two interpretations of the
impulse of the net force: (1) the net force multiplied by the time that
the net force acts, and (2) the change in momentum of the particle
on which the net force acts. Which interpretation we use depends
on what information we are given. We take the positive x-direction
to be to the east. (i) The force is not given, so we use interpretation
2:

so the magnitude of the impulse is
(ii) For the same reason as in (i),

we use interpretation 2: 
and the magnitude of

the impulse is again (iii) The final
velocity is not given, so we use interpretation 1:

so the
magnitude of the impulse is (iv) For the same reason
as in (iii), we use interpretation 1: 

so the magnitude of the
impulse is (v) The force is not given, so we use 
interpretation 2: 

so the magnitude of the
impulse is 
8.2 Answers: (a) (b) piece C There are no
external horizontal forces, so the x- and y-components of the total
momentum of the system are both conserved. Both components of
the total momentum are zero before the spring releases, so they
must be zero after the spring releases. Hence,

We are given that 
and You can solve the above equations tovB2y 6 0.vB2x = 0,

vA2y = 0,vA2x 6 0,mA = mB = mC,

Py = 0 = mAvA2y + mBvB2y + mCvC2y

Px = 0 = mAvA2x + mBvB2x + mCvC2x

vC2x 7 0, vC2y 7 0,
50,000 kg # m>s = 50,000 N # s.

-50,000 kg # m>s,11000 kg2125 m>s2 =
1-25 m>s2 -Jx = mv2x - mv1x = 11000 kg2

20,000 N # s.
1-2000 N2110 s2 = -20,000 N # s,

1gFx2av1t2 - t12 =Jx =
20,000 N # s.

20,000 N # s,Jx = 1gFx2av1t2 - t12 = 12000 N2110 s2 =

25,000 N # s.25,000 kg # m>s =
11000 kg2125 m>s2 = -25,000 kg # m>s,

11000 kg2102 -Jx = mv2x - mv1x=
25,000 kg # m>s = 25,000 N # s.
-25,000 kg # m>s,

= 11000 kg2102 - 11000 kg2125 m>s2 =Jx = mv2x - mv1x

K = 1
2 mv2.

p = mv

show that and so the
velocity components of piece C are both positive. Piece C has
speed which is greater than
the speed of either piece A or piece B.
8.3 Answers: (a) elastic, (b) inelastic, (c) completely inelastic
In each case gravitational potential energy is converted to kinetic
energy as the ball falls, and the collision is between the ball and the
ground. In (a) all of the initial energy is converted back to gravita-
tional potential energy, so no kinetic energy is lost in the bounce
and the collision is elastic. In (b) there is less gravitational poten-
tial energy at the end than at the beginning, so some kinetic energy
was lost in the bounce. Hence the collision is inelastic. In (c) the
ball loses all the kinetic energy it has to give, the ball and the
ground stick together, and the collision is completely inelastic.
8.4 Answer: worse After a collision with a water molecule 
initially at rest, the speed of the neutron is 

of its ini-

tial speed, and its kinetic energy is of the initial
value. Hence a water molecule is a worse moderator than a 
carbon atom, for which the corresponding numbers are and

8.5 Answer: no If gravity is the only force acting on the system
of two fragments, the center of mass will follow the parabolic tra-
jectory of a freely falling object. Once a fragment lands, however,
the ground exerts a normal force on that fragment. Hence the net
force on the system has changed, and the trajectory of the center of
mass changes in response.
8.6 Answers: (a) increasing, (b) decreasing From Eqs. (8.37)
and (8.38), the thrust F is equal to where m is the
rocket’s mass and is its acceleration. Because m decreases
with time, if the thrust F is constant, then the acceleration must
increase with time (the same force acts on a smaller mass); if
the acceleration is constant, then the thrust must decrease
with time (a smaller force is all that’s needed to accelerate a
smaller mass).

Bridging Problem
Answers: (a) to the right (b) Elastic

(c) at °
(d) (e) Inelastic
(f) 1.67 m/s in the positive x-direction

2.31 kg # m>s at 149.6°
-30.41.93 m>s

1.00 m>s

dv>dt

dv>dt
m1dv>dt2,

A11
13 B

2 = 0.72.

11
13

A17
19 B

2 = 0.80

11.0 u + 18 u2 ƒ = 17
19ƒ11.0 u - 18 u2>1mn + mw2 ƒ =
ƒ1mn - mw2>

2vC2x
2 + vC2y

2 = 2vA2x
2 + vB2y

2 ,

vC2y = -vB2y 7 0,vC2x = -vA2x 7 0

Answers

t

y

a x

Figure P8.116Consider a thin rod of length L, mass M, and cross-sectional area A.
Let the origin of the coordinates be at the left end of the rod and
the positive x-axis lie along the rod. (a) If the density of
the object is uniform, perform the integration described above to
show that the x-coordinate of the center of mass of the rod is at its
geometrical center. (b) If the density of the object varies linearly
with x—that is, where is a positive constant—calculate
the x-coordinate of the rod’s center of mass.
8.116 .. CALC Use the methods of Challenge Problem 8.115 to
calculate the x- and y-coordinates of the center of mass of a semi-
circular metal plate with uniform density and thickness t. Let the
radius of the plate be a. The mass of the plate is thus 
Use the coordinate system indicated in Fig. P8.116.

M = 1
2rpa2t.

r

ar = ax,

r = M>V


