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7POTENTIAL ENERGY 
AND ENERGY
CONSERVATION

When a diver jumps off a high board into a swimming pool, he hits the
water moving pretty fast, with a lot of kinetic energy. Where does that
energy come from? The answer we learned in Chapter 6 was that the

gravitational force (his weight) does work on the diver as he falls. The diver’s
kinetic energy—energy associated with his motion—increases by an amount
equal to the work done.

However, there is a very useful alternative way to think about work and kinetic
energy. This new approach is based on the concept of potential energy, which is
energy associated with the position of a system rather than its motion. In this
approach, there is gravitational potential energy even while the diver is standing on
the high board. Energy is not added to the earth–diver system as the diver falls, but
rather a storehouse of energy is transformed from one form (potential energy) to
another (kinetic energy) as he falls. In this chapter we’ll see how the work–energy
theorem explains this transformation.

If the diver bounces on the end of the board before he jumps, the bent board
stores a second kind of potential energy called elastic potential energy. We’ll dis-
cuss elastic potential energy of simple systems such as a stretched or compressed
spring. (An important third kind of potential energy is associated with the posi-
tions of electrically charged particles relative to each other. We’ll encounter this
potential energy in Chapter 23.)

We will prove that in some cases the sum of a system’s kinetic and potential
energy, called the total mechanical energy of the system, is constant during the
motion of the system. This will lead us to the general statement of the law of con-
servation of energy, one of the most fundamental and far-reaching principles in
all of science.

? As this mallard glides in to a landing, it descends along a straight-line path at a
constant speed. Does the mallard’s mechanical energy increase, decrease, or
stay the same during the glide? If it increases, where does the added energy
come from? If it decreases, where does the lost energy go?

LEARNING GOALS

By studying this chapter, you will

learn:

• How to use the concept of gravita-

tional potential energy in problems

that involve vertical motion.

• How to use the concept of elastic

potential energy in problems that

involve a moving body attached to a

stretched or compressed spring.

• The distinction between conserva-

tive and nonconservative forces, and

how to solve problems in which both

kinds of forces act on a moving

body.

• How to calculate the properties of a

conservative force if you know the

corresponding potential-energy

function.

• How to use energy diagrams to

understand the motion of an object

moving in a straight line under the

influence of a conservative force.
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7.1 Gravitational Potential Energy
We learned in Chapter 6 that a particle gains or loses kinetic energy because it
interacts with other objects that exert forces on it. During any interaction, the
change in a particle’s kinetic energy is equal to the total work done on the particle
by the forces that act on it.

In many situations it seems as though energy has been stored in a system, to
be recovered later. For example, you must do work to lift a heavy stone over your
head. It seems reasonable that in hoisting the stone into the air you are storing
energy in the system, energy that is later converted into kinetic energy when you
let the stone fall.

This example points to the idea of an energy associated with the position of
bodies in a system. This kind of energy is a measure of the potential or possibility
for work to be done; when a stone is raised into the air, there is a potential for
work to be done on it by the gravitational force, but only if the stone is allowed to
fall to the ground. For this reason, energy associated with position is called
potential energy. Our discussion suggests that there is potential energy associated
with a body’s weight and its height above the ground. We call this gravitational
potential energy (Fig. 7.1).

We now have two ways to describe what happens when a body falls without 
air resistance. One way is to say that gravitational potential energy decreases and 
the falling body’s kinetic energy increases. The other way, which we learned in 
Chapter 6, is that a falling body’s kinetic energy increases because the force of the
earth’s gravity (the body’s weight) does work on the body. Later in this section we’ll
use the work–energy theorem to show that these two descriptions are equivalent.

To begin with, however, let’s derive the expression for gravitational potential
energy. Suppose a body with mass m moves along the (vertical) y-axis, as in Fig. 7.2.
The forces acting on it are its weight, with magnitude and possibly some
other forces; we call the vector sum (resultant) of all the other forces We’ll
assume that the body stays close enough to the earth’s surface that the weight is con-
stant. (We’ll find in Chapter 13 that weight decreases with altitude.) We want to find
the work done by the weight when the body moves downward from a height 
above the origin to a lower height (Fig. 7.2a). The weight and displacement are in
the same direction, so the work done on the body by its weight is positive;

(7.1)

This expression also gives the correct work when the body moves upward and
is greater than (Fig. 7.2b). In that case the quantity is negative, and

is negative because the weight and displacement are opposite in direction.
Equation (7.1) shows that we can express in terms of the values of the

quantity mgy at the beginning and end of the displacement. This quantity, the
product of the weight mg and the height y above the origin of coordinates, is
called the gravitational potential energy,

(gravitational potential energy) (7.2)

Its initial value is and its final value is The change
in is the final value minus the initial value, or We
can express the work done by the gravitational force during the displace-
ment from to as

(7.3)

The negative sign in front of is essential. When the body moves up, y
increases, the work done by the gravitational force is negative, and the gravitational

¢Ugrav

Wgrav = Ugrav,1 - Ugrav,2 = -1Ugrav,2 - Ugrav,12 = -¢Ugrav

y2y1

Wgrav

Ugrav,1.¢Ugrav = Ugrav,2 -Ugrav

Ugrav,2 = mgy2.Ugrav,1 = mgy1

Ugrav = mgy

Ugrav:

Wgrav

Wgrav

1y1 - y22y1

y2

Wgrav = Fs = w1y1 - y22 = mgy1 - mgy2

Wgrav

y2

y1

F
S

other.
w = mg,

7.1 As a basketball descends, gravita-
tional potential energy is converted to
kinetic energy and the basketball’s speed
increases.

y1

y2 2 y1 , 0,
so w does
positive work and
gravitational
potential energy
decreases:

(a) A body moves downward
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(b) A body moves upward
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Motion

DUgrav , 0.

y2 2 y1 . 0,
so w does
negative work
and gravitational
potential energy
increases:
DUgrav . 0.

7.2 When a body moves vertically from
an initial height to a final height the
gravitational force does work and the
gravitational potential energy changes.

wS
y2,y1
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Application Which Egg Has More
Mechanical Energy?
The mechanical energy of each of these identi-
cal eggs has the same value. The mechanical
energy for an egg at rest atop the stone is
purely gravitational potential energy. For the
falling egg, the gravitational potential energy
decreases as the egg descends and the egg’s
kinetic energy increases. If there is negligible
air resistance, the mechanical energy of the
falling egg remains constant.

potential energy increases When the body moves down, y decreases,
the gravitational force does positive work, and the gravitational potential energy
decreases It’s like drawing money out of the bank (decreasing )
and spending it (doing positive work). The unit of potential energy is the joule (J),
the same unit as is used for work.

CAUTION To what body does gravitational potential energy “belong”? It is not correct to
call the “gravitational potential energy of the body.” The reason is that grav-
itational potential energy is a shared property of the body and the earth. The value of

increases if the earth stays fixed and the body moves upward, away from the earth; it
also increases if the body stays fixed and the earth is moved away from it. Notice that the
formula involves characteristics of both the body (its mass m) and the earth
(the value of g). ❙

Ugrav = mgy

Ugrav

Ugrav

Ugrav = mgy

Ugrav(¢Ugrav 6 0).

(¢Ugrav 7 0).

Conservation of Mechanical Energy 
(Gravitational Forces Only)
To see what gravitational potential energy is good for, suppose the body’s weight is
the only force acting on it, so The body is then falling freely with no air
resistance and can be moving either up or down. Let its speed at point be 
and let its speed at be The work–energy theorem, Eq. (6.6), says that the 
total work done on the body equals the change in the body’s kinetic energy:

If gravity is the only force that acts, then from Eq. (7.3),
Putting these together, we get

which we can rewrite as

(if only gravity does work) (7.4)

or

(if only gravity does work) (7.5)

The sum of kinetic and potential energy is called E, the total mechan-
ical energy of the system. By “system” we mean the body of mass m and the
earth considered together, because gravitational potential energy U is a shared
property of both bodies. Then is the total mechanical energy
at and is the total mechanical energy at Equation (7.4)
says that when the body’s weight is the only force doing work on it, 
That is, E is constant; it has the same value at and But since the positions
and are arbitrary points in the motion of the body, the total mechanical energy E
has the same value at all points during the motion:

(if only gravity does work)

A quantity that always has the same value is called a conserved quantity. When
only the force of gravity does work, the total mechanical energy is constant—that
is, it is conserved (Fig. 7.3). This is our first example of the conservation of
mechanical energy.

When we throw a ball into the air, its speed decreases on the way up as kinetic
energy is converted to potential energy; and On the way
back down, potential energy is converted back to kinetic energy and the ball’s
speed increases; and But the total mechanical energy
(kinetic plus potential) is the same at every point in the motion, provided that no
force other than gravity does work on the ball (that is, air resistance must be neg-
ligible). It’s still true that the gravitational force does work on the body as it

¢Ugrav 6 0.¢K 7 0

¢Ugrav 7 0.¢K 6 0

E = K + Ugrav = constant

y2

y1y2.y1

E1 = E2.
y2.E2 = K2 + Ugrav, 2y1

E1 = K1 + Ugrav, 1

K + Ugrav

1
2 mv1

2 + mgy1 = 1
2 mv2

2 + mgy2

K1 + Ugrav, 1 = K2 + Ugrav, 2

¢K = -¢Ugrav  or  K2 - K1 = Ugrav, 1 - Ugrav, 2

Wtot = Wgrav = -¢Ugrav = Ugrav,1 - Ugrav,2.
Wtot = ¢K = K2 - K1.

v2.y2

v1y1

F
S

other � 0.
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Example 7.1 Height of a baseball from energy conservation

You throw a 0.145-kg baseball straight up, giving it an initial
velocity of magnitude Find how high it goes, ignoring
air resistance.

SOLUTION

IDENTIFY and SET UP: After the ball leaves your hand, only grav-
ity does work on it. Hence mechanical energy is conserved, and we
can use Eqs. (7.4) and (7.5). We take point 1 to be where the ball
leaves your hand and point 2 to be where it reaches its maximum
height. As in Fig. 7.2, we take the positive y-direction to be
upward. The ball’s speed at point 1 is at its maxi-
mum height it is instantaneously at rest, so We take the
origin at point 1, so (Fig. 7.4). Our target variable, the dis-
tance the ball moves vertically between the two points, is the dis-
placement

EXECUTE: We have , and 
Then Eq. (7.4), becomes 

As the energy bar graphs in Fig. 7.4 show, this equation says that
the kinetic energy of the ball at point 1 is completely converted to
gravitational potential energy at point 2. We substitute 
and and solve for :

y2 =
v 2

1

2g
=
120.0 m>s22

219.80 m>s22
= 20.4 m

1
2 mv 2

1 = mgy2

y2Ugrav,2 = mgy2

K1 = 1
2 mv 2

1

K1 = Ugrav,2

K1 + Ugrav,1 = K2 + Ugrav,2,1
2mv 2

2 = 0.
K2 =Ugrav,1 = mgy1 = 0y1 = 0,

y2 - y1 = y2 - 0 = y2.

y1 = 0
v2 = 0.

v1 = 20.0 m>s;

20.0 m>s.

y1 5 0

y2

v1 5 20.0 m/s
Energy at y1

Energy at y2

m 5 0.145 kg

v2 5 0
E UgravK5 1

E UgravK5 1

zero

zero

After the ball leaves your 
hand, the only force
acting on it is gravity ...

... so the mechanical energy
E 5 K 1 U stays constant.

7.4 After a baseball leaves your hand, mechanical energy
is conserved.E = K + U

EVALUATE: As a check on our work, use the given value of and our
result for to calculate the kinetic energy at point 1 and the gravita-
tional potential energy at point 2. You should find that these are equal:

and .  Note also that

we could have found the result using Eq. (2.13).
What if we put the origin somewhere else? For example, 

what if we put it 5.0 m below point 1, so that Then
the total mechanical energy at point 1 is part kinetic and part
potential; at point 2 it’s still purely potential because 
You’ll find that this choice of origin yields but again

. In problems like this, you are free to choose
the height at which . The physics doesn’t depend on your
choice, so don’t agonize over it.

Ugrav = 0
y2 - y1 = 20.4 m

y2 = 25.4 m,
v2 = 0.

y1 = 5.0 m?

y2 = v 2
1>2g

Ugrav,2 = mgy2 = 29.0 JK1 = 1
2 mv 2

1 = 29.0 J

y2

v1

moves up or down, but we no longer have to calculate work directly; keeping
track of changes in the value of takes care of this completely.

CAUTION Choose “zero height” to be wherever you like When working with gravita-
tional potential energy, we may choose any height to be If we shift the origin for y,
the values of and change, as do the values of and But this shift has no
effect on the difference in height or on the difference in gravitational potential
energy As the following example shows, the physically
significant quantity is not the value of at a particular point, but only the difference in

between two points. So we can define to be zero at whatever point we choose
without affecting the physics. ❙

UgravUgrav

Ugrav

Ugrav,2 - Ugrav,1 = mg1y2 - y12.
y2 - y1

Ugrav,2.Ugrav,1y2y1

y = 0.

Ugrav

w 5 mgr r

Moving down:
• K increases.
• Ugrav decreases.
• E 5 K 1 Ugrav
  stays the same.

Moving up:
• K decreases.
• Ugrav increases.
• E 5 K 1 Ugrav
  stays the same.

7.3 While this athlete is in midair, only gravity does work on him (if we neglect the
minor effects of air resistance). Mechanical energy E—the sum of kinetic and gravita-
tional potential energy—is conserved.ActivPhysics 5.2: Upward-Moving Elevator

Stops
ActivPhysics 5.3: Stopping a Downward-
Moving Elevator
ActivPhysics 5.6: Skier Speed



7.1 Gravitational Potential Energy 211

Problem-Solving Strategy 7.1 Problems Using Mechanical Energy I

IDENTIFY the relevant concepts: Decide whether the problem
should be solved by energy methods, by using directly,
or by a combination of these. The energy approach is best when
the problem involves varying forces or motion along a curved path
(discussed later in this section). If the problem involves elapsed
time, the energy approach is usually not the best choice because it
doesn’t involve time directly.

SET UP the problem using the following steps:
1. When using the energy approach, first identify the initial and

final states (the positions and velocities) of the bodies in ques-
tion. Use the subscript 1 for the initial state and the subscript 2
for the final state. Draw sketches showing these states.

2. Define a coordinate system, and choose the level at which
Choose the positive y-direction to be upward, as is

assumed in Eq. (7.1) and in the equations that follow from it.
3. Identify any forces that do work on each body and that cannot

be described in terms of potential energy. (So far, this means

y = 0.

gF �
S

maS
any forces other than gravity. In Section 7.2 we’ll see that the
work done by an ideal spring can also be expressed as a change
in potential energy.) Sketch a free-body diagram for each body.

4. List the unknown and known quantities, including the coordi-
nates and velocities at each point. Identify the target variables.

EXECUTE the solution: Write expressions for the initial and final
kinetic and potential energies and If no
other forces do work, use Eq. (7.4). If there are other forces that do
work, use Eq. (7.7). Draw bar graphs showing the initial and final
values of K, and Then solve to find your
target variables.

EVALUATE your answer: Check whether your answer makes
physical sense. Remember that the gravitational work is included
in so do not include it in Wother.¢Ugrav,

E = K + Ugrav.Ugrav, 1,

Ugrav, 2.Ugrav, 1,K2,K1,

When Forces Other Than Gravity Do Work
If other forces act on the body in addition to its weight, then in Fig. 7.2 is
not zero. For the pile driver described in Example 6.4 (Section 6.2), the force
applied by the hoisting cable and the friction with the vertical guide rails are
examples of forces that might be included in The gravitational work 
is still given by Eq. (7.3), but the total work is then the sum of and the 
work done by We will call this additional work so the total work
done by all forces is Equating this to the change in kinetic
energy, we have

(7.6)

Also, from Eq. (7.3), so

which we can rearrange in the form

(if forces other than 
gravity do work) (7.7)

Finally, using the appropriate expressions for the various energy terms, we obtain

(7.8)

The meaning of Eqs. (7.7) and (7.8) is this: The work done by all forces
other than the gravitational force equals the change in the total mechanical
energy of the system, where is the gravitational potential
energy. When is positive, E increases and is greater than

When is negative, E decreases (Fig. 7.5). In the special case
in which no forces other than the body’s weight do work, The total
mechanical energy is then constant, and we are back to Eq. (7.4) or (7.5).

Wother = 0.
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2 mv2
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7.5 As this skydiver moves downward,
the upward force of air resistance does
negative work on him. Hence the
total mechanical energy 
decreases: The skydiver’s speed and
kinetic energy stay the same, while the
gravitational potential energy decreases.U

K

E = K + U
Wother

(if forces other than
gravity do work)
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Example 7.2 Work and energy in throwing a baseball

In Example 7.1 suppose your hand moves upward by 0.50 m while
you are throwing the ball. The ball leaves your hand with an
upward velocity of (a) Find the magnitude of the force
(assumed constant) that your hand exerts on the ball. (b) Find the
speed of the ball at a point 15.0 m above the point where it leaves
your hand. Ignore air resistance.

SOLUTION

IDENTIFY and SET UP: In Example 7.1 only gravity did work.
Here we must include the nongravitational, “other” work done by
your hand. Figure 7.6 shows a diagram of the situation, including a
free-body diagram for the ball while it is being thrown. We let
point 1 be where your hand begins to move, point 2 be where the
ball leaves your hand, and point 3 be where the ball is 15.0 m
above point 2. The nongravitational force of your hand acts only
between points 1 and 2. Using the same coordinate system as in
Example 7.1, we have and 
The ball starts at rest at point 1, so and the ball’s speed as
it leaves your hand is Our target variables are 
(a) the magnitude F of the force of your hand and (b) the ball’s
velocity at point 3.

EXECUTE: (a) To determine F, we’ll first use Eq. (7.7) to calculate
the work done by this force. We have

Ugrav,1 = mgy1 = 10.145 kg219.80 m>s2 21-0.50 m2 = -0.71 J

K1 = 0

Wother

v3y

v2 = 20.0 m>s.
v1 = 0,

y3 = 15.0 m.y2 = 0,y1 = -0.50 m,

F
S

20.0 m>s.

(Don’t worry that is less than zero; all that matters is the
difference in potential energy from one point to another.) From 
Eq. (7.7),

Ugrav,1

Ugrav,2 = mgy2 = 10.145 kg219.80 m>s22102 = 0

K2 = 1
2 mv 2

2 = 1
2 10.145 kg2120.0 m>s22 = 29.0 J

(a)

E UgravK5 1

E UgravK5

5

1

1

zero

After the ball leaves your 
hand, the only force
acting on it is gravity ...

As you throw the ball,
you do positive work
Wother on it ...

... so the total
mechanical energy
E increases.

... so the total mechan-
ical energy E 5 K 1 U
stays constant.

zero

E UgravK

(b)

w

F

x

y

0.50 m

y2 � 0

y1 5 20.50 m

v1 5 0

y3 5 15.0 m
v3

v2 5 20.0 m/s

7.6 (a) Applying energy ideas to a ball thrown vertically
upward. (b) Free-body diagram for the ball as you throw it.

= 129.0 J + 0 J2 - 21.3 J = 7.7 J

K3 = 1K2 + Ugrav,22 - Ugrav,3

Ugrav,3 = mgy3 = 10.145 kg219.80 m>s22115.0 m2 = 21.3 J

K2 + Ugrav,2 = K3 + Ugrav,3

Since we find

The plus-or-minus sign reminds us that the ball passes point 3 
on the way up and again on the way down. The total mechanical
energy E is constant and equal to while 
the ball is in free fall, and the potential energy at point 3 is

whether the ball is moving up or down.
So at point 3, the ball’s kinetic energy (and therefore its speed)
don’t depend on the direction the ball is moving. The velocity 
is positive when the ball is moving up and negative

when it is moving down; the speed is in
either case.

EVALUATE: In Example 7.1 we found that the ball reaches a maxi-
mum height At that point all of the kinetic energy it
had when it left your hand at has been converted to gravita-
tional potential energy. At the ball is about three-
fourths of the way to its maximum height, so about three-fourths of
its mechanical energy should be in the form of potential energy.
(The energy bar graphs in Fig. 7.6a show this.) Can you show that
this is true from our results for and Ugrav,3?K3

y = 15.0 m,
y = 0

y = 20.4 m.

10 m>sv31-10 m>s2
1+10 m>s2

v3y

K3

Ugrav,3 = mgy3 = 21.3 J

K2 + Ugrav,2 = 29.0 J

v3y = �
B

2K3

m
= �
B

217.7 J2

0.145 kg
= �10 m>s

K3 = 1
2 mv 2

3y ,

Gravitational Potential Energy for Motion Along a Curved Path
In our first two examples the body moved along a straight vertical line. What
happens when the path is slanted or curved (Fig. 7.7a)? The body is acted on by
the gravitational force and possibly by other forces whose resultant wewS � mgS

= 129.0 J - 02 + 30 - 1-0.71 J24 = 29.7 J

Wother = 1K2 - K12 + 1Ugrav,2 - Ugrav,12

K1 + Ugrav,1 + Wother = K2 + Ugrav,2

But since is constant and upward, the work done by equals the
force magnitude times the displacement: . So

This is more than 40 times the weight of the ball (1.42 N).
(b) To find , note that between points 2 and 3 only gravity

acts on the ball. So between these points mechanical energy is
conserved and From Eq. (7.4), we can solve for 
and from that solve for :v3y

K3Wother = 0.

v3y

F =
Wother

y2 - y1
=

29.7 J

0.50 m
= 59 N

Wother = F1y2 - y12
F
S

F
S
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Conceptual Example 7.3 Energy in projectile motion

A batter hits two identical baseballs with the same initial speed and
from the same initial height but at different initial angles. Prove
that both balls have the same speed at any height h if air resistance
can be neglected.

SOLUTION

The only force acting on each ball after it is hit is its weight. Hence
the total mechanical energy for each ball is constant. Figure 7.8
shows the trajectories of two balls batted at the same height with
the same initial speed, and thus the same total mechanical energy,
but with different initial angles. At all points at the same height the
potential energy is the same. Thus the kinetic energy at this height
must be the same for both balls, and the speeds are the same.

At y 5 h

At y 5 0

y

h

x
O

zero

E K5 1

E Ugrav

Ugrav

K5 1

7.8 For the same initial speed and initial height, the speed of a
projectile at a given elevation h is always the same, neglecting air
resistance.

Example 7.4 Speed at the bottom of a vertical circle

Your cousin Throckmorton skateboards from rest down a curved,
frictionless ramp. If we treat Throcky and his skateboard as a parti-
cle, he moves through a quarter-circle with radius 
(Fig. 7.9). Throcky and his skateboard have a total mass of 
25.0 kg. (a) Find his speed at the bottom of the ramp. (b) Find the
normal force that acts on him at the bottom of the curve.

SOLUTION

IDENTIFY: We can’t use the constant-acceleration equations of
Chapter 2 because Throcky’s acceleration isn’t constant; the slope
decreases as he descends. Instead, we’ll use the energy approach.
Throcky moves along a circular arc, so we’ll also use what we
learned about circular motion in Section 5.4.

R = 3.00 m

SET UP: The only forces on Throcky are his weight and the 
normal force exerted by the ramp (Fig. 7.9b). Although acts all 
along the path, it does zero work because is perpendicular to
Throcky’s displacement at every point. Hence and
mechanical energy is conserved. We take point 1 at the starting point
and point 2 at the bottom of the ramp, and we let be at the bot-
tom of the ramp (Fig. 7.9a). We take the positive y-direction upward;
then and Throcky starts at rest at the top, so 
In part (a) our target variable is his speed at the bottom; in part (b)
the target variable is the magnitude n of the normal force at point 2.
To find n, we’ll use Newton’s second law and the relation .

Continued

a = v2>R

v2

v1 = 0.y2 = 0.y1 = R

y = 0

Wother = 0
nS

nSnS

call To find the work done by the gravitational force during this displace-
ment, we divide the path into small segments Fig. 7.7b shows a typical seg-
ment. The work done by the gravitational force over this segment is the scalar
product of the force and the displacement. In terms of unit vectors, the force is

and the displacement is so the work done
by the gravitational force is

The work done by gravity is the same as though the body had been displaced ver-
tically a distance with no horizontal displacement. This is true for every seg-
ment, so the total work done by the gravitational force is multiplied by the
total vertical displacement 

This is the same as Eq. (7.1) or (7.3), in which we assumed a purely vertical path.
So even if the path a body follows between two points is curved, the total work
done by the gravitational force depends only on the difference in height between
the two points of the path. This work is unaffected by any horizontal motion that
may occur. So we can use the same expression for gravitational potential energy
whether the body’s path is curved or straight.

Wgrav = -mg1y2 - y12 = mgy1 - mgy2 = Ugrav,1 - Ugrav,2

1y2 - y12:
-mg

¢y,

wS # ¢ sS � -mg≥N # 1¢xıN � ¢y≥N2 = -mg¢y

¢ sS � ¢xıN � ¢y≥N,wS � mgS � -mg≥N

¢ sS;
F
S

other.

The work done by the gravitational
 force depends only on the vertical
   component of displacement Dy.

In this case
Dy is negative.

y1

y2
O

(a)

Fother
S

w 5 mg
S S

(b)

Dx

Dy

w 5 mgS S

DsS

7.7 Calculating the change in gravita-
tional potential energy for a displacement
along a curved path.
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EXECUTE: (a) The various energy quantities are

From conservation of mechanical energy, Eq. (7.4),

This answer doesn’t depend on the ramp being circular; Throcky
will have the same speed at the bottom of any ramp of
height R, no matter what its shape.

(b) To find n at point 2 using Newton’s second law, we need the
free-body diagram at that point (Fig. 7.9b). At point 2, Throcky is 
moving at speed in a circle of radius R; his acceleration
is toward the center of the circle and has magnitude

arad =
v 2

2

R
=

2gR

R
= 2g

v2 = 12gR

v2 = 12gR

= 2219.80 m>s2213.00 m2 = 7.67 m>s

v2 = 22gR

 0 + mgR = 1
2mv 2

2 + 0

K1 + Ugrav,1 = K2 + Ugrav,2

Ugrav,2 = 0K2 = 1
2mv 2

2

Ugrav,1 = mgRK1 = 0

The y-component of Newton’s second law is

At point 2 the normal force is three times Throcky’s weight. This
result doesn’t depend on the radius R of the ramp. We saw in
Examples 5.9 and 5.23 that the magnitude of n is the apparent
weight, so at the bottom of the curved part of the ramp Throcky
feels as though he weighs three times his true weight mg. But when
he reaches the horizontal part of the ramp, immediately to the right
of point 2, the normal force decreases to and thereafter
Throcky feels his true weight again. Can you see why?

EVALUATE: This example shows a general rule about the role of
forces in problems in which we use energy techniques: What mat-
ters is not simply whether a force acts, but whether that force does
work. If the force does no work, like the normal force here, then
it does not appear in Eqs. (7.4) and (7.7).

nS

w = mg

= 3125.0 kg219.80 m>s22 = 735 N

n = w + 2mg = 3mg
aFy = n + 1-w2 = marad = 2mg

At each point, the normal force
acts perpendicular to the direction
of Throcky’s displacement, so only
the force of gravity (w) does the work
on him.

R 5 3.00 m

Ov1 5 0

v2

(a)

Reference level

Point 1

Point 2

zero

zero

E K5 1

E Ugrav

Ugrav

K5 1

w

w

w

w
w

R

n 5 0

n

n
n n

(b)

Point 1

Point 2

At point   2

At point 1

7.9 (a) Throcky skateboarding down a frictionless circular ramp. The total mechanical energy is constant. (b) Free-body diagrams for
Throcky and his skateboard at various points on the ramp.

Example 7.5 A vertical circle with friction

Suppose that the ramp of Example 7.4 is not frictionless, and that
Throcky’s speed at the bottom is only not the 
we found there. What work was done on him by the friction force?

SOLUTION

IDENTIFY and SET UP: Figure 7.10 shows that again the normal
force does no work, but now there is a friction force that does do
work . Hence the nongravitational work done on Throcky
between points 1 and 2 is equal to and is not zero. We use the
same coordinate system and the same initial and final points as in
Example 7.4. Our target variable is , which we’ll find
using Eq. (7.7).

EXECUTE: The energy quantities are

Ugrav,2 = 0

K2 = 1
2 mv 2

2 = 1
2125.0 kg216.00 m>s22 = 450 J

Ugrav,1 = mgR = 125.0 kg219.80 m>s2213.00 m2 = 735 J

K1 = 0

Wƒ = Wother

Wƒ

WotherWƒ

ƒ
S

7.67 m>s6.00 m>s,

Point 1

Point 2f

f

f

f

w

w

w

w
w

R 5 3.00 m

f 5 0

n 5 0

n

n
n n

zero

zero

E K5 1E Ugrav UgravK5 1

The friction force
( f ) does negative work on
Throcky as he descends,
so the total mechanical
energy decreases.

At point   2At point 1

7.10 Energy bar graphs and free-body diagrams for Throcky
skateboarding down a ramp with friction.
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Example 7.6 An inclined plane with friction

We want to slide a 12-kg crate up a 2.5-m-long ramp inclined at .
A worker, ignoring friction, calculates that he can do this by giving it
an initial speed of at the bottom and letting it go. But friction
is not negligible; the crate slides only 1.6 m up the ramp, stops, and
slides back down (Fig. 7.11a). (a) Find the magnitude of the friction
force acting on the crate, assuming that it is constant. (b) How fast is
the crate moving when it reaches the bottom of the ramp?

SOLUTION

IDENTIFY and SET UP: The friction force does work on the crate as
it slides. The first part of the motion is from point 1, at the bottom
of the ramp, to point 2, where the crate stops instantaneously

. In the second part of the motion, the crate returns to 
the bottom of the ramp, which we’ll also call point 3 (Fig. 7.11a).
We take the positive y-direction upward. We take (and
hence ) to be at ground level (point 1), so that 

and We are given 
In part (a) our target variable is the magnitude of the

friction force as the crate slides up; as in Example 7.2, we’ll find
this using the energy approach. In part (b) our target variable is 
the crate’s speed at the bottom of the ramp. We’ll calculate the
work done by friction as the crate slides back down, then use the
energy approach to find .v3

v3,

ƒ,5.0 m>s.
v1 =y3 = 0.y2 = 11.6 m2sin 30° = 0.80 m,

y1 = 0,Ugrav = 0
y = 0

1v2 = 02

5.0 m>s

30° EXECUTE: (a) The energy quantities are

Here Using Eq. (7.7), we finds = 1.6 m.

Wother = -ƒs

Ugrav,2 = 112 kg219.8 m>s2210.80 m2 = 94 J

K2 = 0

Ugrav,1 = 0

K1 = 1
2112 kg215.0 m>s22 = 150 J

The force of friction does negative work on
the crate as it moves, so the total mechanical
energy E 5 K 1 Ugrav decreases.

The crate is moving
at speed v3 when it
returns to point 3.

The crate slides up from point
1 to point 2, then back down
to its starting position
(point 3).

(a)

(b)

2.5 m

1.6 m

v1 5 5.0 m/s

v2 5 0

0.80 m
30°

Point 1  , 3

Point
2

zero

zero

E K5 1E Ugrav Ugrav

zero

E K5 1UgravK5 1

At point   2 At point 3At point 1

7.11 (a) A crate slides partway up the ramp, stops, and slides
back down. (b) Energy bar graphs for points 1, 2, and 3.

 ƒ =
Wother

s
=

56 J

1.6 m
= 35 N

= 10 + 94 J2 - 1150 J + 02 = -56 J = -ƒs

Wother = -ƒs = 1K2 + Ugrav,22 - 1K1 + Ugrav,12

K1 + Ugrav,1 + Wother = K2 + Ugrav,2

The friction force of 35 N, acting over 1.6 m, causes the mechani-
cal energy of the crate to decrease from 150 J to 94 J (Fig. 7.11b).

(b) As the crate moves from point 2 to point 3, the work done
by friction has the same negative value as from point 1 to point 2.
(The friction force and the displacement both reverse direction but
have the same magnitudes.) The total work done by friction
between points 1 and 3 is therefore

From part (a), and Equation (7.7) then
gives

Ugrav,1 = 0.K1 = 150 J

Wother = Wfric = -2ƒs = -2156 J2 = -112 J

= 150 J + 0 - 0 + 1-112 J2 = 38 J

K3 = K1 + Ugrav,1 - Ugrav,3 + Wother

K1 + Ugrav,1 + Wother = K3 + Ugrav,3

The crate returns to the bottom of the ramp with only 38 J of the
original 150 J of mechanical energy (Fig. 7.11b). Since 

EVALUATE: Energy was lost due to friction, so the crate’s speed
when it returns to the bottom of the ramp is less than

the speed at which it left that point. In part (b) we
applied Eq. (7.7) to points 1 and 3, considering the round trip as a
whole. Alternatively, we could have considered the second part of
the motion by itself and applied Eq. (7.7) to points 2 and 3. Try it;
do you get the same result for v3?

v1 = 5.0 m>s
v3 = 2.5 m>s

v3 =
B

2K3

m
=
B

2138 J2

12 kg
= 2.5 m>s

K3 = 1
2 mv 2

3,

From Eq. (7.7),

The work done by the friction force is and the total
mechanical energy decreases by 285 J.

EVALUATE: Our result for is negative. Can you see from the
free-body diagrams in Fig. 7.10 why this must be so?

Wƒ

-285 J,

= 450 J + 0 - 0 - 735 J = -285 J

Wƒ = Wother = K2 + Ugrav,2 - K1 - Ugrav,1

It would be very difficult to apply Newton’s second law,
directly to this problem because the normal and friction

forces and the acceleration are continuously changing in both mag-
nitude and direction as Throcky descends. The energy approach, by
contrast, relates the motions at the top and bottom of the ramp with-
out involving the details of the motion in between.

gF �
S

maS,
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7.2 Elastic Potential Energy
There are many situations in which we encounter potential energy that is not
gravitational in nature. One example is a rubber-band slingshot. Work is done
on the rubber band by the force that stretches it, and that work is stored in the
rubber band until you let it go. Then the rubber band gives kinetic energy to the
projectile.

This is the same pattern we saw with the pile driver in Section 7.1: Do work
on the system to store energy, which can later be converted to kinetic energy.
We’ll describe the process of storing energy in a deformable body such as a
spring or rubber band in terms of elastic potential energy (Fig. 7.12). A body is
called elastic if it returns to its original shape and size after being deformed.

To be specific, we’ll consider storing energy in an ideal spring, like the ones we
discussed in Section 6.3. To keep such an ideal spring stretched by a distance x, we
must exert a force where k is the force constant of the spring. The ideal
spring is a useful idealization because many elastic bodies show this same direct
proportionality between force and displacement x, provided that x is sufficiently
small.

Let’s proceed just as we did for gravitational potential energy. We begin with
the work done by the elastic (spring) force and then combine this with the
work–energy theorem. The difference is that gravitational potential energy is a
shared property of a body and the earth, but elastic potential energy is stored just
in the spring (or other deformable body).

Figure 7.13 shows the ideal spring from Fig. 6.18, with its left end held sta-
tionary and its right end attached to a block with mass m that can move along the
x-axis. In Fig. 7.13a the body is at when the spring is neither stretched nor
compressed. We move the block to one side, thereby stretching or compressing
the spring, and then let it go. As the block moves from one position to another
position how much work does the elastic (spring) force do on the block?

We found in Section 6.3 that the work we must do on the spring to move one
end from an elongation to a different elongation is

(work done on a spring)

where k is the force constant of the spring. If we stretch the spring farther, we do
positive work on the spring; if we let the spring relax while holding one end, we
do negative work on it. We also saw that this expression for work is still correct if
the spring is compressed, not stretched, so that or or both are negative. Now
we need to find the work done by the spring. From Newton’s third law the two
quantities of work are just negatives of each other. Changing the signs in this
equation, we find that in a displacement from to the spring does an amount
of work given by

(work done by a spring)Wel = 1
2 kx1

2 - 1
2 kx2

2

Wel

x2x1

x2x1

W = 1
2 kx2

2 - 1
2 kx1

2

x2x1

x2,
x1

x = 0

F
S

F = kx,

Test Your Understanding of Section 7.1 The figure shows two differ-
ent frictionless ramps. The heights and are the same for both ramps. If a
block of mass m is released from rest at the left-hand end of each ramp, which block
arrives at the right-hand end with the greater speed? (i) block I; (ii) block II; (iii) the
speed is the same for both blocks.

y2y1

Block I Block II m
m

y1 y1

y2 y2
❙

7.12 The Achilles tendon, which runs
along the back of the ankle to the heel
bone, acts like a natural spring. When it
stretches and then relaxes, this tendon
stores and then releases elastic potential
energy. This spring action reduces the
amount of work your leg muscles must do
as you run.

ActivPhysics 5.4: Inverse Bungee Jumper
ActivPhysics 5.5: Spring-Launched Bowler
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The subscript “el” stands for elastic. When and are both positive and
(Fig. 7.13b), the spring does negative work on the block, which moves

in the while the spring pulls on it in the The spring
stretches farther, and the block slows down. When and are both positive
and (Fig. 7.13c), the spring does positive work as it relaxes and the
block speeds up. If the spring can be compressed as well as stretched, or or
both may be negative, but the expression for is still valid. In Fig. 7.13d, both

and are negative, but is less negative than the compressed spring
does positive work as it relaxes, speeding the block up.

Just as for gravitational work, we can express the work done by the spring in
terms of a given quantity at the beginning and end of the displacement. This
quantity is and we define it to be the elastic potential energy:

(elastic potential energy) (7.9)

Figure 7.14 is a graph of Eq. (7.9). The unit of is the joule (J), the unit used
for all energy and work quantities; to see this from Eq. (7.9), recall that the units
of k are and that 

We can use Eq. (7.9) to express the work done on the block by the elastic
force in terms of the change in elastic potential energy:

(7.10)

When a stretched spring is stretched farther, as in Fig. 7.13b, is negative
and increases; a greater amount of elastic potential energy is stored in the
spring. When a stretched spring relaxes, as in Fig. 7.13c, x decreases, is
positive, and decreases; the spring loses elastic potential energy. Negative
values of x refer to a compressed spring. But, as Fig. 7.14 shows, is positive
for both positive and negative x, and Eqs. (7.9) and (7.10) are valid for both
cases. The more a spring is compressed or stretched, the greater its elastic
potential energy.

CAUTION Gravitational potential energy vs. elastic potential energy An important differ-
ence between gravitational potential energy and elastic potential energy 

is that we do not have the freedom to choose to be wherever we wish.
To be consistent with Eq. (7.9), must be the position at which the spring is neither
stretched nor compressed. At that position, its elastic potential energy and the force that it
exerts are both zero. ❙

The work–energy theorem says that no matter what kind of
forces are acting on a body. If the elastic force is the only force that does work on
the body, then

The work–energy theorem, , then gives us

(if only the elastic force does work) (7.11)

Here is given by Eq. (7.9), so

(7.12)

In this case the total mechanical energy —the sum of kinetic and
elastic potential energy—is conserved. An example of this is the motion of the

E = K + Uel

1
2 mv1

2 + 1
2 kx1

2 = 1
2 mv2

2 + 1
2 kx2

2

Uel

K1 + Uel, 1 = K2 + Uel, 2

Wtot = K2 - K1

Wtot = Wel = Uel, 1 - Uel, 2

Wtot = K2 - K1,

x = 0
x = 0Uel = 1

2 kx2
Ugrav = mgy

Uel

Uel

Wel

Uel

Wel

Wel = 1
2 kx1

2 - 1
2 kx2

2 = Uel, 1 - Uel, 2 = -¢Uel

Wel

1 N # m = 1 J.N>m

Uel

Uel = 1
2 kx2

1
2 kx2,

x1;x2x2x1

Wel

x2x1

x2 6 x1

x2x1

-x-direction.+x-direction
x2 7 x1

x2x1

Here the spring is
neither stretched
nor compressed.

As the spring stretches, it does negative
work on the block.

As the spring relaxes, it does positive
work on the block.

A compressed spring
also does positive
work on the block as
it relaxes.

(a)

(b)

(c)

(d)

x 5 0

x
O

m

x
O

x1

x2

Fspring
r

sS

m

x1

x
O

x2

Fspring
r

sS

m

x1

x
O

x2

Fspring
S

sS

m

7.13 Calculating the work done by a
spring attached to a block on a horizontal
surface. The quantity x is the extension or
compression of the spring.

Uel

Spring is
compressed:
x , 0.

x

O Spring is
stretched:
x . 0.

7.14 The graph of elastic potential
energy for an ideal spring is a parabola: 

where x is the extension or
compression of the spring. Elastic poten-
tial energy is never negative.Uel

Uel = 1
2 kx2,

(if only the elastic 
force does work)
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block in Fig. 7.13, provided the horizontal surface is frictionless so that no force
does work other than that exerted by the spring.

For Eq. (7.12) to be strictly correct, the ideal spring that we’ve been dis-
cussing must also be massless. If the spring has a mass, it also has kinetic energy
as the coils of the spring move back and forth. We can neglect the kinetic energy
of the spring if its mass is much less than the mass m of the body attached to the
spring. For instance, a typical automobile has a mass of 1200 kg or more. The
springs in its suspension have masses of only a few kilograms, so their mass can
be neglected if we want to study how a car bounces on its suspension.

Situations with Both Gravitational 
and Elastic Potential Energy
Equations (7.11) and (7.12) are valid when the only potential energy in the system
is elastic potential energy. What happens when we have both gravitational and elas-
tic forces, such as a block attached to the lower end of a vertically hanging spring?
And what if work is also done by other forces that cannot be described in terms of
potential energy, such as the force of air resistance on a moving block? Then the
total work is the sum of the work done by the gravitational force the work 
done by the elastic force and the work done by other forces 

Then the work–energy theorem gives

The work done by the gravitational force is and the
work done by the spring is Hence we can rewrite the
work–energy theorem for this most general case as

(valid in 
general)

(7.13)

or, equivalently,

(valid in general) (7.14)

where is the sum of gravitational potential
energy and elastic potential energy. For short, we call U simply “the potential
energy.”

Equation (7.14) is the most general statement of the relationship among
kinetic energy, potential energy, and work done by other forces. It says:

The work done by all forces other than the gravitational force or elastic force
equals the change in the total mechanical energy of the system,
where is the sum of the gravitational potential energy and the
elastic potential energy.

U � Ugrav � Uel

E � K � U

U = Ugrav + Uel = mgy + 1
2 kx2

K1 + U1 + Wother = K2 + U2

K1 + Ugrav, 1 + Uel, 1 + Wother = K2 + Ugrav, 2 + Uel, 2

Wel = Uel, 1 - Uel, 2 .
Wgrav = Ugrav, 1 - Ugrav, 2

Wgrav + Wel + Wother = K2 - K1

Wtot = Wgrav + Wel + Wother .
1Wother2:1Wel2,

1Wgrav2,

The “system” is made up of the body of mass m, the earth with which it interacts
through the gravitational force, and the spring of force constant k.

If is positive, increases; if is negative, E decreases.
If the gravitational and elastic forces are the only forces that do work on the body,
then and the total mechanical energy (including both gravitational 
and elastic potential energy) is conserved. (You should compare Eq. (7.14) to 
Eqs. (7.7) and (7.8), which describe situations in which there is gravitational
potential energy but no elastic potential energy.)

Trampoline jumping (Fig. 7.15) involves transformations among kinetic energy,
elastic potential energy, and gravitational potential energy. As the jumper descends
through the air from the high point of the bounce, gravitational potential energy

decreases and kinetic energy K increases. Once the jumper touches the tram-
poline, some of the mechanical energy goes into elastic potential energy storedUel

Ugrav

Wother = 0

WotherE = K + UWother

Difference in nose-to-tail length

Application Elastic Potential Energy
of a Cheetah
When a cheetah gallops, its back flexes and
extends by an exceptional amount. Flexion of
the back stretches elastic tendons and mus-
cles along the top of the spine and also com-
presses the spine, storing mechanical energy.
When the cheetah launches into its next
bound, this energy helps to extend the spine,
enabling the cheetah to run more efficiently.

7.15 Trampoline jumping involves an
interplay among kinetic energy, gravita-
tional potential energy, and elastic poten-
tial energy. Due to air resistance and
frictional forces within the trampoline,
mechanical energy is not conserved. That’s
why the bouncing eventually stops unless
the jumper does work with his or her legs
to compensate for the lost energy.
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in the trampoline’s springs. Beyond a certain point the jumper’s speed and kinetic
energy K decrease while continues to decrease and continues to increase.
At the low point the jumper comes to a momentary halt at the lowest
point of the trajectory and the springs are maximally stretched

. The springs then convert their energy back into K and ,
propelling the jumper upward.

Ugrav1Uel is maximum2
1Ugrav is minimum2

1K = 02
UelUgrav

Example 7.7 Motion with elastic potential energy

A glider with mass sits on a frictionless horizontal
air track, connected to a spring with force constant 
You pull on the glider, stretching the spring 0.100 m, and release it
from rest. The glider moves back toward its equilibrium position

What is its x-velocity when 

SOLUTION

IDENTIFY and SET UP: As the glider starts to move, elastic poten-
tial energy is converted to kinetic energy. The glider remains at the
same height throughout the motion, so gravitational potential
energy is not a factor and Figure 7.16 shows our
sketches. Only the spring force does work on the glider, so

and we may use Eq. (7.11). We designate the pointWother = 0

U = Uel = 1
2kx2.

x = 0.080 m?1x = 02.

k = 5.00 N>m.
m = 0.200 kg where the glider is released as point 1 and

as point 2. We are given our target variable
is 

EXECUTE: The energy quantities are

We use Eq. (7.11) to solve for and then find :

We choose the negative root because the glider is moving in the
. Our answer is 

EVALUATE: Eventually the spring will reverse the glider’s motion,
pushing it back in the �x-direction (see Fig. 7.13d). The solution

tells us that when the glider passes through
on this return trip, its speed will be , just as

when it passed through this point while moving to the left.
0.30 m>sx = 0.080 m

v2x = +0.30 m>s

v2x = -0.30 m>s.-x-direction

 v2x = �
B

2K2

m
= �
B

210.0090 J2

0.200 kg
= �0.30 m>s

 K2 = K1 + U1 - U2 = 0 + 0.0250 J - 0.0160 J = 0.0090 J

v2xK2

 U2 = 1
2 kx  2

2 = 1
215.00 N>m210.080 m22 = 0.0160 J

 K2 = 1
2 mv2

2
x

 U1 = 1
2 kx  2

1 = 1
215.00 N>m210.100 m22 = 0.0250 J

 K1 = 1
2 mv 2

1x = 1
210.200 kg21022 = 0

v2x.
v1x = 0;x2 = 0.080 m
1that is, x1 = 0.100 m2

Problem-Solving Strategy 7.2 Problems Using Mechanical Energy II

Problem-Solving Strategy 7.1 (Section 7.1) is equally useful in
solving problems that involve elastic forces as well as gravitational
forces. The only new wrinkle is that the potential energy U now
includes the elastic potential energy where x is the dis-Uel = 1

2 kx2,

placement of the spring from its unstretched length. The work done
by the gravitational and elastic forces is accounted for by their
potential energies; the work done by other forces, must still
be included separately.

Wother,

7.16 Our sketches and energy bar graphs for this problem.

Example 7.8 Motion with elastic potential energy and work done by other forces

Suppose the glider in Example 7.7 is initially at rest at with
the spring unstretched. You then push on the glider with a constant
force in the �x-direction. What is the
glider’s velocity when it has moved to x = 0.100 m?

1magnitude 0.610 N2F
S

x = 0, SOLUTION

IDENTIFY and SET UP: Although the force you apply is con-
stant, the spring force isn’t, so the acceleration of the glider won’t
be constant. Total mechanical energy is not conserved because of

Continued

F
S
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the work done by the force so we must use the generalized
energy relationship given by Eq. (7.13). As in Example 7.7, we
ignore gravitational potential energy because the glider’s height
doesn’t change. Hence we again have This time,
we let point 1 be at where the velocity is and let
point 2 be at The glider’s displacement is then

. Our target variable is the velocity
at point 2.

EXECUTE: The force is constant and in the same direction as the
displacement, so the work done by this force is FΔx. Then the
energy quantities are

The initial total mechanical energy is zero; the work done by 
increases the total mechanical energy to 0.0610 J, of which

is elastic potential energy. The remainder is kinetic
energy. From Eq. (7.13),

K2 = K1 + U1 + Wother - U2

K1 + U1 + Wother = K2 + U2

U2 = 0.0250 J

F
S

Wother = F¢x = 10.610 N210.100 m2 = 0.0610 J

U2 = 1
2 kx 2

2 = 1
2 15.00 N>m210.100 m22 = 0.0250 J

K2 = 1
2mv2

2
x

U1 = 1
2 kx 2

1 = 0

K1 = 0

F
S

v2x,¢x = x2 - x1 = 0.100 m
x = 0.100 m.

v1x = 0,x1 = 0,
U = Uel = 1

2kx2.

F
S

,

We choose the positive square root because the glider is moving in
the �x-direction.

EVALUATE: To test our answer, think what would be different if we
disconnected the glider from the spring. Then only would do
work, there would be zero elastic potential energy at all times, and
Eq. (7.13) would give us

Our answer is less than because the spring
does negative work on the glider as it stretches (see Fig. 7.13b).

If you stop pushing on the glider when it reaches 
only the spring force does work on it thereafter. Hence for

the total mechanical energy 
is constant. As the spring continues to stretch, the glider slows down
and the kinetic energy K decreases as the potential energy increases.
The glider comes to rest at some point at which the kinetic
energy is zero and the potential energy equals the
total mechanical energy 0.0610 J. Can you show that 
(It moves an additional 0.056 m after you stop pushing.) If there is no
friction, will the glider remain at rest?

x3 = 0.156 m?
U = Uel = 1

2kx 2
3

x = x3,

E = K + U = 0.0610 Jx 7 0.100 m,

x = 0.100 m,

0.78 m>sv2x = 0.60 m>s

v2x =
B

2K2

m
=
B

210.0610 J2

0.200 kg
= 0.78 m>s

K2 = K1 + Wother = 0 + 0.0610 J

F
S

v2x =
B

2K2

m
=
B

210.0360 J2

0.200 kg
= 0.60 m>s

= 0 + 0 + 0.0610 J - 0.0250 J = 0.0360 J

Example 7.9 Motion with gravitational, elastic, and friction forces

A 2000-kg elevator with broken cables in a test rig is
falling at when it contacts a cushioning spring at the bot-
tom of the shaft. The spring is intended to stop the elevator, com-
pressing 2.00 m as it does so (Fig. 7.17). During the motion a
safety clamp applies a constant 17,000-N frictional force to the
elevator. What is the necessary force constant k for the spring?

4.00 m>s
119,600-N2 SOLUTION

IDENTIFY and SET UP: We’ll use the energy approach to determine k,
which appears in the expression for elastic potential energy. This prob-
lem involves both gravitational and elastic potential energy. Total
mechanical energy is not conserved because the friction force does
negative work on the elevator. We’ll therefore use the most gen-
eral form of the energy relationship, Eq. (7.13). We take point 1 as the
position of the bottom of the elevator when it contacts the spring, and
point 2 as its position when it stops. We choose the origin to be at point
1, so and With this choice the coordinate of
the upper end of the spring after contact is the same as the coordinate 
of the elevator, so the elastic potential energy at any point between
points 1 and 2 is The gravitational potential energy is

as usual. We know the initial and final speeds of the ele-
vator and the magnitude of the friction force, so the only unknown is
the force constant k (our target variable).

EXECUTE: The elevator’s initial speed is so its ini-
tial kinetic energy is

The elevator stops at point 2, so At point 1 the potential
energy is zero; is zero because and

because the spring is uncompressed. At point 2 there is
both gravitational and elastic potential energy, so

U2 = mgy2 + 1
2ky 2

2

Uel = 0
y1 = 0,UgravU1 = Ugrav + Uel

K2 = 0.

K1 = 1
2 mv 2

1 = 1
2 12000 kg214.00 m>s22 = 16,000 J

v1 = 4.00 m>s,

Ugrav = mgy
Uel = 1

2ky2.

y2 = -2.00 m.y1 = 0

Wother

2.00 m

w5mg

v1 5
4.00 m/s

m 5
2000 kg

f 5 17,000 N

v2 5 0

Point 1

Point 2

7.17 The fall of an elevator is stopped by a spring and by a con-
stant friction force.
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7.3 Conservative and Nonconservative Forces
In our discussions of potential energy we have talked about “storing” kinetic
energy by converting it to potential energy. We always have in mind that later we
may retrieve it again as kinetic energy. For example, when you throw a ball up in
the air, it slows down as kinetic energy is converted to gravitational potential
energy. But on the way down, the conversion is reversed, and the ball speeds up
as potential energy is converted back to kinetic energy. If there is no air resist-
ance, the ball is moving just as fast when you catch it as when you threw it.

Another example is a glider moving on a frictionless horizontal air track that
runs into a spring bumper at the end of the track. The glider stops as it com-
presses the spring and then bounces back. If there is no friction, the glider ends
up with the same speed and kinetic energy it had before the collision. Again,
there is a two-way conversion from kinetic to potential energy and back. In both
cases we can define a potential-energy function so that the total mechanical
energy, kinetic plus potential, is constant or conserved during the motion.

Conservative Forces
A force that offers this opportunity of two-way conversion between kinetic and
potential energies is called a conservative force. We have seen two examples of 

Test Your Understanding of Section 7.2 Consider the situation in
Example 7.9 at the instant when the elevator is still moving downward and the
spring is compressed by 1.00 m. Which of the energy bar graphs in the figure
most accurately shows the kinetic energy K, gravitational potential energy 
and elastic potential energy at this instant?Uel

Ugrav,

❙

( i) ( ii) (iii) (iv)

Ugrav Uel UelK

UgravK

Uel

Ugrav
K

Uel
UgravK

The gravitational potential energy at point 2 is

The “other” force is the constant 17,000-N friction force. It acts
opposite to the 2.00-m displacement, so

We put these terms into Eq. (7.14), :K1 + U1 + Wother = K2 + U2

Wother = -117,000 N212.00 m2 = -34,000 J

mgy2 = 12000 kg219.80 m>s221-2.00 m2 = -39,200 J

This is more than the total mechanical energy at point 1:

But the friction force decreased the mechanical energy of the 
system by 34,000 J between points 1 and 2. Did energy appear
from nowhere? No. At point 2, which is below the origin, there is
also negative gravitational potential energy 
The total mechanical energy at point 2 is therefore not 21,200 J but
rather

This is just the initial mechanical energy of 16,000 J minus 34,000 J
lost to friction.

Will the elevator stay at the bottom of the shaft? At 
point 2 the compressed spring exerts an upward force of 
magnitude
while the downward force of gravity is only 

. If there were no friction, there
would be a net upward force of ,
and the elevator would rebound. But the safety clamp can exert a
kinetic friction force of 17,000 N, and it can presumably exert a
maximum static friction force greater than that. Hence the clamp
will keep the elevator from rebounding.

21,200 N - 19,600 N = 1600 N
12000 kg219.80 m>s22 = 19,600 N

w = mg =
Fspring = 11.06 * 104 N>m212.00 m2 = 21,200 N,

= 0 + 21,200 J + 1-39,200 J2 = -18,000 J

E2 = K2 + U2 = 0 + 1
2 ky 2

2 + mgy2

mgy2 = -39,200 J .

E1 = K1 + U1 = 16,000 J + 0 = 16,000 J

= 1.06 * 104 N>m

=
2316,000 J + 1-34,000 J2 - 1-39,200 J24

1-2.00 m22

k =
21K1 + Wother - mgy22

y 2
2

K1 + 0 + Wother = 0 + 1mgy2 + 1
2 ky 2

2 2

This is about one-tenth the force constant of a spring in an automo-
bile suspension.

EVALUATE: There might seem to be a paradox here. The elastic
potential energy at point 2 is

1
2 ky 2

2 = 1
2 11.06 * 104 N>m21-2.00 m22 = 21,200 J
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conservative forces: the gravitational force and the spring force. (Later in this
book we will study another conservative force, the electric force between charged
objects.) An essential feature of conservative forces is that their work is always
reversible. Anything that we deposit in the energy “bank” can later be withdrawn
without loss. Another important aspect of conservative forces is that a body may
move from point 1 to point 2 by various paths, but the work done by a conserva-
tive force is the same for all of these paths (Fig. 7.18). Thus, if a body stays close
to the surface of the earth, the gravitational force is independent of height, and
the work done by this force depends only on the change in height. If the body
moves around a closed path, ending at the same point where it started, the total
work done by the gravitational force is always zero.

The work done by a conservative force always has four properties:

1. It can be expressed as the difference between the initial and final values of
a potential-energy function.

2. It is reversible.
3. It is independent of the path of the body and depends only on the starting

and ending points.
4. When the starting and ending points are the same, the total work is zero.

When the only forces that do work are conservative forces, the total mechanical
energy is constant.

Nonconservative Forces
Not all forces are conservative. Consider the friction force acting on the crate
sliding on a ramp in Example 7.6 (Section 7.1). When the body slides up and then
back down to the starting point, the total work done on it by the friction force is
not zero. When the direction of motion reverses, so does the friction force, and
friction does negative work in both directions. When a car with its brakes locked
skids across the pavement with decreasing speed (and decreasing kinetic energy),
the lost kinetic energy cannot be recovered by reversing the motion or in any
other way, and mechanical energy is not conserved. There is no potential-energy
function for the friction force.

In the same way, the force of fluid resistance (see Section 5.3) is not conserva-
tive. If you throw a ball up in the air, air resistance does negative work on the ball
while it’s rising and while it’s descending. The ball returns to your hand with less
speed and less kinetic energy than when it left, and there is no way to get back the
lost mechanical energy.

A force that is not conservative is called a nonconservative force. The work
done by a nonconservative force cannot be represented by a potential-energy func-
tion. Some nonconservative forces, like kinetic friction or fluid resistance, cause
mechanical energy to be lost or dissipated; a force of this kind is called a dissipative
force. There are also nonconservative forces that increase mechanical energy. The
fragments of an exploding firecracker fly off with very large kinetic energy, thanks
to a chemical reaction of gunpowder with oxygen. The forces unleashed by this
reaction are nonconservative because the process is not reversible. (The fragments
never spontaneously reassemble themselves into a complete firecracker!)

E = K + U

mgSFinal
position

Initial
position

Because the gravitational force is conservative,
the work it does is the same for all three paths.

7.18 The work done by a conservative
force such as gravity depends only on the
end points of a path, not on the specific
path taken between those points.

Example 7.10 Frictional work depends on the path

You are rearranging your furniture and wish to move a 40.0-kg
futon 2.50 m across the room. A heavy coffee table, which you
don’t want to move, blocks this straight-line path. Instead, you
slide the futon along a dogleg path; the doglegs are 2.00 m and
1.50 m long. How much more work must you do to push the futon
along the dogleg path than along the straight-line path? The coeffi-
cient of kinetic friction is .mk = 0.200

SOLUTION

IDENTIFY and SET UP: Here both you and friction do work on the
futon, so we must use the energy relationship that includes “other”
forces. We’ll use this relationship to find a connection between the
work that you do and the work that friction does. Figure 7.19 shows
our sketch. The futon is at rest at both point 1 and point 2, so

PhET: The Ramp
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7.19 Our sketch for this problem.

Example 7.11 Conservative or nonconservative?

In a region of space the force on an electron is where C
is a positive constant. The electron moves around a square loop in
the xy-plane (Fig. 7.20). Calculate the work done on the electron
by the force during a counterclockwise trip around the square. Is
this force conservative or nonconservative?

SOLUTION

IDENTIFY and SET UP: The force is not constant, and in general
it is not in the same direction as the displacement. To calculate 
the work done by we’ll use the general expression for work, 
Eq. (6.14):

where is an infinitesimal displacement. We’ll calculate the
work done on each leg of the square separately, and add the results
to find the work done on the round trip. If this round-trip work is
zero, force is conservative and can be represented by a potential-
energy function.

F
S

d l
S

W = L
P2

P1

F
S # d l

S

F
S

,

F
S

F
S

F
S

� Cx≥n,

Leg 1

Leg 3

y

x

Leg 2

Leg 4

(L, 0)

(L, L)

(0, 0)

(0, L)

F
S

F
S

F 5 0
S

dl
S

dl
S

dl
S

dl
S

F 5 CL j
S

^

7.20 An electron moving around a square loop while being
acted on by the force .F

S
� Cx≥n

There is no elastic potential energy (there are no
springs), and the gravitational potential energy does not change
because the futon moves only horizontally, so From 
Eq. (7.14) it follows that That “other” work done on the
futon is the sum of the positive work you do, and the negative
work done by friction, . Since the sum of these is zero, we have

Wyou = -Wfric

Wfric

Wyou,
Wother = 0.

U1 = U2.

K1 = K2 = 0.

Thus we’ll calculate the work done by friction to determine .

EXECUTE: The floor is horizontal, so the normal force on the futon
equals its weight mg and the magnitude of the friction force is

The work you do over each path is then

(straight-line path)

(dogleg path)

The extra work you must do is 

EVALUATE: Friction does different amounts of work on the futon,
and , on these different paths between points 1 and 2.

Hence friction is a nonconservative force.
-274 J-196 J

274 J - 196 J = 78 J.

= 274 J

= 10.2002140.0 kg219.80 m>s2212.00 m + 1.50 m2

Wyou = -Wfric = +mkmgs

= 196 J

= 10.2002140.0 kg219.80 m>s2212.50 m2

Wyou = -Wfric = -1-ƒks2 = +mkmgs

ƒk = mkn = mkmg.

Wyou

EXECUTE: On the first leg, from to the force is every-
where perpendicular to the displacement. So and the
work done on the first leg is The force has the same value

everywhere on the second leg, from to The

displacement on this leg is in the so and

The work done on the second leg is then

On the third leg, from to is again perpendicular to
the displacement and so The force is zero on the final leg,
from to so The work done by on the
round trip is therefore

The starting and ending points are the same, but the total work
done by is not zero. This is a nonconservative force; it cannot be
represented by a potential-energy function.

EVALUATE: Because W is positive, the mechanical energy increases
as the electron goes around the loop. This is not a mathematical
curiosity; it’s a much-simplified description of what happens in an
electrical generating plant. There, a loop of wire is moved through
a magnetic field, which gives rise to a nonconservative force simi-
lar to the one here. Electrons in the wire gain energy as they move
around the loop, and this energy is carried via transmission lines to
the consumer. (We’ll discuss how this works in Chapter 29.)

If the electron went clockwise around the loop, would be unaf-
fected but the direction of each infinitesimal displacement would
be reversed. Thus the sign of work would also reverse, and the work
for a clockwise round trip would be This is a different
behavior than the nonconservative friction force. The work done by
friction on a body that slides in any direction over a stationary sur-
face is always negative (see Example 7.6 in Section 7.1).

W = -CL2.

d l
S

F
S

F
S

W = W1 + W2 + W3 + W4 = 0 + CL2 + 0 + 0 = CL2

F
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W4 = 0.10, 02,10, L2
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F
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The Law of Conservation of Energy
Nonconservative forces cannot be represented in terms of potential energy. But
we can describe the effects of these forces in terms of kinds of energy other than
kinetic and potential energy. When a car with locked brakes skids to a stop, the
tires and the road surface both become hotter. The energy associated with this
change in the state of the materials is called internal energy. Raising the temper-
ature of a body increases its internal energy; lowering the body’s temperature
decreases its internal energy.

To see the significance of internal energy, let’s consider a block sliding on a
rough surface. Friction does negative work on the block as it slides, and the
change in internal energy of the block and surface (both of which get hotter) is
positive. Careful experiments show that the increase in the internal energy is
exactly equal to the absolute value of the work done by friction. In other words,

where is the change in internal energy. If we substitute this into Eq. (7.7) or
(7.14), we find

Writing and we can finally express this as

(law of conservation of energy) (7.15)

This remarkable statement is the general form of the law of conservation of
energy. In a given process, the kinetic energy, potential energy, and internal
energy of a system may all change. But the sum of those changes is always zero.
If there is a decrease in one form of energy, it is made up for by an increase in the
other forms (Fig. 7.21). When we expand our definition of energy to include
internal energy, Eq. (7.15) says: Energy is never created or destroyed; it only
changes form. No exception to this rule has ever been found.

The concept of work has been banished from Eq. (7.15); instead, it sug-
gests that we think purely in terms of the conversion of energy from one form
to another. For example, when you throw a baseball straight up, you convert a por-
tion of the internal energy of your molecules to kinetic energy of the baseball. This
is converted to gravitational potential energy as the ball climbs and back to kinetic
energy as the ball falls. If there is air resistance, part of the energy is used to heat
up the air and the ball and increase their internal energy. Energy is converted back
to the kinetic form as the ball falls. If you catch the ball in your hand, whatever
energy was not lost to the air once again becomes internal energy; the ball and
your hand are now warmer than they were at the beginning.

In Chapters 19 and 20, we will study the relationship of internal energy to
temperature changes, heat, and work. This is the heart of the area of physics
called thermodynamics.

¢K + ¢U + ¢Uint = 0

¢U = U2 - U1,¢K = K2 - K1

K1 + U1 - ¢Uint = K2 + U2

¢Uint

¢Uint = -Wother

7.21 When 1 liter of gasoline is burned
in an automotive engine, it releases

of internal energy. Hence
where the minus

sign means that the amount of energy
stored in the gasoline has decreased. This
energy can be converted to kinetic energy
(making the car go faster) or to potential
energy (enabling the car to climb uphill).

¢Uint = -3.3 * 107 J,
3.3 * 107 J

?

Conceptual Example 7.12 Work done by friction

Let’s return to Example 7.5 (Section 7.1), in which Throcky skate-
boards down a curved ramp. He starts with zero kinetic energy and
735 J of potential energy, and at the bottom he has 450 J of kinetic
energy and zero potential energy; hence and

The work done by the friction
forces is so the change in internal energy is

The skateboard wheels and bearings¢Uint = -Wother = +285 J.
-285 J,

Wother = Wfric¢U = -735 J.
¢K = +450 J

and the ramp all get a little warmer. In accordance with Eq. (7.15),
the sum of the energy changes equals zero:

The total energy of the system (including internal, nonmechanical
forms of energy) is conserved.

¢K + ¢U + ¢Uint = +450 J + 1-735 J2 + 285 J = 0
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Test Your Understanding of Section 7.3 In a hydroelectric generating
station, falling water is used to drive turbines (“water wheels”), which in turn run
electric generators. Compared to the amount of gravitational potential energy
released by the falling water, how much electrical energy is produced? (i) the same; 
(ii) more; (iii) less. ❙

7.4 Force and Potential Energy
For the two kinds of conservative forces (gravitational and elastic) we have stud-
ied, we started with a description of the behavior of the force and derived from
that an expression for the potential energy. For example, for a body with mass m
in a uniform gravitational field, the gravitational force is We found 
that the corresponding potential energy is To stretch an ideal spring
by a distance x, we exert a force equal to By Newton’s third law the force
that an ideal spring exerts on a body is opposite this, or The corre-
sponding potential energy function is 

In studying physics, however, you’ll encounter situations in which you are given
an expression for the potential energy as a function of position and have to find the
corresponding force. We’ll see several examples of this kind when we study elec-
tric forces later in this book: It’s often far easier to calculate the electric potential
energy first and then determine the corresponding electric force afterward.

Here’s how we find the force that corresponds to a given potential-energy
expression. First let’s consider motion along a straight line, with coordinate x. We
denote the x-component of force, a function of x, by and the potential
energy as This notation reminds us that both and U are functions of x.
Now we recall that in any displacement, the work W done by a conservative force
equals the negative of the change in potential energy:

Let’s apply this to a small displacement The work done by the force 
during this displacement is approximately equal to We have to say
“approximately” because may vary a little over the interval But it is at
least approximately true that

You can probably see what’s coming. We take the limit as in this limit,
the variation of becomes negligible, and we have the exact relationship

(force from potential energy, one dimension) (7.16)

This result makes sense; in regions where changes most rapidly with x (that is,
where is large), the greatest amount of work is done during a given dis-
placement, and this corresponds to a large force magnitude. Also, when is in
the positive x-direction, decreases with increasing x. So and 
should indeed have opposite signs. The physical meaning of Eq. (7.16) is that a con-
servative force always acts to push the system toward lower potential energy.

As a check, let’s consider the function for elastic potential energy, 
Substituting this into Eq. (7.16) yields

which is the correct expression for the force exerted by an ideal spring (Fig. 7.22a).
Similarly, for gravitational potential energy we have taking care to
change x to y for the choice of axis, we get 

which is the correct expression for gravitational force (Fig. 7.22b).-mg,
Fy = -dU>dy = -d1mgy2>dy =

U1y2 = mgy;

Fx1x2 = -
d

dx
A12 kx2 B = -kx

1
2 kx2.

U1x2 =

dU1x2>dxFx1x2U1x2
Fx1x2

dU1x2>dx
U1x2

Fx1x2 = -
dU1x2

dx

Fx

¢xS 0;

Fx1x2 ¢x = -¢U  and  Fx1x2 = -
¢U

¢x

¢x.Fx1x2
Fx1x2 ¢x.

Fx1x2¢x.

W = -¢U

¢U

FxU1x2.
Fx1x2,

U1x2 = 1
2 kx2.

Fx = -kx.
+kx.

U1y2 = mgy.
Fy = -mg.
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U 5 kx21
2 dU

dx

U

x
O

Fx

Fx 5 2 5 2kx

x
O

(a) Spring potential energy and force as functions of x

U

y

U 5 mgy

O

dU
dy

Fy 5 2 5 2mg

(b) Gravitational potential energy and force as functions of y

Fy

y
O

Potential energy is
a minimum at x 5 0.

Potential energy
decreases as y
decreases.

For x . 0, Fx , 0;
force pushes body
toward x 5 0.

For all y, Fy , 0; force pushes
body toward decreasing y.

For x , 0, Fx . 0;
force pushes body
toward x 5 0.

7.22 A conservative force is the negative derivative of the corresponding potential energy.

Example 7.13 An electric force and its potential energy

An electrically charged particle is held at rest at the point 
a second particle with equal charge is free to move along the posi-
tive x-axis. The potential energy of the system is ,
where C is a positive constant that depends on the magnitude of
the charges. Derive an expression for the x-component of force
acting on the movable particle as a function of its position.

SOLUTION

IDENTIFY and SET UP: We are given the potential-energy function
. We’ll find the corresponding force function using Eq. (7.16),

Fx1x2 = -dU1x2>dx.
U1x2

U1x2 = C>x

x = 0; EXECUTE: The derivative of with respect to x is So for
the force on the movable charged particle is

EVALUATE: The x-component of force is positive, corresponding to
a repulsion between like electric charges. Both the potential energy
and the force are very large when the particles are close together
(small x), and both get smaller as the particles move farther apart
(large x); the force pushes the movable particle toward large posi-
tive values of x, where the potential energy is lower. (We’ll study
electric forces in detail in Chapter 21.)

Fx1x2 = -
dU1x2

dx
= -Ca -

1

x2
b =

C

x2

x 7 0x 7 0
-1>x2.1>x

Force and Potential Energy in Three Dimensions
We can extend this analysis to three dimensions, where the particle may move in
the x-, y-, or z-direction, or all at once, under the action of a conservative force that
has components and Each component of force may be a function of the
coordinates x, y, and z. The potential-energy function U is also a function of all
three space coordinates. We can now use Eq. (7.16) to find each component of
force. The potential-energy change when the particle moves a small distance

in the x-direction is again given by it doesn’t depend on and 
which represent force components that are perpendicular to the displacement and
do no work. So we again have the approximate relationship

The y- and z-components of force are determined in exactly the same way:

To make these relationships exact, we take the limits and
so that these ratios become derivatives. Because U may be a function

of all three coordinates, we need to remember that when we calculate each of
these derivatives, only one coordinate changes at a time. We compute the deriv-
ative of U with respect to x by assuming that y and z are constant and only x
varies, and so on. Such a derivative is called a partial derivative. The usual

¢zS 0
¢yS 0,¢xS 0,

Fy = -
¢U

¢y
  Fz = -

¢U

¢z

Fx = -
¢U

¢x

Fz,Fy-Fx ¢x;¢x
¢U

Fz.Fy,Fx,
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Application Topography and 
Potential Energy Gradient
The greater the elevation of a hiker in
Canada’s Banff National Park, the greater is
the gravitational potential energy . Think of
an x-axis that runs horizontally from west to
east and a y-axis that runs horizontally from
south to north. Then the function 
tells us the elevation as a function of position
in the park. Where the mountains have steep
slopes, has a large magnitude 
and there’s a strong force pushing you along
the mountain’s surface toward a region of
lower elevation (and hence lower ).
There’s zero force along the surface of the
lake, which is all at the same elevation. Hence 

is constant at all points on the lake 
surface, and F

S
� �§

S
Ugrav � 0.

Ugrav

Ugrav

F
S

� �§
S

Ugrav

Ugrav1x, y2

Ugrav

notation for a partial derivative is and so on; the symbol is a modified
d. So we write

(force from 
potential energy) (7.17)

We can use unit vectors to write a single compact vector expression for the force 

(force from potential energy) (7.18)

The expression inside the parentheses represents a particular operation on the
function U, in which we take the partial derivative of U with respect to each coor-
dinate, multiply by the corresponding unit vector, and then take the vector sum.
This operation is called the gradient of U and is often abbreviated as . Thus
the force is the negative of the gradient of the potential-energy function:

(7.19)

As a check, let’s substitute into Eq. (7.19) the function for gravitational
potential energy:

This is just the familiar expression for the gravitational force.
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Example 7.14 Force and potential energy in two dimensions

A puck with coordinates x and y slides on a level, frictionless air-
hockey table. It is acted on by a conservative force described by
the potential-energy function

Find a vector expression for the force acting on the puck, and find
an expression for the magnitude of the force.

SOLUTION

IDENTIFY and SET UP: Starting with the function we need
to find the vector components and magnitude of the corresponding
force . We’ll find the components using Eq. (7.18). The function
U doesn’t depend on z, so the partial derivative of U with respect
to z is and the force has no z-component. We’ll deter-
mine the magnitude F of the force using 

EXECUTE: The x- and y-components of are

From Eq. (7.18), the vector expression for the force is
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The magnitude of the force is

EVALUATE: Because is just the position vector of the
particle, we can rewrite our result as This represents a
force that is opposite in direction to the particle’s position vector—
that is, a force directed toward the origin, . This is the force
that would be exerted on the puck if it were attached to one end 
of a spring that obeys Hooke’s law and has a negligibly small
unstretched length compared to the other distances in the problem.
(The other end is attached to the air-hockey table at .)

To check our result, note that , where 
We can find the force from this expression using Eq. (7.16) with 
x replaced by r:

As we found above, the force has magnitude the minus sign
indicates that the force is toward the origin .1at r = 02

kr;

Fr = -
dU

dr
= -

d

dr
A12 kr2 B = -kr

r 2 = x2 + y2.U = 1
2kr 2

r = 0

r = 0
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7.5 Energy Diagrams
When a particle moves along a straight line under the action of a conservative
force, we can get a lot of insight into its possible motions by looking at the graph
of the potential-energy function Figure 7.23a shows a glider with mass m
that moves along the x-axis on an air track. The spring exerts on the glider a force
with x-component Figure 7.23b is a graph of the corresponding
potential-energy function If the elastic force of the spring is the
only horizontal force acting on the glider, the total mechanical energy

is constant, independent of x. A graph of E as a function of x is thus
a straight horizontal line. We use the term energy diagram for a graph like this,
which shows both the potential-energy function and the energy of the parti-
cle subjected to the force that corresponds to .

The vertical distance between the U and E graphs at each point represents
the difference equal to the kinetic energy K at that point. We see that 
K is greatest at It is zero at the values of x where the two graphs cross,
labeled A and in the diagram. Thus the speed is greatest at and it is
zero at the points of maximum possible displacement from for 
a given value of the total energy E. The potential energy U can never be greater
than the total energy E; if it were, K would be negative, and that’s impossible.
The motion is a back-and-forth oscillation between the points and

At each point, the force on the glider is equal to the negative of the slope
of the curve: (see Fig. 7.22a). When the particle is at 
the slope and the force are zero, so this is an equilibrium position. When x is
positive, the slope of the curve is positive and the force is negative,
directed toward the origin. When x is negative, the slope is negative and is
positive, again directed toward the origin. Such a force is called a restoring
force; when the glider is displaced to either side of the force tends to
“restore” it back to An analogous situation is a marble rolling around in
a round-bottomed bowl. We say that is a point of stable equilibrium.
More generally, any minimum in a potential-energy curve is a stable equilibrium
position.

Figure 7.24a shows a hypothetical but more general potential-energy function
Figure 7.24b shows the corresponding force Points and

are stable equilibrium points. At each of these points, is zero because the
slope of the curve is zero. When the particle is displaced to either side, the
force pushes back toward the equilibrium point. The slope of the curve is
also zero at points and and these are also equilibrium points. But when the
particle is displaced a little to the right of either point, the slope of the curve
becomes negative, corresponding to a positive that tends to push the particle
still farther from the point. When the particle is displaced a little to the left, is
negative, again pushing away from equilibrium. This is analogous to a marble
rolling on the top of a bowling ball. Points and are called unstable equi-
librium points; any maximum in a potential-energy curve is an unstable
equilibrium position.
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Test Your Understanding of Section 7.4 A particle moving along 
the x-axis is acted on by a conservative force At a certain point, the force is
zero. (a) Which of the following statements about the value of the potential-energy
function at that point is correct? (i) (ii) (iii) 
(iv) not enough information is given to decide. (b) Which of the following statements
about the value of the derivative of at that point is correct? (i) 
(ii) (iii) (iv) not enough information is given to 
decide. ❙

dU1x2>dx 6 0;dU1x2>dx 7 0;
dU1x2>dx = 0;U(x)

U1x2 6 0;U1x2 7 0;U(x) = 0;U(x)

Fx.

(a)

2A O A

x

U

K

U

2A O A
x

E 5 K 1 U

U 5   kx21
2

On the graph, the limits of motion are the points
where the U curve intersects the horizontal line
representing total mechanical energy E.

(b)

The limits of the glider’s motion
are at x 5 A and x 5 2A.

7.23 (a) A glider on an air track. The
spring exerts a force (b) The
potential-energy function.

Fx = -kx.

Application Acrobats in Equilibrium
Each of these acrobats is in unstable equi-
librium. The gravitational potential energy is
lower no matter which way an acrobat tips, 
so if she begins to fall she will keep on falling.
Staying balanced requires the acrobats’ 
constant attention.
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(a) A hypothetical potential-energy function U(x)

Stable equilibrium points are minima
in the potential-energy curve.

Minimum possible energy is E0; the particle is at rest at x1.

If E = E1, the particle is trapped between xa and xb.

If E = E2, the particle is trapped between xc and xd.

If the total energy E . E3, the particle can “escape” to x . x4.

Unstable equilibrium points are maxima
in the potential-energy curve.

dU/dx . 0
Fx � 0

(b) The corresponding x-component of force Fx(x) 5 2dU(x)/dx

Fx

O x1 x2 x3 x4
x

dU/dx . 0
Fx , 0

dU/dx , 0
Fx . 0

dU/dx , 0
Fx . 0

dU/dx , 0
Fx . 0

7.24 The maxima and minima of a potential-energy function correspond to points where Fx = 0.U1x2

CAUTION Potential energy and the direction of a conservative force The direction of the
force on a body is not determined by the sign of the potential energy U. Rather, it’s the
sign of that matters. As we discussed in Section 7.1, the physically signifi-
cant quantity is the difference in the values of U between two points, which is just what the
derivative measures. This means that you can always add a constant to the
potential-energy function without changing the physics of the situation. ❙

If the total energy is and the particle is initially near it can move only in
the region between and determined by the intersection of the and U
graphs (Fig. 7.24a). Again, U cannot be greater than because K can’t be nega-
tive. We speak of the particle as moving in a potential well, and and are the
turning points of the particle’s motion (since at these points, the particle stops
and reverses direction). If we increase the total energy to the level the particle
can move over a wider range, from to If the total energy is greater than 
the particle can “escape” and move to indefinitely large values of x. At the other
extreme, represents the least possible total energy the system can have.E0

E3,xd.xc

E2,

xbxa

E1

E1xbxa

x1,E1

Fx = -dU>dx

Fx = -dU>dx

Test Your Understanding of Section 7.5 The curve in Fig. 7.24b has a
maximum at a point between and Which statement correctly describes what
happens to the particle when it is at this point? (i) The particle’s acceleration is
zero. (ii) The particle accelerates in the positive x-direction; the magnitude of the acceler-
ation is less than at any other point between and (iii) The particle accelerates in the
positive x-direction; the magnitude of the acceleration is greater than at any other point
between and (iv) The particle accelerates in the negative x-direction; the magnitude
of the acceleration is less than at any other point between and (v) The particle
accelerates in the negative x-direction; the magnitude of the acceleration is greater than 
at any other point between and ❙x3.x2

x3.x2

x3.x2

x3.x2

x3.x2

PhET: Energy Skate Park



CHAPTER 7 SUMMARY

When total mechanical energy is conserved:
The total potential energy U is the sum of the
gravitational and elastic potential energy:

If no forces other than the 
gravitational and elastic forces do work on a 
particle, the sum of kinetic and potential energy 
is conserved. This sum is called the
total mechanical energy. (See Examples 7.1, 7.3,
7.4, and 7.7.)

E = K + U

U = Ugrav + Uel .

When total mechanical energy is not conserved:
When forces other than the gravitational and elastic
forces do work on a particle, the work done
by these other forces equals the change in total
mechanical energy (kinetic energy plus total 
potential energy). (See Examples 7.2, 7.5, 7.6, 
7.8, and 7.9.)

Wother

(7.4), (7.11)K1 + U1 = K2 + U2

(7.14)K1 + U1 + Wother = K2 + U2

Conservative forces, nonconservative forces, and the
law of conservation of energy: All forces are either
conservative or nonconservative. A conservative
force is one for which the work–kinetic energy
relationship is completely reversible. The work of a
conservative force can always be represented by a
potential-energy function, but the work of a non-
conservative force cannot. The work done by non-
conservative forces manifests itself as changes in
the internal energy of bodies. The sum of kinetic,
potential, and internal energy is always conserved.
(See Examples 7.10–7.12.)

(7.15)¢K + ¢U + ¢Uint = 0

Gravitational potential energy and elastic potential
energy: The work done on a particle by a constant
gravitational force can be represented as a change
in the gravitational potential energy 
This energy is a shared property of the particle and
the earth. A potential energy is also associated with
the elastic force exerted by an ideal
spring, where x is the amount of stretch or com-
pression. The work done by this force can be rep-
resented as a change in the elastic potential energy
of the spring, Uel = 1

2 kx2.

Fx = -kx

Ugrav = mgy.
(7.1), (7.3)

(7.10)
 =   Uel, 1 - Uel, 2 = -¢Uel

 Wel = 1
2 kx1

2 - 1
2 kx2

2

 =   -¢Ugrav

 = Ugrav,1 - Ugrav,2

 Wgrav = mgy1 - mgy2

Determining force from potential energy: For motion
along a straight line, a conservative force is
the negative derivative of its associated potential-
energy function U. In three dimensions, the compo-
nents of a conservative force are negative partial
derivatives of U. (See Examples 7.13 and 7.14.)

Fx 1x2 (7.16)
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A 2.00-kg package is
released on a incline,
4.00 m from a long spring
with force constant

that is
attached at the bottom of
the incline (Fig. 7.25). 
The coefficients of friction
between the package and
incline are and

. The mass of
the spring is negligible. 
(a) What is the maximum compression of the spring? (b) The pack-
age rebounds up the incline. How close does it get to its original
position? (c) What is the change in the internal energy of the pack-
age and incline from when the package is released to when it
rebounds to its maximum height?

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. This problem involves the gravitational force, a spring force,

and the friction force, as well as the normal force that acts on
the package. Since the spring force isn’t constant, you’ll have
to use energy methods. Is mechanical energy conserved during
any part of the motion? Why or why not?

2. Draw free-body diagrams for the package as it is sliding down
the incline and sliding back up the incline. Include your choice
of coordinate axis. (Hint: If you choose to be at the end
of the uncompressed spring, you’ll be able to use 
for the elastic potential energy of the spring.)

3. Label the three critical points in the package’s motion: its start-
ing position, its position when it comes to rest with the spring
maximally compressed, and its position when it’s rebounded as
far as possible up the incline. (Hint: You can assume that the 

Uel = 1
2kx2

x = 0

mk = 0.200
ms = 0.400

1.20 * 102 N>m

53.1°
package is no longer in contact with the spring at the last of
these positions. If this turns out to be incorrect, you’ll calcu-
late a value of x that tells you the spring is still partially com-
pressed at this point.)

4. Make a list of the unknown quantities and decide which of
these are the target variables.

EXECUTE
5. Find the magnitude of the friction force that acts on the pack-

age. Does the magnitude of this force depend on whether 
the package is moving up or down the incline, or on whether
or not the package is in contact with the spring? Does the
direction of the normal force depend on any of these?

6. Write the general energy equation for the motion of the pack-
age between the first two points you labeled in step 3. Use this
equation to solve for the distance that the spring is compressed
when the package is at its lowest point. (Hint: You’ll have to
solve a quadratic equation. To decide which of the two solu-
tions of this equation is the correct one, remember that the dis-
tance the spring is compressed is positive.)

7. Write the general energy equation for the motion of the pack-
age between the second and third points you labeled in step 3.
Use this equation to solve for how far the package rebounds.

8. Calculate the change in internal energy for the package’s trip
down and back up the incline. Remember that the amount the
internal energy increases is equal to the amount the total
mechanical energy decreases.

EVALUATE
9. Was it correct to assume in part (b) that the package is no

longer in contact with the spring when it reaches it maximum
rebound height?

10. Check your result for part (c) by finding the total work done
by the force of friction over the entire trip. Is this in accor-
dance with your result from step 8?

BRIDGING PROBLEM A Spring and Friction on an Incline

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q7.1 A baseball is thrown straight up with initial speed If air
resistance cannot be ignored, when the ball returns to its initial
height its speed is less than Explain why, using energy concepts.
Q7.2 A projectile has the same initial kinetic energy no matter
what the angle of projection. Why doesn’t it rise to the same maxi-
mum height in each case?
Q7.3 An object is released from rest at the top of a ramp. If the
ramp is frictionless, does the object’s speed at the bottom of the
ramp depend on the shape of the ramp or just on its height?
Explain. What if the ramp is not frictionless?

v0.

v0.
Q7.4 An egg is released from rest from the roof of a building and
falls to the ground. Its fall is observed by a student on the roof of the
building, who uses coordinates with origin at the roof, and by a stu-
dent on the ground, who uses coordinates with origin at the ground.
Do the two students assign the same or different values to the initial
gravitational potential energy, the final gravitational potential energy,
the change in gravitational potential energy, and the kinetic energy of
the egg just before it strikes the ground? Explain.
Q7.5 A physics teacher had a bowling ball suspended from a very
long rope attached to the high ceiling of a large lecture hall. To
illustrate his faith in conservation of energy, he would back up to

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.

m 5 2.00 kg

u 5 53.1°

D 5 4.00 m

7.25 The initial situation.

www.masteringphysics.com
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one side of the stage, pull the ball far to one side until the taut rope
brought it just to the end of his nose, and then release it. The mas-
sive ball would swing in a mighty arc across the stage and then
return to stop momentarily just in front of the nose of the station-
ary, unflinching teacher. However, one day after the demonstration
he looked up just in time to see a student at the other side of the
stage push the ball away from his nose as he tried to duplicate the
demonstration. Tell the rest of the story and explain the reason for
the potentially tragic outcome.
Q7.6 Lost Energy? The principle of the conservation of energy
tells us that energy is never lost, but only changes from one form to
another. Yet in many ordinary situations, energy may appear to be
lost. In each case, explain what happens to the “lost” energy. (a) A
box sliding on the floor comes to a halt due to friction. How did
friction take away its kinetic energy, and what happened to that
energy? (b) A car stops when you apply the brakes. What happened
to its kinetic energy? (c) Air resistance uses up some of the original
gravitational potential energy of a falling object. What type of
energy did the “lost” potential energy become? (d) When a return-
ing space shuttle touches down on the runway, it has lost almost all
its kinetic energy and gravitational potential energy. Where did all
that energy go?
Q7.7 Is it possible for a frictional force to increase the mechanical
energy of a system? If so, give examples.
Q7.8 A woman bounces on a trampoline, going a little higher with
each bounce. Explain how she increases the total mechanical
energy.
Q7.9 Fractured Physics. People often call their electric bill a
power bill, yet the quantity on which the bill is based is expressed
in kilowatt-hours. What are people really being billed for?
Q7.10 A rock of mass m and a rock of mass 2m are both released
from rest at the same height and feel no air resistance as they fall.
Which statements about these rocks are true? (There may be more
than one correct choice.) (a) Both have the same initial gravita-
tional potential energy. (b) Both have the same kinetic energy
when they reach the ground. (c) Both reach the ground with the
same speed. (d) When it reaches the ground, the heavier rock has
twice the kinetic energy of the lighter one. (e) When it reaches the
ground, the heavier rock has four times the kinetic energy of the
lighter one.
Q7.11 On a friction-free ice pond, a hockey puck is pressed
against (but not attached to) a fixed ideal spring, compressing the
spring by a distance The maximum energy stored in the spring
is the maximum speed the puck gains after being released is 
and its maximum kinetic energy is Now the puck is pressed 
so it compresses the spring twice as far as before. In this case, 
(a) what is the maximum potential energy stored in the spring (in
terms of ), and (b) what are the puck’s maximum kinetic energy
and speed (in terms of and )?
Q7.12 When people are cold, they often rub their hands together to
warm them up. How does doing this produce heat? Where did the
heat come from?
Q7.13 You often hear it said that most of our energy ultimately
comes from the sun. Trace each of the following energies back to
the sun: (a) the kinetic energy of a jet plane; (b) the potential
energy gained by a mountain climber; (c) the electrical energy
used to run a computer; (d) the electrical energy from a hydroelec-
tric plant.
Q7.14 A box slides down a ramp and work is done on the box by
the forces of gravity and friction. Can the work of each of these
forces be expressed in terms of the change in a potential-energy
function? For each force explain why or why not.

x0K0

U0

K0.
v0,U0,

x0.

Q7.15 In physical terms, explain why friction is a nonconservative
force. Does it store energy for future use?
Q7.16 A compressed spring is clamped in its compressed position
and then is dissolved in acid. What becomes of its potential
energy?
Q7.17 Since only changes in potential energy are important in any
problem, a student decides to let the elastic potential energy of a
spring be zero when the spring is stretched a distance The stu-
dent decides, therefore, to let Is this correct?
Explain.
Q7.18 Figure 7.22a shows the potential-energy function for the
force Sketch the potential-energy function for the force

For this force, is a point of equilibrium? Is this
equilibrium stable or unstable? Explain.
Q7.19 Figure 7.22b shows the potential-energy function associ-
ated with the gravitational force between an object and the earth.
Use this graph to explain why objects always fall toward the earth
when they are released.
Q7.20 For a system of two particles we often let the potential
energy for the force between the particles approach zero as the sep-
aration of the particles approaches infinity. If this choice is made,
explain why the potential energy at noninfinite separation is posi-
tive if the particles repel one another and negative if they attract.
Q7.21 Explain why the points and in Fig. 7.23b
are called turning points. How are the values of E and U related at
a turning point?
Q7.22 A particle is in neutral equilibrium if the net force on it is
zero and remains zero if the particle is displaced slightly in any
direction. Sketch the potential-energy function near a point of neu-
tral equilibrium for the case of one-dimensional motion. Give an
example of an object in neutral equilibrium.
Q7.23 The net force on a particle of mass m has the potential-
energy function graphed in Fig. 7.24a. If the total energy is 
graph the speed of the particle versus its position x. At what
value of x is the speed greatest? Sketch versus x if the total
energy is 

Q7.24 The potential-energy function for a force is 

where is a positive constant. What is the direction of ?

EXERCISES
Section 7.1 Gravitational Potential Energy
7.1 . In one day, a 75-kg mountain climber ascends from the
1500-m level on a vertical cliff to the top at 2400 m. The next day,
she descends from the top to the base of the cliff, which is at an
elevation of 1350 m. What is her change in gravitational potential
energy (a) on the first day and (b) on the second day?
7.2 . BIO How High Can We Jump? The maximum height a
typical human can jump from a crouched start is about 60 cm. 
By how much does the gravitational potential energy increase for
a 72-kg person in such a jump? Where does this energy come
from?
7.3 .. CP A 120-kg mail bag hangs by a vertical rope 3.5 m long.
A postal worker then displaces the bag to a position 2.0 m side-
ways from its original position, always keeping the rope taut. 
(a) What horizontal force is necessary to hold the bag in the new
position? (b) As the bag is moved to this position, how much work
is done (i) by the rope and (ii) by the worker?
7.4 .. BIO Food Calories. The food calorie, equal to 4186 J, 
is a measure of how much energy is released when food is metabo-
lized by the body. A certain brand of fruit-and-cereal bar contains
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140 food calories per bar. (a) If a 65-kg hiker eats one of these bars,
how high a mountain must he climb to “work off” the calories,
assuming that all the food energy goes only into increasing gravi-
tational potential energy? (b) If, as is typical, only 20% of the food
calories go into mechanical energy, what would be the answer to
part (a)? (Note: In this and all other problems, we are assuming
that 100% of the food calories that are eaten are absorbed and used
by the body. This is actually not true. A person’s “metabolic effi-
ciency” is the percentage of calories eaten that are actually used;
the rest are eliminated by the body. Metabolic efficiency varies
considerably from person to person.)
7.5 . A baseball is thrown from the roof of a 22.0-m-tall building
with an initial velocity of magnitude and directed at an
angle of above the horizontal. (a) What is the speed of the
ball just before it strikes the ground? Use energy methods and
ignore air resistance. (b) What is the answer for part (a) if the ini-
tial velocity is at an angle of below the horizontal? (c) If the
effects of air resistance are included, will part (a) or (b) give the
higher speed?
7.6 .. A crate of mass M starts from rest at the top of a frictionless
ramp inclined at an angle above the horizontal. Find its speed at
the bottom of the ramp, a distance d from where it started. Do this
in two ways: (a) Take the level at which the potential energy is
zero to be at the bottom of the ramp with y positive upward. 
(b) Take the zero level for potential energy to be at the top of the
ramp with y positive upward. (c) Why did the normal force not
enter into your solution?
7.7 .. BIO Human Energy vs. Insect Energy. For its size, the
common flea is one of the most accomplished jumpers in the animal
world. A 2.0-mm-long, 0.50-mg critter can reach a height of 20 cm
in a single leap. (a) Neglecting air drag, what is the takeoff speed of
such a flea? (b) Calculate the kinetic energy of this flea at takeoff
and its kinetic energy per kilogram of mass. (c) If a 65-kg, 2.0-m-
tall human could jump to the same height compared with his length
as the flea jumps compared with its length, how high could the
human jump, and what takeoff speed would he need? (d) In fact,
most humans can jump no more than 60 cm from a crouched start.
What is the kinetic energy per kilogram of mass at takeoff for such
a 65-kg person? (e) Where does the flea store the energy that allows
it to make such a sudden leap?
7.8 .. An empty crate is given an initial push down a ramp, start-
ing with speed and reaches the bottom with speed and kinetic
energy K. Some books are now placed in the crate, so that the total
mass is quadrupled. The coefficient of kinetic friction is constant
and air resistance is negligible. Starting again with at the top of
the ramp, what are the speed and kinetic energy at the bottom?
Explain the reasoning behind your answers.
7.9 .. CP A small rock with
mass 0.20 kg is released from rest
at point A, which is at the top
edge of a large, hemispherical 
bowl with radius 
(Fig. E7.9). Assume that the size
of the rock is small compared to
R, so that the rock can be treated
as a particle, and assume that the rock slides rather than rolls. The
work done by friction on the rock when it moves from point A to
point B at the bottom of the bowl has magnitude 0.22 J. 
(a) Between points A and B, how much work is done on the rock by
(i) the normal force and (ii) gravity? (b) What is the speed of the
rock as it reaches point B? (c) Of the three forces acting on the rock
as it slides down the bowl, which (if any) are constant and which

R = 0.50 m

v0

vv0,

a

53.1°

53.1°
12.0 m>s

are not? Explain. (d) Just as the rock reaches point B, what is the
normal force on it due to the bottom of the bowl?
7.10 .. BIO Bone Fractures. The maximum energy that a bone
can absorb without breaking depends on its characteristics, such as
its cross-sectional area and its elasticity. For healthy human leg
bones of approximately 6.0 cm2 cross-sectional area, this energy
has been experimentally measured to be about 200 J. (a) From
approximately what maximum height could a 60-kg person jump
and land rigidly upright on both feet without breaking his legs? 
(b) You are probably surprised at how small the answer to part 
(a) is. People obviously jump from much greater heights without
breaking their legs. How can that be? What else absorbs the energy
when they jump from greater heights? (Hint: How did the person
in part (a) land? How do people normally land when they jump
from greater heights?) (c) In light of your answers to parts (a) and
(b), what might be some of the reasons that older people are much
more prone than younger ones to bone fractures from simple falls
(such as a fall in the shower)?
7.11 .. You are testing a new amusement park roller coaster with
an empty car of mass 120 kg. One part of the track is a vertical
loop with radius 12.0 m. At the bottom of the loop (point A) the car
has speed and at the top of the loop (point B) it has speed

As the car rolls from point A to point B, how much work
is done by friction?
7.12 . Tarzan and Jane. Tarzan, in one tree, sights Jane in
another tree. He grabs the end of a vine with length 20 m that makes
an angle of with the vertical, steps off his tree limb, and swings
down and then up to Jane’s open arms. When he arrives, his vine
makes an angle of with the vertical. Determine whether he
gives her a tender embrace or knocks her off her limb by calculat-
ing Tarzan’s speed just before he reaches Jane. You can ignore air
resistance and the mass of the vine.
7.13 .. CP A 10.0-kg microwave oven is pushed 8.00 m up the
sloping surface of a loading ramp inclined at an angle of 
above the horizontal, by a constant force with a magnitude 110 N
and acting parallel to the ramp. The coefficient of kinetic friction
between the oven and the ramp is 0.250. (a) What is the work done
on the oven by the force ? (b) What is the work done on the oven
by the friction force? (c) Compute the increase in potential energy
for the oven. (d) Use your answers to parts (a), (b), and (c) to calcu-
late the increase in the oven’s kinetic energy. (e) Use to
calculate the acceleration of the oven. Assuming that the oven is ini-
tially at rest, use the acceleration to calculate the oven’s speed after
traveling 8.00 m. From this, compute the increase in the oven’s
kinetic energy, and compare it to the answer you got in part (d).

Section 7.2 Elastic Potential Energy
7.14 .. An ideal spring of negligible mass is 12.00 cm long when
nothing is attached to it. When you hang a 3.15-kg weight from it,
you measure its length to be 13.40 cm. If you wanted to store 10.0 J
of potential energy in this spring, what would be its total length?
Assume that it continues to obey Hooke’s law.
7.15 .. A force of 800 N stretches a certain spring a distance of
0.200 m. (a) What is the potential energy of the spring when it is
stretched 0.200 m? (b) What is its potential energy when it is com-
pressed 5.00 cm?
7.16 . BIO Tendons. Tendons are strong elastic fibers that
attach muscles to bones. To a reasonable approximation, they obey
Hooke’s law. In laboratory tests on a particular tendon, it was
found that, when a 250-g object was hung from it, the tendon
stretched 1.23 cm. (a) Find the force constant of this tendon in

. (b) Because of its thickness, the maximum tension this N>m
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tendon can support without rupturing is 138 N. By how much can
the tendon stretch without rupturing, and how much energy is
stored in it at that point?
7.17 . A spring stores potential energy when it is compressed a
distance from its uncompressed length. (a) In terms of how
much energy does it store when it is compressed (i) twice as much
and (ii) half as much? (b) In terms of how much must it be com-
pressed from its uncompressed length to store (i) twice as much
energy and (ii) half as much energy?
7.18 . A slingshot will shoot a 10-g pebble 22.0 m straight up. (a)
How much potential energy is stored in the slingshot’s rubber
band? (b) With the same potential energy stored in the rubber
band, how high can the slingshot shoot a 25-g pebble? (c) What
physical effects did you ignore in solving this problem?
7.19 .. A spring of negligible mass has force constant 

(a) How far must the spring be compressed for 
of potential energy to be stored in it? (b) You place the spring ver-
tically with one end on the floor. You then drop a 1.20-kg book
onto it from a height of 0.80 m above the top of the spring. Find
the maximum distance the spring will be compressed.
7.20 . A 1.20-kg piece of cheese is placed on a vertical spring of
negligible mass and force constant that is com-
pressed 15.0 cm. When the spring is released, how high does the
cheese rise from this initial position? (The cheese and the spring
are not attached.)
7.21 .. Consider the glider of Example 7.7 (Section 7.2) and 
Fig. 7.16. As in the example, the glider is released from rest with
the spring stretched 0.100 m. What is the displacement x of the
glider from its equilibrium position when its speed is 
(You should get more than one answer. Explain why.)
7.22 .. Consider the glider of Example 7.7 (Section 7.2) and 
Fig. 7.16. (a) As in the example, the glider is released from rest
with the spring stretched 0.100 m. What is the speed of the glider
when it returns to (b) What must the initial displacement of
the glider be if its maximum speed in the subsequent motion is to
be
7.23 .. A 2.50-kg mass is pushed against a horizontal spring of
force constant on a frictionless air table. The spring is
attached to the tabletop, and the mass is not attached to the spring
in any way. When the spring has been compressed enough to store
11.5 J of potential energy in it, the mass is suddenly released from
rest. (a) Find the greatest speed the mass reaches. When does this
occur? (b) What is the greatest acceleration of the mass, and when
does it occur?
7.24 .. (a) For the elevator of Example 7.9 (Section 7.2), what is
the speed of the elevator after it has moved downward 1.00 m from
point 1 in Fig. 7.17? (b) When the elevator is 1.00 m below point 1
in Fig. 7.17, what is its acceleration?
7.25 .. You are asked to design a spring that will give a 1160-kg
satellite a speed of relative to an orbiting space shuttle.
Your spring is to give the satellite a maximum acceleration of
5.00g. The spring’s mass, the recoil kinetic energy of the shuttle,
and changes in gravitational potential energy will all be negligible.
(a) What must the force constant of the spring be? (b) What dis-
tance must the spring be compressed?
7.26 .. A 2.50-kg block on a horizontal floor is attached to a hor-
izontal spring that is initially compressed 0.0300 m. The spring 
has force constant . The coefficient of kinetic friction
between the floor and the block is . The block and
spring are released from rest and the block slides along the floor.
What is the speed of the block when it has moved a distance of

mk = 0.40
840 N>m

2.50 m>s

25.0 N>cm

2.50 m>s?

x = 0?

0.20 m>s?

k = 1800 N>m

3.20 J1600 N>m.
k =

x0,

U0,x0

U0

0.0200 m from its initial position? (At this point the spring is com-
pressed 0.0100 m.)

Section 7.3 Conservative and Nonconservative Forces
7.27 . A 10.0-kg box is pulled by a horizontal wire in a circle on a
rough horizontal surface for which the coefficient of kinetic fric-
tion is 0.250. Calculate the work done by friction during one com-
plete circular trip if the radius is (a) 2.00 m and (b) 4.00 m. (c) On
the basis of the results you just obtained, would you say that fric-
tion is a conservative or nonconservative force? Explain.
7.28 . A 75-kg roofer climbs a vertical 7.0-m ladder to the flat
roof of a house. He then walks 12 m on the roof, climbs down
another vertical 7.0-m ladder, and finally walks on the ground back
to his starting point. How much work is done on him by gravity 
(a) as he climbs up; (b) as he climbs down; (c) as he walks on the
roof and on the ground? (d) What is the total work done on him by
gravity during this round trip? (e) On the basis of your answer to
part (d), would you say that gravity is a conservative or nonconser-
vative force? Explain.
7.29 . A 0.60-kg book slides on a horizontal table. The kinetic fric-
tion force on the book has magnitude 1.2 N. (a) How much work is
done on the book by friction during a displacement of 3.0 m to the
left? (b) The book now slides 3.0 m to the right, returning to its
starting point. During this second 3.0-m displacement, how much
work is done on the book by friction? (c) What is the total work
done on the book by friction during the complete round trip? (d) On
the basis of your answer to part (c), would you say that the friction
force is conservative or nonconservative? Explain.
7.30 .. CALC In an experiment, one of the forces exerted on a 
proton is where (a) How much work
does do when the proton moves along the straight-line path from
the point to the point (b) Along the
straight-line path from the point to the point

(c) Along the straight-line path from the point
to the point (d) Is the force conserva-

tive? Explain. If is conservative, what is the potential-energy func-
tion for it? Let when 
7.31 . You and three friends stand
at the corners of a square whose
sides are 8.0 m long in the middle
of the gym floor, as shown in
Fig. E7.31. You take your physics
book and push it from one person
to the other. The book has a mass of
1.5 kg, and the coefficient of kinetic
friction between the book and the
floor is (a) The book
slides from you to Beth and then from Beth to Carlos, along the lines
connecting these people. What is the work done by friction during
this displacement? (b) You slide the book from you to Carlos along
the diagonal of the square. What is the work done by friction during
this displacement? (c) You slide the book to Kim, who then slides it
back to you. What is the total work done by friction during this
motion of the book? (d) Is the friction force on the book conservative
or nonconservative? Explain.
7.32 . While a roofer is working on a roof that slants at 36° above
the horizontal, he accidentally nudges his 85.0-N toolbox, causing
it to start sliding downward, starting from rest. If it starts 4.25 m
from the lower edge of the roof, how fast will the toolbox be mov-
ing just as it reaches the edge of the roof if the kinetic friction force
on it is 22.0 N?
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7.43 . A block with mass 0.50 kg is forced against a horizontal
spring of negligible mass, compressing the spring a distance of
0.20 m (Fig. P7.43). When released, the block moves on a horizon-
tal tabletop for 1.00 m before coming to rest. The spring constant k
is What is the coefficient of kinetic friction between
the block and the tabletop?

7.44 . On a horizontal surface, a crate with mass 50.0 kg is placed
against a spring that stores 360 J of energy. The spring is released,
and the crate slides 5.60 m before coming to rest. What is the
speed of the crate when it is 2.00 m from its initial position?

mk100 N>m.

7.37 .. CALC A small block with mass 0.0400 kg is moving in the
xy-plane. The net force on the block is described by the potential-
energy function . What
are the magnitude and direction of the acceleration of the block
when it is at the point , ?

Section 7.5 Energy Diagrams
7.38 . A marble moves along the
x-axis. The potential-energy func-
tion is shown in Fig. E7.38. (a) At
which of the labeled x-coordinates
is the force on the marble zero? 
(b) Which of the labeled x-coordi-
nates is a position of stable equi-
librium? (c) Which of the labeled
x-coordinates is a position of
unstable equilibrium?
7.39 . CALC The potential energy of two atoms in a diatomic mole-
cule is approximated by where r is the spac-
ing between atoms and a and b are positive constants. (a) Find the
force on one atom as a function of r. Draw two graphs: one of

versus r and one of versus r. (b) Find the equilibrium dis-
tance between the two atoms. Is this equilibrium stable? (c) Suppose
the distance between the two atoms is equal to the equilibrium dis-
tance found in part (b). What minimum energy must be added to the
molecule to dissociate it—that is, to separate the two atoms to an
infinite distance apart? This is called the dissociation energy of the
molecule. (d) For the molecule CO, the equilibrium distance between
the carbon and oxygen atoms is and the dissocia-
tion energy is per molecule. Find the values of the
constants a and b.

PROBLEMS
7.40 .. Two blocks with different masses are attached to either
end of a light rope that passes over a light, frictionless pulley sus-
pended from the ceiling. The masses are released from rest, and
the more massive one starts to descend. After this block has
descended 1.20 m, its speed is If the total mass of the
two blocks is 15.0 kg, what is the mass of each block?

3.00 m>s.

1.54 * 10-18 J
1.13 * 10-10 m

F1r2U1r2
F1r2

U1r2 = a>r 12 - b>r 6,

y = 0.600 mx = 0.300 m

U1x, y2 = 15.80 J>m22x2 - 13.60 J>m32y3
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7.33 .. A 62.0-kg skier is moving at on a frictionless,
horizontal, snow-covered plateau when she encounters a rough
patch 3.50 m long. The coefficient of kinetic friction between this
patch and her skis is 0.300. After crossing the rough patch and
returning to friction-free snow, she skis down an icy, frictionless
hill 2.50 m high. (a) How fast is the skier moving when she gets to
the bottom of the hill? (b) How much internal energy was gener-
ated in crossing the rough patch?

Section 7.4 Force and Potential Energy
7.34 .. CALC The potential energy of a pair of hydrogen atoms
separated by a large distance x is given by where

is a positive constant. What is the force that one atom exerts on
the other? Is this force attractive or repulsive?
7.35 .. CALC A force parallel to the x-axis acts on a particle mov-
ing along the x-axis. This force produces potential energy 
given by where What is the force
(magnitude and direction) when the particle is at 
7.36 .. CALC An object moving in the xy-plane is acted on by a
conservative force described by the potential-energy function 

where is a positive constant. Derive
an expression for the force expressed in terms of the unit vectors 
and .≥n

ın
aU1x, y2 = a11>x2 + 1>y22,

x = -0.800 m?
a = 1.20 J>m4.U1x2 = ax4,

U1x2

C6

U1x2 = -C6>x
6,

6.50 m>s 7.41 ... At a construction site, a 65.0-kg bucket of concrete hangs
from a light (but strong) cable that passes over a light, friction-free
pulley and is connected to an 80.0-kg box on a horizontal roof
(Fig. P7.41). The cable pulls horizontally on the box, and a 
50.0-kg bag of gravel rests on top of the box. The coefficients of
friction between the box and roof are shown. (a) Find the friction
force on the bag of gravel and on the box. (b) Suddenly a worker
picks up the bag of gravel. Use energy conservation to find 
the speed of the bucket after it has descended 2.00 m from rest.
(You can check your answer by solving this problem using 
Newton’s laws.)
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Figure E7.38

ms 5 0.700

Box

Gravel

Concrete

mk 5 0.400

Figure P7.41

7.42 . A 2.00-kg block is pushed against a spring with negligible
mass and force constant compressing it 0.220 m.
When the block is released, it moves along a frictionless, hori-
zontal surface and then up a frictionless incline with slope 
(Fig. P7.42). (a) What is the speed of the block as it slides along
the horizontal surface after having left the spring? (b) How far
does the block travel up the incline before starting to slide back
down?

37.0°

k = 400 N>m,

m 5 2.00 kgk 5 400 N/m

37.0°

0.220 m

Figure P7.42

k 5 100 N/m m 5 0.50 kg

1.00 m
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region, the stone travels 100 m and then runs into a very long, light
spring with force constant The coefficients of kinetic
and static friction between the stone and the horizontal ground are
0.20 and 0.80, respectively. (a) What is the speed of the stone when
it reaches point B? (b) How far will the stone compress the spring?
(c) Will the stone move again after it has been stopped by the
spring?
7.50 .. CP A 2.8-kg block
slides over the smooth, icy hill
shown in Fig. P7.50. The top of
the hill is horizontal and 70 m
higher than its base. What mini-
mum speed must the block have
at the base of the hill in order
for it to pass over the pit at the
far side of the hill?
7.51 ... Bungee Jump. A bungee cord is 30.0 m long and,
when stretched a distance x, it exerts a restoring force of magnitude
kx. Your father-in-law (mass 95.0 kg) stands on a platform 45.0 m
above the ground, and one end of the cord is tied securely to his
ankle and the other end to the platform. You have promised him that
when he steps off the platform he will fall a maximum distance of
only 41.0 m before the cord stops him. You had several bungee
cords to select from, and you tested them by stretching them out,
tying one end to a tree, and pulling on the other end with a force of
380.0 N. When you do this, what distance will the bungee cord that
you should select have stretched?
7.52 .. Ski Jump Ramp. You are designing a ski jump ramp for
the next Winter Olympics. You need to calculate the vertical height h
from the starting gate to the bottom of the ramp. The skiers push off
hard with their ski poles at the start, just above the starting gate, so
they typically have a speed of as they reach the gate. For
safety, the skiers should have a speed no higher than when
they reach the bottom of the ramp. You determine that for a 85.0-kg
skier with good form, friction and air resistance will do total work of
magnitude 4000 J on him during his run down the ramp. What is the
maximum height h for which the maximum safe speed will not be
exceeded?
7.53 ... The Great Sandini is a 60-kg circus performer who is
shot from a cannon (actually a spring gun). You don’t find many
men of his caliber, so you help him design a new gun. This new
gun has a very large spring with a very small mass and a force con-
stant of that he will compress with a force of 4400 N.
The inside of the gun barrel is coated with Teflon, so the average
friction force will be only 40 N during the 4.0 m he moves in 
the barrel. At what speed will he emerge from the end of the barrel,
2.5 m above his initial rest position?
7.54 ... You are designing a delivery ramp for crates containing
exercise equipment. The 1470-N crates will move at at the
top of a ramp that slopes downward at The ramp exerts a
550-N kinetic friction force on each crate, and the maximum static
friction force also has this value. Each crate will compress a spring
at the bottom of the ramp and will come to rest after traveling a
total distance of 8.0 m along the ramp. Once stopped, a crate must
not rebound back up the ramp. Calculate the force constant of the
spring that will be needed in order to meet the design criteria.
7.55 .. A system of two paint buckets connected by a lightweight
rope is released from rest with the 12.0-kg bucket 2.00 m above
the floor (Fig. P7.55). Use the principle of conservation of energy
to find the speed with which this bucket strikes the floor. You can
ignore friction and the mass of the pulley.

22.0°.
1.8 m>s

1100 N>m

30.0 m>s
2.0 m>s

2.00 N>m.
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7.45 .. A 350-kg roller coaster starts from rest at point A and
slides down the frictionless loop-the-loop shown in Fig. P7.45. 
(a) How fast is this roller coaster moving at point B? (b) How hard
does it press against the track at point B?

7.46 .. CP Riding a Loop-the-
Loop. A car in an amusement
park ride rolls without friction
around the track shown in Fig.
P7.46. It starts from rest at point
A at a height h above the bottom
of the loop. Treat the car as a par-
ticle. (a) What is the minimum
value of h (in terms of R) such that the car moves around the loop
without falling off at the top (point B)? (b) If and

compute the speed, radial acceleration, and tangential
acceleration of the passengers when the car is at point C, which is
at the end of a horizontal diameter. Show these acceleration com-
ponents in a diagram, approximately to scale.
7.47 .. A 2.0-kg piece of wood
slides on the surface shown in 
Fig. P7.47. The curved sides are
perfectly smooth, but the rough
horizontal bottom is 30 m long
and has a kinetic friction coeffi-
cient of 0.20 with the wood. The piece of wood starts from rest 
4.0 m above the rough bottom. (a) Where will this wood eventu-
ally come to rest? (b) For the motion from the initial release until
the piece of wood comes to rest, what is the total amount of work
done by friction?
7.48 .. Up and Down the Hill. A 28-kg rock approaches the
foot of a hill with a speed of This hill slopes upward at a
constant angle of above the horizontal. The coefficients of
static and kinetic friction between the hill and the rock are 0.75 and
0.20, respectively. (a) Use energy conservation to find the maxi-
mum height above the foot of the hill reached by the rock. (b) Will
the rock remain at rest at its highest point, or will it slide back
down the hill? (c) If the rock does slide back down, find its speed
when it returns to the bottom of the hill.
7.49 .. A 15.0-kg stone slides
down a snow-covered hill 
(Fig. P7.49), leaving point A with
a speed of There is no
friction on the hill between points
A and B, but there is friction on the
level ground at the bottom of 
the hill, between B and the wall.
After entering the rough horizontal

10.0 m>s.

40.0°
15 m>s.

R = 20.0 m,
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(a) How much work was done by the air on the baseball as it
moved from its initial position to its maximum height? (b) How
much work was done by the air on the baseball as it moved from
its maximum height back to the starting elevation? (c) Explain
why the magnitude of the answer in part (b) is smaller than the
magnitude of the answer in part (a).
7.61 .. Down the Pole. A fireman of mass m slides a distance d
down a pole. He starts from rest. He moves as fast at the bottom as if
he had stepped off a platform a distance above the ground and
descended with negligible air resistance. (a) What average friction
force did the fireman exert on the pole? Does your answer make sense
in the special cases of and (b) Find a numerical value
for the average friction force a 75-kg fireman exerts, for 
and (c) In terms of g, h, and d, what is the speed of the
fireman when he is a distance y above the bottom of the pole?
7.62 .. A 60.0-kg skier starts from rest at the top of a ski slope
65.0 m high. (a) If frictional forces do of work on her as
she descends, how fast is she going at the bottom of the slope? 
(b) Now moving horizontally, the skier crosses a patch of soft
snow, where If the patch is 82.0 m wide and the aver-
age force of air resistance on the skier is 160 N, how fast is she
going after crossing the patch? (c) The skier hits a snowdrift and
penetrates 2.5 m into it before coming to a stop. What is the aver-
age force exerted on her by the snowdrift as it stops her?
7.63 . CP A skier starts at
the top of a very large, fric-
tionless snowball, with a
very small initial speed, and
skis straight down the side
(Fig. P7.63). At what point
does she lose contact with
the snowball and fly off at a
tangent? That is, at the
instant she loses contact with
the snowball, what angle 
does a radial line from the
center of the snowball to the
skier make with the vertical?
7.64 .. A ball is thrown upward with an initial velocity of 
at an angle of 60.0° above the horizontal. Use energy conservation
to find the ball’s greatest height above the ground.
7.65 .. In a truck-loading station at a post office, a small 0.200-kg
package is released from rest at point A on a track that is one-
quarter of a circle with radius 1.60 m (Fig. P7.65). The size of the
package is much less than 1.60 m, so the package can be treated as
a particle. It slides down the track and reaches point B with a speed
of From point B, it slides on a level surface a distance of4.80 m>s.

15 m>s

a

mk = 0.20.

-10.5 kJ

h = 1.0 m.
d = 2.5 m

h = 0?h = d

h … d

-28.7 m>s11.9 m>s
18.6 m>s

40.0 m>s30.0 m>s

vyvx
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12.0 kg

4.0 kg

2.00 m

Figure P7.55

7.56 .. A 1500-kg rocket is
to be launched with an initial
upward speed of 
In order to assist its engines,
the engineers will start it
from rest on a ramp that
rises 53° above the horizon-
tal (Fig. P7.56). At the bot-
tom, the ramp turns upward
and launches the rocket ver-
tically. The engines provide
a constant forward thrust of
2000 N, and friction with
the ramp surface is a constant 500 N. How far from the base of the
ramp should the rocket start, as measured along the surface of the
ramp?
7.57 . Legal Physics. In an auto accident, a car hit a pedestrian
and the driver then slammed on the brakes to stop the car. During
the subsequent trial, the driver’s lawyer claimed that he was obey-
ing the posted speed limit, but that the legal speed was too
high to allow him to see and react to the pedestrian in time. You
have been called in as the state’s expert witness. Your investigation
of the accident found that the skid marks made while the brakes
were applied were 280 ft long, and the tread on the tires produced a
coefficient of kinetic friction of 0.30 with the road. (a) In your 
testimony in court, will you say that the driver was obeying the
posted speed? You must be able to back up your conclusion with
clear reasoning because one of the lawyers will surely cross-
examine you. (b) If the driver’s speeding ticket were $10 for each
mile per hour he was driving above the posted speed limit, would
he have to pay a fine? If so, how much would it be?
7.58 ... A wooden rod of negligible mass and length 80.0 cm is
pivoted about a horizontal axis through its center. A white rat with
mass 0.500 kg clings to one end of the stick, and a mouse with
mass 0.200 kg clings to the other end. The system is released from
rest with the rod horizontal. If the animals can manage to hold on,
what are their speeds as the rod swings through a vertical position?
7.59 .. CP A 0.300-kg potato is tied to a string with length 2.50 m,
and the other end of the string is tied to a rigid support. The potato
is held straight out horizontally from the point of support, with the
string pulled taut, and is then released. (a) What is the speed of the
potato at the lowest point of its motion? (b) What is the tension in
the string at this point?
7.60 .. These data are from a computer simulation for a batted
baseball with mass 0.145 kg, including air resistance:

35-mph

50.0 m>s.

Rocket is
launched
upward.

Rocket starts
       here.

53°

Figure P7.56

a

Figure P7.63

m 5 0.200 kg

B C

A

3.00 m

R 5 1.60 m

Figure P7.65



7.69 .. A 0.150-kg block of ice is placed against a horizontal,
compressed spring mounted on a horizontal tabletop that is 1.20 m
above the floor. The spring has force constant and is
initially compressed 0.045 m. The mass of the spring is negligible.
The spring is released, and the block slides along the table, goes
off the edge, and travels to the floor. If there is negligible friction
between the block of ice and the tabletop, what is the speed of the
block of ice when it reaches the floor?
7.70 .. A 3.00-kg block is con-
nected to two ideal horizon-
tal springs having force constants

and
(Fig. P7.70). The

system is initially in equilibrium on a horizontal, frictionless
surface. The block is now pushed 15.0 cm to the right and released

20.0 N>cm
k2 =k1 = 25.0 N>cm

1900 N>m
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3.00 m to point C, where it comes to rest. (a) What is the coeffi-
cient of kinetic friction on the horizontal surface? (b) How much
work is done on the package by friction as it slides down the circu-
lar arc from A to B?
7.66 ... A truck with mass m has a brake failure while going
down an icy mountain road of constant downward slope angle 
(Fig. P7.66). Initially the truck is moving downhill at speed 
After careening downhill a distance L with negligible friction, the
truck driver steers the runaway vehicle onto a runaway truck ramp
of constant upward slope angle The truck ramp has a soft sand
surface for which the coefficient of rolling friction is What is
the distance that the truck moves up the ramp before coming to a
halt? Solve using energy methods.

mr.
b.

v0.
a

from rest. (a) What is the maximum speed of the block? Where in
the motion does the maximum speed occur? (b) What is the maxi-
mum compression of spring 1?
7.71 .. An experimental apparatus with mass m is placed on a
vertical spring of negligible mass and pushed down until the spring
is compressed a distance x. The apparatus is then released and
reaches its maximum height at a distance h above the point where
it is released. The apparatus is not attached to the spring, and at its
maximum height it is no longer in contact with the spring. The
maximum magnitude of acceleration the apparatus can have with-
out being damaged is a, where (a) What should the force
constant of the spring be? (b) What distance x must the spring be
compressed initially?
7.72 .. If a fish is attached to a vertical spring and slowly lowered 
to its equilibrium position, it is found to stretch the spring by an
amount d. If the same fish is attached to the end of the unstretched
spring and then allowed to fall from rest, through what maximum dis-
tance does it stretch the spring? (Hint: Calculate the force constant of
the spring in terms of the distance d and the mass m of the fish.)
7.73 ... CALC A 3.00-kg fish is attached to the lower end of a ver-
tical spring that has negligible mass and force constant .
The spring initially is neither stretched nor compressed. The fish is
released from rest. (a) What is its speed after it has descended
0.0500 m from its initial position? (b) What is the maximum speed
of the fish as it descends?
7.74 .. A basket of negligible weight hangs from a vertical spring
scale of force constant . (a) If you suddenly put a 3.0-kg
adobe brick in the basket, find the maximum distance that the
spring will stretch. (b) If, instead, you release the brick from 1.0 m
above the basket, by how much will the spring stretch at its maxi-
mum elongation?
7.75 . A 0.500-kg block, attached to a spring with length 0.60 m
and force constant is at rest with the back of the block
at point A on a frictionless, horizontal air table (Fig. P7.75). The
mass of the spring is negligible. You move the block to the right
along the surface by pulling with a constant 20.0-N horizontal
force. (a) What is the block’s speed when the back of the block
reaches point B, which is 0.25 m to the right of point A? (b) When
the back of the block reaches point B, you let go of the block. In
the subsequent motion, how close does the block get to the wall
where the left end of the spring is attached?

40.0 N>m,

1500 N>m

900 N>m

a 7 g.

7.67 .. CALC A certain spring is found not to obey Hooke’s law; it
exerts a restoring force if it is stretched or
compressed, where and The mass
of the spring is negligible. (a) Calculate the potential-energy func-
tion for this spring. Let when (b) An object with
mass 0.900 kg on a frictionless, horizontal surface is attached to this
spring, pulled a distance 1.00 m to the right (the ) to
stretch the spring, and released. What is the speed of the object when
it is 0.50 m to the right of the equilibrium position?
7.68 .. CP A sled with rider having a combined mass of 125 kg
travels over the perfectly smooth icy hill shown in Fig. 7.68. How
far does the sled land from the foot of the cliff?

x = 0

+x-direction

x = 0.U = 0U1x2

b = 18.0 N>m2.a = 60.0 N>m
Fx1x2 = -ax - bx2

Distance 5 ?LIcy road

Ski’sVan Lines

Truck ramp

v0

ba

Figure P7.66

11.0 m Cliff

22.5 m/s

Figure P7.68

k1 k2

Figure P7.70

k 5 40.0 N/m m 5 0.500 kg

F 5 20.0 N

0.60 m 0.25 m

A B

Figure P7.75

7.76 .. Fraternity Physics. The brothers of Iota Eta Pi frater-
nity build a platform, supported at all four corners by vertical
springs, in the basement of their frat house. A brave fraternity
brother wearing a football helmet stands in the middle of the plat-
form; his weight compresses the springs by 0.18 m. Then four of
his fraternity brothers, pushing down at the corners of the plat-
form, compress the springs another 0.53 m until the top of the
brave brother’s helmet is 0.90 m below the basement ceiling. They
then simultaneously release the platform. You can ignore the
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masses of the springs and platform. (a) When the dust clears, the
fraternity asks you to calculate their fraternity brother’s speed just
before his helmet hit the flimsy ceiling. (b) Without the ceiling,
how high would he have gone? (c) In discussing their probation,
the dean of students suggests that the next time they try this, they
do it outdoors on another planet. Would the answer to part (b) be
the same if this stunt were performed on a planet with a different
value of g? Assume that the fraternity brothers push the platform
down 0.53 m as before. Explain your reasoning.
7.77 ... CP A small block with mass 0.0500 kg slides in a verti-
cal circle of radius on the inside of a circular track.
There is no friction between the track and the block. At the bot-
tom of the block’s path, the normal force the track exerts on the
block has magnitude 3.40 N. What is the magnitude of the nor-
mal force that the track exerts on the block when it is at the top of
its path?
7.78 ... CP A small block with mass 0.0400 kg slides in a ver-
tical circle of radius on the inside of a circular
track. During one of the revolutions of the block, when the block
is at the bottom of its path, point A, the magnitude of the normal
force exerted on the block by the track has magnitude 3.95 N. In
this same revolution, when the block reaches the top of its 
path, point B, the magnitude of the normal force exerted on the
block has magnitude 0.680 N. How much work was done on the
block by friction during the motion of the block from point A to
point B?
7.79 .. A hydroelectric dam holds back a lake of surface area

that has vertical sides below the water level. The
water level in the lake is 150 m above the base of the dam. When the
water passes through turbines at the base of the dam, its mechanical
energy is converted to electrical energy with 90% efficiency. (a) If
gravitational potential energy is taken to be zero at the base of the
dam, how much energy is stored in the top meter of the water in the
lake? The density of water is (b) What volume of water
must pass through the dam to produce 1000 kilowatt-hours of
electrical energy? What distance does the level of water in the lake
fall when this much water passes through the dam?
7.80 .. CALC How much total energy is stored in the lake in 
Problem 7.79? As in that problem, take the gravitational potential
energy to be zero at the base of the dam. Express your answer in
joules and in kilowatt-hours. (Hint: Break the lake up into infini-
tesimal horizontal layers of thickness dy, and integrate to find the
total potential energy.)
7.81 ... A wooden block with mass 1.50 kg is placed against a com-
pressed spring at the bottom of an incline of slope (point A).
When the spring is released, it projects the block up the incline. At
point B, a distance of 6.00 m up the incline from A, the block is
moving up the incline at and is no longer in contact with
the spring. The coefficient of kinetic friction between the block
and the incline is The mass of the spring is negligible.
Calculate the amount of potential energy that was initially stored
in the spring.
7.82 .. CP Pendulum. A small rock with mass 0.12 kg is fas-
tened to a massless string with length 0.80 m to form a pendulum.
The pendulum is swinging so as to make a maximum angle of 
with the vertical. Air resistance is negligible. (a) What is the speed
of the rock when the string passes through the vertical position?
(b) What is the tension in the string when it makes an angle of 
with the vertical? (c) What is the tension in the string as it passes
through the vertical?
7.83 ... CALC A cutting tool under microprocessor control has
several forces acting on it. One force is a force inF

S
� -axy2≥n,

45°

45°

mk = 0.50.

7.00 m>s

30.0°

1000 kg>m3.

3.0 * 106 m2

R = 0.500 m

R = 0.800 m

the negative y-direction whose magnitude depends on the posi-
tion of the tool. The constant is Consider the
displacement of the tool from the origin to the point 

(a) Calculate the work done on the tool by if this
displacement is along the straight line that connects these
two points. (b) Calculate the work done on the tool by if the
tool is first moved out along the x-axis to the point

and then moved parallel to the y-axis to the
point (c) Compare the work done by 
along these two paths. Is conservative or nonconservative?
Explain.
7.84 . CALC (a) Is the force where C is a negative 
constant with units of conservative or nonconservative?
Justify your answer. (b) Is the force where C is a nega-
tive constant with units of conservative or nonconservative?
Justify your answer.
7.85 .. CALC An object has several forces acting on it. One force
is a force in the x-direction whose magnitude depends
on the position of the object. (See Problem 6.98.) The constant is

The object moves along the following path: (1) It
starts at the origin and moves along the y-axis to the point 

(2) it moves parallel to the x-axis to the point
(3) it moves parallel to the y-axis to the

point (4) it moves parallel to the x-axis back to
the origin. (a) Sketch this path in the xy-plane. (b) Calculate the work
done on the object by for each leg of the path and for the complete
round trip. (c) Is conservative or nonconservative? Explain.
7.86 . A particle moves along
the x-axis while acted on by a
single conservative force paral-
lel to the x-axis. The force corre-
sponds to the potential-energy
function graphed in Fig. P7.86.
The particle is released from rest
at point A. (a) What is the direc-
tion of the force on the particle
when it is at point A? (b) At point B? (c) At what value of x is the
kinetic energy of the particle a maximum? (d) What is the force on
the particle when it is at point C? (e) What is the largest value of x
reached by the particle during its motion? (f) What value or values
of x correspond to points of stable equilibrium? (g) Of unstable
equilibrium?

CHALLENGE PROBLEM
7.87 ... CALC A proton with mass m moves in one dimension.
The potential-energy function is where 
and are positive constants. The proton is released from rest at

(a) Show that can be written as 

Graph . Calculate and thereby locate the point on
the graph. (b) Calculate the speed of the proton as a function
of position. Graph and give a qualitative description of the
motion. (c) For what value of x is the speed of the proton a maxi-
mum? What is the value of that maximum speed? (d) What is 
the force on the proton at the point in part (c)? (e) Let the proton be
released instead at Locate the point on the graph of

Calculate and give a qualitative description of the
motion. (f) For each release point what are
the maximum and minimum values of x reached during the motion?
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Chapter Opening Question ?
The mallard’s kinetic energy K remains constant because the speed
remains the same, but the gravitational potential energy 
decreases as the mallard descends. Hence the total mechanical
energy decreases. The lost mechanical energy 
goes into warming the mallard’s skin (that is, an increase in the
mallard’s internal energy) and stirring up the air through which the
mallard passes (an increase in the internal energy of the air). See
the discussion in Section 7.3.

Test Your Understanding Questions
7.1 Answer: (iii) The initial kinetic energy the initial
potential energy and the final potential energy

are the same for both blocks. Mechanical energy is
conserved in both cases, so the final kinetic energy is
also the same for both blocks. Hence the speed at the right-hand
end is the same in both cases!
7.2 Answer: (iii) The elevator is still moving downward, so the
kinetic energy K is positive (remember that K can never be nega-

K2 = 1
2 mv2

2
U2 = mgy2

U1 = mgy1,
K1 = 0,

E = K + Ugrav

Ugrav

tive); the elevator is below point 1, so and and
the spring is compressed, so 
7.3 Answer: (iii) Because of friction in the turbines and between
the water and turbines, some of the potential energy goes into rais-
ing the temperatures of the water and the mechanism.
7.4 Answers: (a) (iv), (b) (i) If at a point, then the deriv-
ative of must be zero at that point because 
However, this tells us absolutely nothing about the value of
at that point.
7.5 Answers: (iii) Figure 7.24b shows the x-component of force,

Where this is maximum (most positive), the x-component of
force and the x-acceleration have more positive values than at
adjacent values of x.

Bridging Problem
Answers: (a) 1.06 m 

(b) 1.32 m 
(c) 20.7 J

Fx.

U1x2
Fx = -dU1x2>dx.U1x2

Fx = 0

Uel 7 0.
Ugrav 6 0;y 6 0

Answers


