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? This skydiver is descending under a parachute at a steady rate. In this 
situation, which has a greater magnitude: the force of gravity or the upward
force of the air on the skydiver?

LEARNING GOALS

By studying this chapter, you will

learn:

• How to use Newton’s first law to

solve problems involving the forces

that act on a body in equilibrium.

• How to use Newton’s second law to

solve problems involving the forces

that act on an accelerating body.

• The nature of the different types of

friction forces—static friction, kinetic

friction, rolling friction, and fluid

resistance—and how to solve prob-

lems that involve these forces.

• How to solve problems involving the

forces that act on a body moving

along a circular path.

• The key properties of the four funda-

mental forces of nature.

5 APPLYING 
NEWTON’S LAWS

We saw in Chapter 4 that Newton’s three laws of motion, the founda-
tion of classical mechanics, can be stated very simply. But applying
these laws to situations such as an iceboat skating across a frozen

lake, a toboggan sliding down a hill, or an airplane making a steep turn requires
analytical skills and problem-solving technique. In this chapter we’ll help you
extend the problem-solving skills you began to develop in Chapter 4.

We’ll begin with equilibrium problems, in which we analyze the forces that
act on a body at rest or moving with constant velocity. We’ll then consider bodies
that are not in equilibrium, for which we’ll have to deal with the relationship
between forces and motion. We’ll learn how to describe and analyze the contact
force that acts on a body when it rests on or slides over a surface. We’ll also ana-
lyze the forces that act on a body that moves in a circle with constant speed. We
close the chapter with a brief look at the fundamental nature of force and the
classes of forces found in our physical universe.

5.1 Using Newton’s First Law: 
Particles in Equilibrium

We learned in Chapter 4 that a body is in equilibrium when it is at rest or mov-
ing with constant velocity in an inertial frame of reference. A hanging lamp, a
kitchen table, an airplane flying straight and level at a constant speed—all are
examples of equilibrium situations. In this section we consider only equilibrium
of a body that can be modeled as a particle. (In Chapter 11 we’ll see how to ana-
lyze a body in equilibrium that can’t be represented adequately as a particle,
such as a bridge that’s supported at various points along its span.) The essential



5.1 Using Newton’s First Law: Particles in Equilibrium 135

physical principle is Newton’s first law: When a particle is in equilibrium, the
net force acting on it—that is, the vector sum of all the forces acting on it—must
be zero:

(particle in equilibrium, vector form) (5.1)

We most often use this equation in component form:

(particle in equilibrium, component form) (5.2)

This section is about using Newton’s first law to solve problems dealing with
bodies in equilibrium. Some of these problems may seem complicated, but the
important thing to remember is that all problems involving particles in equilib-
rium are done in the same way. Problem-Solving Strategy 5.1 details the steps
you need to follow for any and all such problems. Study this strategy carefully,
look at how it’s applied in the worked-out examples, and try to apply it yourself
when you solve assigned problems.

aFx = 0  aFy = 0

aF
S

� 0

Problem-Solving Strategy 5.1 Newton’s First Law: Equilibrium of a Particle

IDENTIFY the relevant concepts: You must use Newton’s first
law for any problem that involves forces acting on a body in
equilibrium—that is, either at rest or moving with constant veloc-
ity. For example, a car is in equilibrium when it’s parked, but also
when it’s traveling down a straight road at a steady speed.

If the problem involves more than one body and the bodies inter-
act with each other, you’ll also need to use Newton’s third law. This
law allows you to relate the force that one body exerts on a second
body to the force that the second body exerts on the first one.

Identify the target variable(s). Common target variables in
equilibrium problems include the magnitude and direction (angle)
of one of the forces, or the components of a force.

SET UP the problem using the following steps:
1. Draw a very simple sketch of the physical situation, showing

dimensions and angles. You don’t have to be an artist!
2. Draw a free-body diagram for each body that is in equilibrium.

For the present, we consider the body as a particle, so you can
represent it as a large dot. In your free-body diagram, do not
include the other bodies that interact with it, such as a surface it
may be resting on or a rope pulling on it.

3. Ask yourself what is interacting with the body by touching it or
in any other way. On your free-body diagram, draw a force vec-
tor for each interaction. Label each force with a symbol for the
magnitude of the force. If you know the angle at which a force is
directed, draw the angle accurately and label it. Include the
body’s weight, unless the body has negligible mass. If the mass
is given, use to find the weight. A surface in contact
with the body exerts a normal force perpendicular to the surface
and possibly a friction force parallel to the surface. A rope or
chain exerts a pull (never a push) in a direction along its length.

4. Do not show in the free-body diagram any forces exerted by the
body on any other body. The sums in Eqs. (5.1) and (5.2)

w = mg

include only forces that act on the body. For each force on the
body, ask yourself “What other body causes that force?” If you
can’t answer that question, you may be imagining a force that
isn’t there.

5. Choose a set of coordinate axes and include them in your
free-body diagram. (If there is more than one body in the
problem, choose axes for each body separately.) Label the
positive direction for each axis. If a body rests or slides on a
plane surface, it usually simplifies things to choose axes that
are parallel and perpendicular to this surface, even when the
plane is tilted.

EXECUTE the solution as follows:
1. Find the components of each force along each of the body’s

coordinate axes. Draw a wiggly line through each force vector
that has been replaced by its components, so you don’t count it
twice. The magnitude of a force is always positive, but its
components may be positive or negative.

2. Set the sum of all x-components of force equal to zero. In a sep-
arate equation, set the sum of all y-components equal to zero.
(Never add x- and y-components in a single equation.)

3. If there are two or more bodies, repeat all of the above steps for
each body. If the bodies interact with each other, use Newton’s
third law to relate the forces they exert on each other.

4. Make sure that you have as many independent equations as the
number of unknown quantities. Then solve these equations to
obtain the target variables.

EVALUATE your answer: Look at your results and ask whether they
make sense. When the result is a symbolic expression or formula,
check to see that your formula works for any special cases (partic-
ular values or extreme cases for the various quantities) for which
you can guess what the results ought to be.
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Example 5.1 One-dimensional equilibrium: Tension in a massless rope

A gymnast with mass suspends herself from the
lower end of a hanging rope of negligible mass. The upper end of
the rope is attached to the gymnasium ceiling. (a) What is the gym-
nast’s weight? (b) What force (magnitude and direction) does the
rope exert on her? (c) What is the tension at the top of the rope?

SOLUTION

IDENTIFY and SET UP: The gymnast and the rope are in equilib-
rium, so we can apply Newton’s first law to both bodies. We’ll use
Newton’s third law to relate the forces that they exert on each
other. The target variables are the gymnast’s weight, the force
that the bottom of the rope exerts on the gymnast 
and the force that the ceiling exerts on the top of the rope

Figure 5.1 shows our sketch of the situation and
free-body diagrams for the gymnast and for the rope. We take the
positive y-axis to be upward in each diagram. Each force acts in
the vertical direction and so has only a y-component.

The forces (the upward force of the rope on the gym-
nast, Fig. 5.1b) and (the downward force of the gymnast on
the rope, Fig. 5.1c) form an action–reaction pair. By Newton’s
third law, they must have the same magnitude.

TG on R

TR on G

1call it TC on R2.

1call it TR on G2;
wG;

mG = 50.0 kg Note that Fig. 5.1c includes only the forces that act on the rope.
In particular, it doesn’t include the force that the rope exerts on the
ceiling (compare the discussion of the apple in Conceptual Exam-
ple 4.9 in Section 4.5). Similarly, the force that the rope exerts on
the ceiling doesn’t appear in Fig. 5.1c.

EXECUTE: (a) The magnitude of the gymnast’s weight is the prod-
uct of her mass and the acceleration due to gravity, g:

(b) The gravitational force on the gymnast (her weight) points
in the negative y-direction, so its y-component is The
upward force of the rope on the gymnast has unknown magnitude

and positive y-component We find this using
Newton’s first law:

The rope pulls up on the gymnast with a force of magnitude
490 N. (By Newton’s third law, the gymnast pulls down on the
rope with a force of the same magnitude, 

(c) We have assumed that the rope is weightless, so the only
forces on it are those exerted by the ceiling (upward force of
unknown magnitude ) and by the gymnast (downward force
of magnitude From Newton’s first law, the net
vertical force on the rope in equilibrium must be zero:

EVALUATE: The tension at any point in the rope is the magnitude of
the force that acts at that point. For this weightless rope, the ten-
sion at the lower end has the same value as the tension

at the upper end. For such an ideal weightless rope, the ten-
sion has the same value at any point along the rope’s length. (See
the discussion in Conceptual Example 4.10 in Section 4.5.)

TC on R

TG on R

TC on R = TG on R = 490 N

 Rope:  aFy = TC on R + 1-TG on R2 = 0  so

TG on R = 490 N).
TC on R

TG on R = 490 N.)

TR on G

TR on G = wG = 490 N

 Gymnast:  aFy = TR on G + 1-wG2 = 0  so

+TR on G.TR on G

-wG.

wG = mGg = 150.0 kg219.80 m>s22 = 490 N

Action–
reaction
pair

(a) The situation (b) Free-body
diagram for gymnast

(c) Free-body
diagram for rope

5.1 Our sketches for this problem.

Example 5.2 One-dimensional equilibrium: Tension in a rope with mass

Find the tension at each end of the rope in Example 5.1 if the
weight of the rope is 120 N.

SOLUTION

IDENTIFY and SET UP: As in Example 5.1, the target variables are
the magnitudes and of the forces that act at the bot-
tom and top of the rope, respectively. Once again, we’ll apply
Newton’s first law to the gymnast and to the rope, and use New-
ton’s third law to relate the forces that the gymnast and rope exert
on each other. Again we draw separate free-body diagrams for the
gymnast (Fig. 5.2a) and the rope (Fig. 5.2b). There is now a third
force acting on the rope, however: the weight of the rope, of mag-
nitude

EXECUTE: The gymnast’s free-body diagram is the same as in
Example 5.1, so her equilibrium condition is also the same. From

wR = 120 N.

TC on RTG on R

Newton’s third law, and we again have

The equilibrium condition for the rope is now

Note that the y-component of is positive because it points in
the but the y-components of both and are
negative. We solve for and substitute the values

and

EVALUATE: When we include the weight of the rope, the tension
is different at the rope’s two ends: 610 N at the top and 490 N at

TC on R = TG on R + wR = 490 N + 120 N = 610 N

wR = 120 N:TG on R = TR on G = 490 N
TC on R

wRTG on R+y-direction,
TC on R

Rope:  aFy = TC on R + 1-TG on R2 + 1-wR2 = 0

gFy = 0

TR on G = TG on R = wG = 490 N

 Gymnast:  aFy = TR on G + 1-wG2 = 0  so

TR on G = TG on R,



the bottom. The force exerted by the ceiling has to
hold up both the 490-N weight of the gymnast and the 120-N
weight of the rope.

To see this more clearly, we draw a free-body diagram for a
composite body consisting of the gymnast and rope together
(Fig. 5.2c). Only two external forces act on this composite body:
the force exerted by the ceiling and the total weight

(The forces and
are internal to the composite body. Newton’s first law

applies only to external forces, so these internal forces play no
role.) Hence Newton’s first law applied to this composite body is

and so 
Treating the gymnast and rope as a composite body is simpler,

but we can’t find the tension at the bottom of the rope by
this method. Moral: Whenever you have more than one body in a
problem involving Newton’s laws, the safest approach is to treat
each body separately.

TG on R

TC on R = wG + wR = 610 N.

Composite body:  aFy = TC on R + 3-1wG + wR24 = 0

TR on G

TG on RwG + wR = 490 N + 120 N = 610 N.
TC on R

TC on R = 610 N
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Action–
reaction
pair

(a) Free-body
diagram for gymnast

(b) Free-body
diagram for rope

(c) Free-body diagram
for gymnast and rope
as a composite body

5.2 Our sketches for this problem, including the weight of the
rope.

Example 5.3 Two-dimensional equilibrium

In Fig. 5.3a, a car engine with weight w hangs from a chain that is
linked at ring O to two other chains, one fastened to the ceiling and
the other to the wall. Find expressions for the tension in each of the
three chains in terms of w. The weights of the ring and chains are
negligible compared with the weight of the engine.

SOLUTION

IDENTIFY and SET UP: The target variables are the tension magni-
tudes and in the three chains (Fig. 5.3a). All the bodies are
in equilibrium, so we’ll use Newton’s first law. We need three
independent equations, one for each target variable. However,
applying Newton’s first law to just one body gives us only two
equations, as in Eqs. (5.2). So we’ll have to consider more than
one body in equilibrium. We’ll look at the engine (which is acted
on by ) and the ring (which is acted on by all three chains and so
is acted on by all three tensions).

Figures 5.3b and 5.3c show our free-body diagrams and choice
of coordinate axes. There are two forces that act on the engine: its
weight w and the upward force exerted by the vertical chain.T1

T1

T3T2,T1,

Three forces act on the ring: the tensions from the vertical chain
the horizontal chain and the slanted chain 

Because the vertical chain has negligible weight, it exerts forces
of the same magnitude at both of its ends (see Example 5.1). (If
the weight of this chain were not negligible, these two forces
would have different magnitudes like the rope in Example 5.2.)
The weight of the ring is also negligible, which is why it isn’t
included in Fig. 5.3c.

EXECUTE: The forces acting on the engine are along the y-axis
only, so Newton’s first law says

The horizontal and slanted chains don’t exert forces on the
engine itself because they are not attached to it. These forces do
appear when we apply Newton’s first law to the ring, however. In
the free-body diagram for the ring (Fig. 5.3c), remember that 

and are the magnitudes of the forces. We resolve the force
with magnitude into its x- and y-components. The ring is in
equilibrium, so using Newton’s first law we can write (separate)

T3

T3T2,
T1,

Engine:  aFy = T1 + 1-w2 = 0  and  T1 = w

T1

1T32.1T22,1T12,

(a) Engine, chains, and ring

T1

T3
T2

O

60°

(b) Free-body
diagram for engine

(c) Free-body
diagram for ring O

5.3 (a) The situation. (b), (c) Our free-body diagrams.

Continued
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equations stating that the x- and y-components of the net force on
the ring are zero:

Because (from the engine equation), we can rewrite the
second ring equation as

We can now use this result in the first ring equation:

T2 = T3 cos 60° = w
cos 60°

sin 60°
= 0.58w

T3 =
T1

sin 60°
=

w

sin 60°
= 1.2w

T1 = w

 Ring:  aFy = T3 sin 60° + 1-T12 = 0

 Ring:  aFx = T3 cos 60° + 1-T22 = 0

EVALUATE: The chain attached to the ceiling exerts a force on the
ring with a vertical component equal to which in turn is equal
to w. But this force also has a horizontal component, so its magni-
tude is somewhat larger than w. This chain is under the greatest
tension and is the one most susceptible to breaking.

To get enough equations to solve this problem, we had to con-
sider not only the forces on the engine but also the forces acting on
a second body (the ring connecting the chains). Situations like this
are fairly common in equilibrium problems, so keep this technique
in mind.

T3

T1,

Example 5.4 An inclined plane

A car of weight w rests on a slanted ramp attached to a trailer
(Fig. 5.4a). Only a cable running from the trailer to the car pre-
vents the car from rolling off the ramp. (The car’s brakes are off
and its transmission is in neutral.) Find the tension in the cable
and the force that the ramp exerts on the car’s tires.

SOLUTION

IDENTIFY: The car is in equilibrium, so we use Newton’s first law.
The ramp exerts a separate force on each of the car’s tires, but for
simplicity we lump these forces into a single force. For a further
simplification, we’ll neglect any friction force the ramp exerts on
the tires (see Fig. 4.2b). Hence the ramp only exerts a force on the
car that is perpendicular to the ramp. As in Section 4.1, we call
this force the normal force (see Fig. 4.2a). The two target variables
are the magnitude n of the normal force and the magnitude T of the
tension in the cable.

SET UP: Figure 5.4 shows the situation and a free-body diagram
for the car. The three forces acting on the car are its weight (mag-
nitude w), the tension in the cable (magnitude T ), and the normal
force (magnitude n). Note that the angle between the ramp and
the horizontal is equal to the angle between the weight vector

and the downward normal to the plane of the ramp. Note also
that we choose the x- and y-axes to be parallel and perpendicular
to the ramp so that we only need to resolve one force (the weight)
into x- and y-components. If we chose axes that were horizontal
and vertical, we’d have to resolve both the normal force and the
tension into components.

wS
a

a

EXECUTE: To write down the x- and y-components of Newton’s first
law, we must first find the components of the weight. One complica-
tion is that the angle in Fig. 5.4b is not measured from the 
toward the Hence we cannot use Eqs. (1.6) directly to
find the components. (You may want to review Section 1.8 to make
sure that you understand this important point.)

One way to find the components of is to consider the 
right triangles in Fig. 5.4b. The sine of is the magnitude of the
x-component of (that is, the side of the triangle opposite )
divided by the magnitude w (the hypotenuse of the triangle).
Similarly, the cosine of is the magnitude of the y-component
(the side of the triangle adjacent to ) divided by w. Both com-
ponents are negative, so and 

Another approach is to recognize that one component of 
must involve while the other component involves To
decide which is which, draw the free-body diagram so that the
angle is noticeably smaller or larger than 45°. (You’ll have to
fight the natural tendency to draw such angles as being close to 45°.)
We’ve drawn Fig. 5.4b so that is smaller than 45°, so is less
than The figure shows that the x-component of is smaller
than the y-component, so the x-component must involve and
the y-component must involve We again find 
and

In Fig. 5.4b we draw a wiggly line through the original vector
representing the weight to remind us not to count it twice. New-
ton’s first law gives us

(Remember that T, w, and n are all magnitudes of vectors and are
therefore all positive.) Solving these equations for T and n, we find

EVALUATE: Our answers for T and n depend on the value of . To
check this dependence, let’s look at some special cases. If the ramp
is horizontal we get and As you might
expect, no cable tension T is needed to hold the car, and the normal
force n is equal in magnitude to the weight. If the ramp is vertical

we get and . The cable tension T supportsn = 0T = w1a = 90°2,

n = w.T = 0a = 02,1

a

n = w cos a

T = w sin a

aFy = n + 1-w cos a2 = 0
aFx = T + 1-w sin a2 = 0

wy = -w cos a.
wx = -w sin acos a.

sin a
wScos a.
sin aa

a

cos a.sin a
wS

wy = -w cos a.wx = -w sin a
a

a

awS
a

wS

+y-axis.
+x-axisa

w sin a

w cos a

w

T

x

aa

y

n

w

T

n

(b) Free-body diagram for car(a) Car on ramp

We replace the weight
by its components.

5.4 A cable holds a car at rest on a ramp.



all of the car’s weight, and there’s nothing pushing the car against
the ramp.

CAUTION Normal force and weight may not be equal It’s a com-
mon error to automatically assume that the magnitude n of the nor-
mal force is equal to the weight w: Our result shows that this is not
true in general. It’s always best to treat n as a variable and solve for
its value, as we have done here. ❙
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How would the answers for T and n be affected if the car
were being pulled up the ramp at a constant speed? This,
too, is an equilibrium situation, since the car’s velocity is con-
stant. So the calculation is the same, and T and n have the same
values as when the car is at rest. (It’s true that T must be greater
than to start the car moving up the ramp, but that’s not
what we asked.)

w sin a

Example 5.5 Equilibrium of bodies connected by cable and pulley

Blocks of granite are to be hauled up a 15° slope out of a quarry,
and dirt is to be dumped into the quarry to fill up old holes. To sim-
plify the process, you design a system in which a granite block on
a cart with steel wheels (weight including both block and cart)
is pulled uphill on steel rails by a dirt-filled bucket (weight 
including both dirt and bucket) that descends vertically into the
quarry (Fig. 5.5a). How must the weights and be related in
order for the system to move with constant speed? Ignore friction
in the pulley and wheels, and ignore the weight of the cable.

SOLUTION

IDENTIFY and SET UP: The cart and bucket each move with a con-
stant velocity (in a straight line at constant speed). Hence each
body is in equilibrium, and we can apply Newton’s first law to
each. Our target is an expression relating the weights and .

Figure 5.5b shows our idealized model for the system, and
Figs. 5.5c and 5.5d show our free-body diagrams. The two forces
on the bucket are its weight and an upward tension exerted by
the cable. As for the car on the ramp in Example 5.4, three forces
act on the cart: its weight a normal force of magnitude n
exerted by the rails, and a tension force from the cable. (We’re
ignoring friction, so we assume that the rails exert no force on the
cart parallel to the incline.) Note that we orient the axes differ-

w1,

w2

w2w1

w2w1

w2,
w1,

ently for each body; the choices shown are the most convenient
ones.

We’re assuming that the cable has negligible weight, so the ten-
sion forces that the cable exerts on the cart and on the bucket have
the same magnitude T. As we did for the car in Example 5.4, we
represent the weight of the cart in terms of its x- and y-components.

EXECUTE: Applying to the bucket in Fig. 5.5c, we find

Applying to the cart (and block) in Fig. 5.5d, we get

Equating the two expressions for T, we find

EVALUATE: Our analysis doesn’t depend at all on the direction in
which the cart and bucket move. Hence the system can move with
constant speed in either direction if the weight of the dirt and bucket
is 26% of the weight of the granite block and cart. What would
happen if were greater than If it were less than 0.26w1?0.26w1?w2

w2 = w1 sin 15° = 0.26w1

aFx = T + 1-w1 sin 15°2 = 0  so T = w1 sin 15°

gFx = 0

aFy = T + 1-w22 = 0  so T = w2

gFy = 0

15°

Cart

Bucket

(a) Dirt-filled bucket pulls cart with granite block

(b) Idealized model of the system

(c) Free-body
diagram for bucket

(d) Free-body
diagram for cart

5.5 (a) The situation. (b) Our idealized model. (c), (d) Our free-body diagrams.

Test Your Understanding of Section 5.1 A traffic light of weight w
hangs from two lightweight cables, one on each side of the light. Each cable hangs
at a 45° angle from the horizontal. What is the tension in each cable? (i) 
(ii) (iii) w; (iv) (v) 2w. ❙w12 ;w>12;

w>2;

?

Notice that we didn’t need the equation for the cart
and block. Can you use this to show that n = w1 cos 15°?

gFy = 0
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5.2 Using Newton’s Second Law: 
Dynamics of Particles

We are now ready to discuss dynamics problems. In these problems, we apply
Newton’s second law to bodies on which the net force is not zero. These bodies
are not in equilibrium and hence are accelerating. The net force on the body is
equal to the mass of the body times its acceleration:

(Newton’s second law, vector form) (5.3)

We most often use this relationship in component form:

(5.4)

The following problem-solving strategy is very similar to Problem-Solving
Strategy 5.1 for equilibrium problems in Section 5.1. Study it carefully, watch
how we apply it in our examples, and use it when you tackle the end-of-chapter
problems. You can solve any dynamics problem using this strategy.

CAUTION doesn’t belong in free-body diagrams Remember that the quantity is
the result of forces acting on a body, not a force itself; it’s not a push or a pull exerted by
anything in the body’s environment. When you draw the free-body diagram for an acceler-
ating body (like the fruit in Fig. 5.6a), make sure you never include the force”
because there is no such force (Fig. 5.6c). You should review Section 4.3 if you’re not
clear on this point. Sometimes we draw the acceleration vector alongside a free-body
diagram, as in Fig. 5.6b. But we never draw the acceleration vector with its tail touching
the body (a position reserved exclusively for the forces that act on the body). ❙

aS

“maS

maSmaS

(Newton’s second law,
component form)aFx = max  aFy = ma y

aF
S

� maS

You can safely draw
the acceleration
vector to one side
of the diagram.

This vector doesn’t
belong in a free-body
diagram because ma
is not a force.

w

ma

y

x

(b) Correct free-body diagram

w ay

y

x

Only the force of gravity
acts on this falling fruit.

(a)

S

(c) Incorrect free-body diagram

RIGHT!

WRONG

5.6 Correct and incorrect free-body dia-
grams for a falling body.

Problem-Solving Strategy 5.2 Newton’s Second Law: Dynamics of Particles

IDENTIFY the relevant concepts: You have to use Newton’s second
law for any problem that involves forces acting on an accelerating
body.

Identify the target variable—usually an acceleration or a force.
If the target variable is something else, you’ll need to select another
concept to use. For example, suppose the target variable is how
fast a sled is moving when it reaches the bottom of a hill. Newton’s
second law will let you find the sled’s acceleration; you’ll then use
the constant-acceleration relationships from Section 2.4 to find
velocity from acceleration.

SET UP the problem using the following steps:
1. Draw a simple sketch of the situation that shows each moving

body. For each body, draw a free-body diagram that shows all
the forces acting on the body. (The acceleration of a body is
determined by the forces that act on it, not by the forces that it
exerts on anything else.) Make sure you can answer the ques-
tion “What other body is applying this force?” for each force in
your diagram. Never include the quantity in your free-body
diagram; it’s not a force!

2. Label each force with an algebraic symbol for the force’s
magnitude. Usually, one of the forces will be the body’s weight;
it’s usually best to label this as 

3. Choose your x- and y-coordinate axes for each body, and show
them in its free-body diagram. Be sure to indicate the positive
direction for each axis. If you know the direction of the acceler-
ation, it usually simplifies things to take one positive axis along
that direction. If your problem involves two or more bodies that

w = mg.

maS

accelerate in different directions, you can use a different set of
axes for each body.

4. In addition to Newton’s second law, identify any
other equations you might need. For example, you might need
one or more of the equations for motion with constant accelera-
tion. If more than one body is involved, there may be relation-
ships among their motions; for example, they may be connected
by a rope. Express any such relationships as equations relating
the accelerations of the various bodies.

EXECUTE the solution as follows:
1. For each body, determine the components of the forces along

each of the body’s coordinate axes. When you represent a force
in terms of its components, draw a wiggly line through the orig-
inal force vector to remind you not to include it twice.

2. Make a list of all the known and unknown quantities. In your
list, identify the target variable or variables.

3. For each body, write a separate equation for each component of
Newton’s second law, as in Eqs. (5.4). In addition, write any
additional equations that you identified in step 4 of “Set Up.”
(You need as many equations as there are target variables.)

4. Do the easy part—the math! Solve the equations to find the tar-
get variable(s).

EVALUATE your answer: Does your answer have the correct units?
(When appropriate, use the conversion ) Does it
have the correct algebraic sign? When possible, consider particular
values or extreme cases of quantities and compare the results with
your intuitive expectations. Ask, “Does this result make sense?”

1 N = 1 kg # m>s2.

gF
S
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Example 5.6 Straight-line motion with a constant force

An iceboat is at rest on a frictionless horizontal surface (Fig. 5.7a).
A wind is blowing along the direction of the runners so that 4.0 s
after the iceboat is released, it is moving at (about

or ). What constant horizontal force does the
wind exert on the iceboat? The combined mass of iceboat and rider
is 200 kg.

SOLUTION

IDENTIFY and SET UP: Our target variable is one of the forces 
acting on the accelerating iceboat, so we need to use Newton’s
second law. The forces acting on the iceboat and rider (considered
as a unit) are the weight w, the normal force n exerted by the sur-
face, and the horizontal force . Figure 5.7b shows the free-body
diagram. The net force and hence the acceleration are to the right,
so we chose the positive x-axis in this direction. The acceleration
isn’t given; we’ll need to find it. Since the wind is assumed to exert
a constant force, the resulting acceleration is constant and we can
use one of the constant-acceleration formulas from Section 2.4.

FW

1FW2

FW13 mi>h22 km>h,
6.0 m>s

The iceboat starts at rest its initial x-velocity is and it
attains an x-velocity after an elapsed time 
To relate the x-acceleration to these quantities we use Eq. (2.8),

There is no vertical acceleration, so we expect
that the normal force on the iceboat is equal in magnitude to the
iceboat’s weight.

EXECUTE: The known quantities are the mass the 
initial and final x-velocities and and the
elapsed time The three unknown quantities are the accel-
eration the normal force n, and the horizontal force . Hence
we need three equations.

The first two equations are the x- and y-equations for Newton’s
second law. The force is in the positive x-direction, while the
forces n and are in the positive and negative y-directions,
respectively. Hence we have

so

The third equation is the constant-acceleration relationship, 
Eq. (2.8):

To find we first solve this third equation for and then
substitute the result into the equation:

Since 1 the final answer is

EVALUATE: Our answers for and n have the correct units for a
force, and (as expected) the magnitude n of the normal force is
equal to mg. Does it seem reasonable that the force is substan-
tially less than mg?

FW

FW

FW = 300 N 1about 67 lb2

kg # m>s2 = 1N,

FW = max = 1200 kg211.5 m>s22 = 300 kg # m>s2

ax =
vx - v0x

t
=

6.0 m>s - 0 m>s

4.0 s
= 1.5 m>s2

gFx

axFW,

vx = v0x + axt

n = mgaFy = n + 1-mg2 = 0
aFx = FW = max

w = mg
FW

FWax,
t = 4.0 s.

vx = 6.0 m>s,v0x = 0
m = 200 kg,

vx = v0x + axt.
ax

t = 4.0 s.vx = 6.0 m>s
v0x = 021

B1

(a) Iceboat and rider on frictionless ice (b) Free-body diagram
for iceboat and rider

5.7 (a) The situation. (b) Our free-body diagram.

Example 5.7 Straight-line motion with friction

Suppose a constant horizontal friction force with magnitude 100 N
opposes the motion of the iceboat in Example 5.6. In this case,
what constant force must the wind exert on the iceboat to cause
the same constant x-acceleration

SOLUTION

IDENTIFY and SET UP: Again the target variable is We are
given the x-acceleration, so to find all we need is Newton’s
second law. Figure 5.8 shows our new free-body diagram. The
only difference from Fig. 5.7b is the addition of the friction force

which points opposite the motion. (Note that the magnitude
is a positive quantity, but the component in the 

x-direction is negative, equal to or ) Because the wind
must now overcome the friction force to yield the same accelera-
tion as in Example 5.6, we expect our answer for to be greater
than the 300 N we found there.

FW

-100 N.-ƒƒx

ƒ = 100 N
ƒ
S

,

FW

FW.

ax = 1.5 m>s2?
FW

5.8 Our free-body diagram for the iceboat and rider with a fric-
tion force opposing the motion.ƒ

S

Continued
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EXECUTE: Two forces now have x-components: the force of the
wind and the friction force. The x-component of Newton’s second
law gives

FW = max + ƒ = 1200 kg211.5 m>s22 + 1100 N2 = 400 N
aFx = FW + 1-ƒ2 = max

EVALUATE: The required value of is 100 N greater than in
Example 5.6 because the wind must now push against an addi-
tional 100-N friction force.

FW

Example 5.8 Tension in an elevator cable

An elevator and its load have a combined mass of 800 kg (Fig. 5.9a).
The elevator is initially moving downward at it slows to
a stop with constant acceleration in a distance of 25.0 m. What is
the tension T in the supporting cable while the elevator is being
brought to rest?

SOLUTION

IDENTIFY and SET UP: The target variable is the tension T, which
we’ll find using Newton’s second law. As in Example 5.6, we’ll
determine the acceleration using a constant-acceleration formula.
Our free-body diagram (Fig. 5.9b) shows two forces acting on the
elevator: its weight w and the tension force T of the cable. The ele-
vator is moving downward with decreasing speed, so its accelera-
tion is upward; we chose the positive y-axis to be upward.

The elevator is moving in the negative y-direction, so its initial
y-velocity and its y-displacement are both negative:

and The final y-velocity is
To find the y-acceleration from this information, we’ll

use Eq. (2.13) in the form Once we
have we’ll substitute it into the y-component of Newton’s sec-
ond law from Eqs. (5.4) and solve for T. The net force must be
upward to give an upward acceleration, so we expect T to be greater
than the weight 

EXECUTE: First let’s write out Newton’s second law. The tension
force acts upward and the weight acts downward, so

We solve for the target variable T:

T = w + may = mg + may = m1g + ay2

aFy = T + 1-w2 = may

7840 N.w = mg = 1800 kg219.80 m>s22 =

ay,
v 2

y = v 2
0y + 2ay1y - y02.

ayvy = 0.
y - y0 = -25.0 m.v0y = -10.0 m>s

y - y0v0y

10.0 m>s;

To determine we rewrite the constant-acceleration equation

The acceleration is upward (positive), just as it should be.
Now we can substitute the acceleration into the equation for the

tension:

EVALUATE: The tension is greater than the weight, as expected. Can
you see that we would get the same answers for and T if the
elevator were moving upward and gaining speed at a rate of
2.00 m>s2?

ay

= 9440 N

T = m1g + ay2 = 1800 kg219.80 m>s2 + 2.00 m>s22

ay =
v 2

y - v 2
0y

21y - y02
=
1022 - 1-10.0 m>s22

21-25.0 m2
= +2.00 m>s2

v 2
y = v 2

0y + 2ay1y - y02:
ay,

(b) Free-body diagram
for elevator

(a) Descending elevator

Moving down with
decreasing speed

5.9 (a) The situation. (b) Our free-body diagram.

Example 5.9 Apparent weight in an accelerating elevator

A 50.0-kg woman stands on a bathroom scale while riding in the
elevator in Example 5.8. What is the reading on the scale?

SOLUTION

IDENTIFY and SET UP: The scale (Fig. 5.10a) reads the magnitude
of the downward force exerted by the woman on the scale. By
Newton’s third law, this equals the magnitude of the upward nor-
mal force exerted by the scale on the woman. Hence our target
variable is the magnitude n of the normal force. We’ll find n by
applying Newton’s second law to the woman. We already know
her acceleration; it’s the same as the acceleration of the elevator,
which we calculated in Example 5.8.

Figure 5.10b shows our free-body diagram for the woman. 
The forces acting on her are the normal force n exerted by the
scale and her weight 490 N.w = mg = 150.0 kg219.80 m>s22 =

(b) Free-body diagram
for woman

(a) Woman in a
descending elevator

Moving down with
decreasing speed

5.10 (a) The situation. (b) Our free-body diagram.



(The tension force, which played a major role in Example 5.8,
doesn’t appear here because it doesn’t act on the woman.) From
Example 5.8, the y-acceleration of the elevator and of the woman
is As in Example 5.8, the upward force on the
body accelerating upward (in this case, the normal force on the
woman) will have to be greater than the body’s weight to produce
the upward acceleration.

EXECUTE: Newton’s second law gives

EVALUATE: Our answer for n means that while the elevator is stop-
ping, the scale pushes up on the woman with a force of 590 N. By
Newton’s third law, she pushes down on the scale with the same
force. So the scale reads 590 N, which is 100 N more than her actual

= 150.0 kg219.80 m>s2 + 2.00 m>s22 = 590 N

n = mg + may = m1g + ay2
aFy = n + 1-mg2 = may

ay = +2.00 m>s2.
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weight. The scale reading is called the passenger’s apparent weight.
The woman feels the floor pushing up harder on her feet than when
the elevator is stationary or moving with constant velocity.

What would the woman feel if the elevator were accelerating
downward, so that This would be the case if the
elevator were moving upward with decreasing speed or moving
downward with increasing speed. To find the answer for this situa-
tion, we just insert the new value of in our equation for n:

Now the woman feels as though she weighs only 390 N, or 100 N
less than her actual weight w.

You can feel these effects yourself; try taking a few steps in an
elevator that is coming to a stop after descending (when your
apparent weight is greater than w) or coming to a stop after ascend-
ing (when your apparent weight is less than w).

= 390 N

n = m1g + ay2 = 150.0 kg239.80 m>s2 + 1-2.00 m>s224

ay

ay = -2.00 m>s2?

Apparent Weight and Apparent Weightlessness
Let’s generalize the result of Example 5.9. When a passenger with mass m rides
in an elevator with y-acceleration a scale shows the passenger’s apparent
weight to be

When the elevator is accelerating upward, is positive and n is greater than the
passenger’s weight When the elevator is accelerating downward, is
negative and n is less than the weight. If the passenger doesn’t know the elevator
is accelerating, she may feel as though her weight is changing; indeed, this is just
what the scale shows.

The extreme case occurs when the elevator has a downward acceleration
—that is, when it is in free fall. In that case and the passenger

seems to be weightless. Similarly, an astronaut orbiting the earth with a space-
craft experiences apparent weightlessness (Fig. 5.11). In each case, the person
is not truly weightless because a gravitational force still acts. But the person’s
sensations in this free-fall condition are exactly the same as though the person
were in outer space with no gravitational force at all. In both cases the person
and the vehicle (elevator or spacecraft) fall together with the same accelera-
tion g, so nothing pushes the person against the floor or walls of the vehicle.

n = 0ay = -g

ayw = mg.
ay

n = m1g + ay2

ay,

5.11 Astronauts in orbit feel “weightless”
because they have the same acceleration as
their spacecraft—not because they are “out-
side the pull of the earth’s gravity.” (If no
gravity acted on them, the astronauts and
their spacecraft wouldn’t remain in orbit, but
would fly off into deep space.)

Example 5.10 Acceleration down a hill

A toboggan loaded with students (total weight w) slides down a
snow-covered slope. The hill slopes at a constant angle , and the
toboggan is so well waxed that there is virtually no friction. What
is its acceleration?

SOLUTION

IDENTIFY and SET UP: Our target variable is the acceleration,
which we’ll find using Newton’s second law. There is no friction,
so only two forces act on the toboggan: its weight w and the nor-
mal force n exerted by the hill.

Figure 5.12 shows our sketch and free-body diagram. As in
Example 5.4, the surface is inclined, so the normal force is not verti-
cal and is not equal in magnitude to the weight. Hence we must use
both components of in Eqs. (5.4). We take axes parallelgF

S
� maS

a
(a) The situation (b) Free-body diagram for toboggan

5.12 Our sketches for this problem.

Continued
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and perpendicular to the surface of the hill, so that the acceleration
(which is parallel to the hill) is along the positive x-direction.

EXECUTE: The normal force has only a y-component, but the
weight has both x- and y-components: and 

(In Example 5.4 we had . The difference
is that the positive x-axis was uphill in Example 5.4 but is downhill
in Fig. 5.12b.) The wiggly line in Fig. 5.12b reminds us that we
have resolved the weight into its components. The acceleration is
purely in the so Newton’s second law in
component form then tells us that

Since the x-component equation tells us that 
or

Note that we didn’t need the y-component equation to find the
acceleration. That’s part of the beauty of choosing the x-axis to lie
along the acceleration direction! The y-equation tells us the mag-

ax = g sin a

max,
mg sin a =w = mg,

aFy = n - w cos a = may = 0
aFx = w sin a = max

ay = 0.+x-direction,

wx = -w sin a-w cos a.
wy =wx = w sin a

nitude of the normal force exerted by the hill on the toboggan:

EVALUATE: Notice that the normal force n is not equal to the tobog-
gan’s weight (compare Example 5.4). Notice also that the mass m
does not appear in our result for the acceleration. That’s because
the downhill force on the toboggan (a component of the weight)
is proportional to m, so the mass cancels out when we use

to calculate . Hence any toboggan, regardless of its
mass, slides down a frictionless hill with acceleration 

If the plane is horizontal, and (the toboggan does
not accelerate); if the plane is vertical, and (the
toboggan is in free fall).

CAUTION Common free-body diagram errors Figure 5.13 shows
both the correct way (Fig. 5.13a) and a common incorrect way
(Fig. 5.13b) to draw the free-body diagram for the toboggan. The
diagram in Fig. 5.13b is wrong for two reasons: The normal force
must be drawn perpendicular to the surface, and there’s no such
thing as the “ force.” If you remember that “normal” means
“perpendicular” and that is not itself a force, you’ll be well on
your way to always drawing correct free-body diagrams. ❙

maS
maS

ax = ga = 90°
ax = 0a = 0

g sin a.
axgFx = max

n = w cos a = mg cos a

(a) Correct free-body diagram for the sled (b) Incorrect free-body diagram for the sled

The quantity ma is
not a force.

Normal force is not
vertical because the
surface (which is
along the x-axis)
is inclined.

It’s OK to draw the
acceleration vector
adjacent to (but not
touching) the body.

Normal force is
perpendicular
to the surface.

RIGHT!

WRONG

RIGHT! WRONG

5.13 Correct and incorrect free-body diagrams for a toboggan on a frictionless hill.

Example 5.11 Two bodies with the same acceleration

You push a 1.00-kg food tray through the cafeteria line with a con-
stant 9.0-N force. The tray pushes on a 0.50-kg carton of milk (Fig.
5.14a). The tray and carton slide on a horizontal surface so greasy
that friction can be neglected. Find the acceleration of the tray and
carton and the horizontal force that the tray exerts on the carton.

SOLUTION

IDENTIFY and SET UP: Our two target variables are the accelera-
tion of the tray–carton system and the force of the tray on the car-
ton. We’ll use Newton’s second law to get two equations, one for
each target variable. We set up and solve the problem in two ways.

Method 1: We treat the milk carton (mass ) and tray (mass
) as separate bodies, each with its own free-body diagram

(Figs. 5.14b and 5.14c). The force F that you exert on the tray
doesn’t appear in the free-body diagram for the carton, which is
accelerated by the force (of magnitude ) exerted on it by the
tray. By Newton’s third law, the carton exerts a force of equal mag-
nitude on the tray: We take the acceleration toFC on T = FT on C.

FT on C

mT

mC

be in the positive x-direction; both the tray and milk carton move
with the same x-acceleration

Method 2: We treat the tray and milk carton as a composite
body of mass (Fig. 5.14d). The only
horizontal force acting on this body is the force F that you exert.
The forces and don’t come into play because they’re
internal to this composite body, and Newton’s second law tells
us that only external forces affect a body’s acceleration (see
Section 4.3). To find the magnitude we’ll again apply
Newton’s second law to the carton, as in Method 1.

EXECUTE: Method 1: The x-component equations of Newton’s sec-
ond law are

These are two simultaneous equations for the two target variables
and (Two equations are all we need, which means thatFT on C.ax

 Carton:  aFx = FT on C = mCax

 Tray:  aFx = F - FC on T = F - FT on C = mTax

FT on C

FC on TFT on C

m = mT + mC = 1.50 kg

ax.



the y-components don’t play a role in this example.) An easy way
to solve the two equations for is to add them; this eliminates

giving

and

Substituting this value into the carton equation gives

Method 2: The x-component of Newton’s second law for the
composite body of mass m is

aFx = F = max

FT  on C = mC ax = 10.50 kg216.0 m>s22 = 3.0 N

ax =
F

mT + mC
=

9.0 N

1.00 kg + 0.50 kg
= 6.0 m>s2 = 0.61g

F = mTax + mCax = 1mT + mC2ax

FT on C,
ax
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The acceleration of this composite body is

Then, looking at the milk carton by itself, we see that to give it an
acceleration of requires that the tray exert a force

EVALUATE: The answers are the same with both methods. To check
the answers, note that there are different forces on the two sides
of the tray: on the right and on the left.
The net horizontal force on the tray is 
exactly enough to accelerate a 1.00-kg tray at .

Treating two bodies as a single, composite body works only if
the two bodies have the same magnitude and direction of accelera-
tion. If the accelerations are different we must treat the two bodies
separately, as in the next example.

6.0 m>s2
F - FC on T = 6.0 N,

FC on T = 3.0 NF = 9.0 N

FT on C = mCax = 10.50 kg216.0 m>s22 = 3.0 N

6.0 m>s2

ax =
F

m
=

9.0 N

1.50 kg
= 6.0 m>s2

(a) A milk carton and a food tray (b) Free-body diagram
for milk carton

(c) Free-body diagram
for food tray

(d) Free-body diagram for
carton and tray as a composite body

y

F

ax

x

w

n

F

FC on T 5
FT on C

y

x

wT

nT
ax

FT on C

ax
y

x
wC

nC

m T 5 1.00 kg

F 5 9.0 N

m C 5 0.50 kg

5.14 Pushing a food tray and milk carton in the cafeteria line.

Example 5.12 Two bodies with the same magnitude of acceleration

Figure 5.15a shows an air-track glider with mass moving on a
level, frictionless air track in the physics lab. The glider is con-
nected to a lab weight with mass by a light, flexible, non-
stretching string that passes over a stationary, frictionless pulley.
Find the acceleration of each body and the tension in the string.

SOLUTION

IDENTIFY and SET UP: The glider and weight are accelerating, so
again we must use Newton’s second law. Our three target vari-
ables are the tension T in the string and the accelerations of the
two bodies.

The two bodies move in different directions—one horizontal,
one vertical—so we can’t consider them together as we did 
the bodies in Example 5.11. Figures 5.15b and 5.15c show our
free-body diagrams and coordinate systems. It’s convenient to
have both bodies accelerate in the positive axis directions, 

m2

m1

(a) Apparatus (b) Free-body
diagram for glider

(c) Free-body
diagram for weight

m2

m1

5.15 (a) The situation. (b), (c) Our free-body diagrams.

Continued
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so we chose the positive y-direction for the lab weight to be 
downward.

We consider the string to be massless and to slide over the pul-
ley without friction, so the tension T in the string is the same
throughout and it applies a force of the same magnitude T to each
body. (You may want to review Conceptual Example 4.10, in
which we discussed the tension force exerted by a massless string.)
The weights are and 

While the directions of the two accelerations are different, their
magnitudes are the same. (That’s because the string doesn’t
stretch, so the two bodies must move equal distances in equal
times and their speeds at any instant must be equal. When the
speeds change, they change at the same rate, so the accelerations
of the two bodies must have the same magnitude a.) We can
express this relationship as , which means that we
have only two target variables: a and the tension T.

What results do we expect? If (or, approximately, for
much less than ) the lab weight will fall freely with acceler-

ation g, and the tension in the string will be zero. For (or,
approximately, for much less than ) we expect zero acceler-
ation and zero tension.

EXECUTE: Newton’s second law gives

(There are no forces on the lab weight in the x-direction.) In these
equations we’ve used (the glider doesn’t accelerate verti-
cally) and .a1x = a2y = a

a1y = 0

Lab weight: aFy = m2g + 1-T2 = m2a2y = m2a

Glider: aFy = n + 1-m1g2 = m1a1y = 0

Glider: aFx = T = m1a1x = m1a

m1m2

m2 = 0
m2m1

m1 = 0

a1x = a2y = a

m2g.m1g

The x-equation for the glider and the equation for the lab
weight give us two simultaneous equations for T and a:

We add the two equations to eliminate T, giving

and so the magnitude of each body’s acceleration is

Substituting this back into the glider equation , we get

EVALUATE: The acceleration is in general less than g, as you might
expect; the string tension keeps the lab weight from falling freely.
The tension T is not equal to the weight of the lab weight, but
is less by a factor of If T were equal to then
the lab weight would be in equilibrium, and it isn’t.

As predicted, the acceleration is equal to g for and
equal to zero for , and for either or .

CAUTION Tension and weight may not be equal It’s a common
mistake to assume that if an object is attached to a vertical string,
the string tension must be equal to the object’s weight. That was
the case in Example 5.5, where the acceleration was zero, but it’s
not the case in this example! The only safe approach is always to
treat the tension as a variable, as we did here. ❙

m2 = 0m1 = 0T = 0m2 = 0
m1 = 0

m2g,m1>1m1 + m22.
m2g

T =
m1m2

m1 + m2
g

T = m1a

a =
m2

m1 + m2
g

m2g = m1a + m2a = 1m1 + m22a

Lab weight:  m2g - T = m2a

Glider:    T = m1a

Test Your Understanding of Section 5.2 Suppose you hold the glider in
Example 5.12 so that it and the weight are initially at rest. You give the glider a push to
the left in Fig. 5.15a and then release it. The string remains taut as the glider moves to the
left, comes instantaneously to rest, then moves to the right. At the instant the glider has
zero velocity, what is the tension in the string? (i) greater than in Example 5.12; (ii) the
same as in Example 5.12; (iii) less than in Example 5.12, but greater than zero; (iv) zero. ❙

5.3 Frictional Forces
We’ve seen several problems where a body rests or slides on a surface that exerts
forces on the body. Whenever two bodies interact by direct contact (touching) of
their surfaces, we describe the interaction in terms of contact forces. The normal
force is one example of a contact force; in this section we’ll look in detail at
another contact force, the force of friction.

Friction is important in many aspects of everyday life. The oil in a car engine
minimizes friction between moving parts, but without friction between the tires
and the road we couldn’t drive or turn the car. Air drag—the frictional force
exerted by the air on a body moving through it—decreases automotive fuel econ-
omy but makes parachutes work. Without friction, nails would pull out, light bulbs
would unscrew effortlessly, and ice hockey would be hopeless (Fig. 5.16).

Kinetic and Static Friction
When you try to slide a heavy box of books across the floor, the box doesn’t
move at all unless you push with a certain minimum force. Then the box starts
moving, and you can usually keep it moving with less force than you needed to

5.16 The sport of ice hockey depends on
having the right amount of friction between
a player’s skates and the ice. If there were
too much friction, the players would move
too slowly; if there were too little friction,
they would fall over.

PhET: Lunar Lander
ActivPhysics 2.1.5: Car Race
ActivPhysics 2.2: Lifting a Crate
ActivPhysics 2.3: Lowering a Crate
ActivPhysics 2.4: Rocket Blasts Off
ActivPhysics 2.5: Modified Atwood Machine



get it started. If you take some of the books out, you need less force than before
to get it started or keep it moving. What general statements can we make about
this behavior?

First, when a body rests or slides on a surface, we can think of the surface as
exerting a single contact force on the body, with force components perpendicular
and parallel to the surface (Fig. 5.17). The perpendicular component vector is the
normal force, denoted by The component vector parallel to the surface (and
perpendicular to is the friction force, denoted by If the surface is friction-
less, then is zero but there is still a normal force. (Frictionless surfaces are an
unattainable idealization, like a massless rope. But we can approximate a surface
as frictionless if the effects of friction are negligibly small.) The direction of the
friction force is always such as to oppose relative motion of the two surfaces.

The kind of friction that acts when a body slides over a surface is called a
kinetic friction force The adjective “kinetic” and the subscript “k” remind us
that the two surfaces are moving relative to each other. The magnitude of the
kinetic friction force usually increases when the normal force increases. This is
why it takes more force to slide a box across the floor when it’s full of books than
when it’s empty. Automotive brakes use the same principle: The harder the brake
pads are squeezed against the rotating brake disks, the greater the braking effect.
In many cases the magnitude of the kinetic friction force is found experimen-
tally to be approximately proportional to the magnitude n of the normal force. In
such cases we represent the relationship by the equation

(magnitude of kinetic friction force) (5.5)

where (pronounced “mu-sub-k”) is a constant called the coefficient of kinetic
friction. The more slippery the surface, the smaller this coefficient. Because it is
a quotient of two force magnitudes, is a pure number without units.

CAUTION Friction and normal forces are always perpendicular Remember that Eq. (5.5)
is not a vector equation because and are always perpendicular. Rather, it is a scalar
relationship between the magnitudes of the two forces. ❙

Equation (5.5) is only an approximate representation of a complex phenome-
non. On a microscopic level, friction and normal forces result from the intermol-
ecular forces (fundamentally electrical in nature) between two rough surfaces at
points where they come into contact (Fig. 5.18). As a box slides over the floor,
bonds between the two surfaces form and break, and the total number of such
bonds varies; hence the kinetic friction force is not perfectly constant. Smoothing
the surfaces can actually increase friction, since more molecules are able to inter-
act and bond; bringing two smooth surfaces of the same metal together can cause
a “cold weld.” Lubricating oils work because an oil film between two surfaces
(such as the pistons and cylinder walls in a car engine) prevents them from com-
ing into actual contact.

Table 5.1 lists some representative values of Although these values are
given with two significant figures, they are only approximate, since friction
forces can also depend on the speed of the body relative to the surface. For now
we’ll ignore this effect and assume that and are independent of speed, in
order to concentrate on the simplest cases. Table 5.1 also lists coefficients of
static friction; we’ll define these shortly.

Friction forces may also act when there is no relative motion. If you try to
slide a box across the floor, the box may not move at all because the floor exerts
an equal and opposite friction force on the box. This is called a static friction
force In Fig. 5.19a, the box is at rest, in equilibrium, under the action of its
weight and the upward normal force The normal force is equal in magnitude
to the weight and is exerted on the box by the floor. Now we tie a rope1n = w2
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Contact force

Normal-force
component n

Push or pull

Weight

Friction-force
component f

The friction and normal forces are really
components of a single contact force.

5.17 When a block is pushed or pulled
over a surface, the surface exerts a contact
force on it.

Block

Floor

Magnified view

On a microscopic level, even smooth surfaces
are rough; they tend to catch and cling.

5.18 The normal and friction forces
arise from interactions between molecules
at high points on the surfaces of the block
and the floor.

Table 5.1 Approximate 
Coefficients of Friction

Coefficient Coefficient 
of Static of Kinetic 

Materials Friction, Friction, 

Steel on steel 0.74 0.57

Aluminum on steel 0.61 0.47

Copper on steel 0.53 0.36

Brass on steel 0.51 0.44

Zinc on cast iron 0.85 0.21

Copper on cast iron 1.05 0.29

Glass on glass 0.94 0.40

Copper on glass 0.68 0.53

Teflon on Teflon 0.04 0.04

Teflon on steel 0.04 0.04

Rubber on concrete 1.0 0.8
(dry)

Rubber on concrete 0.30 0.25
(wet)

MkMs
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to the box (Fig. 5.19b) and gradually increase the tension T in the rope. At first
the box remains at rest because the force of static friction also increases and
stays equal in magnitude to T.

At some point T becomes greater than the maximum static friction force the
surface can exert. Then the box “breaks loose” (the tension T is able to break the
bonds between molecules in the surfaces of the box and floor) and starts to slide.
Figure 5.19c shows the forces when T is at this critical value. If T exceeds this
value, the box is no longer in equilibrium. For a given pair of surfaces the maxi-
mum value of depends on the normal force. Experiment shows that in many
cases this maximum value, called is approximately proportional to n; we
call the proportionality factor the coefficient of static friction. Table 5.1 lists
some representative values of In a particular situation, the actual force of
static friction can have any magnitude between zero (when there is no other force
parallel to the surface) and a maximum value given by In symbols,

(magnitude of static friction force) (5.6)

Like Eq. (5.5), this is a relationship between magnitudes, not a vector relation-
ship. The equality sign holds only when the applied force T has reached the criti-
cal value at which motion is about to start (Fig. 5.19c). When T is less than this
value (Fig. 5.19b), the inequality sign holds. In that case we have to use the equi-
librium conditions to find If there is no applied force as
in Fig. 5.19a, then there is no static friction force either 

As soon as the box starts to slide (Fig. 5.19d), the friction force usually
decreases (Fig. 5.19e); it’s easier to keep the box moving than to start it moving.
Hence the coefficient of kinetic friction is usually less than the coefficient of
static friction for any given pair of surfaces, as Table 5.1 shows.

1ƒs = 02.
1T = 02ƒs.1gF
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� 02

ƒs … msn

msn.

ms.
ms

1ƒs2max,
ƒs

ƒs

ƒs

Box moving; kinetic friction
is essentially constant.

Box at rest; static friction
equals applied force.

1 fs 2max

fs

fk

f

O
T

n

w

(e)

No applied force,
box at rest.
No friction:

fs 5 0

n

w

T

Weak applied force,
box remains at rest.

Static friction:
fs , msn

fs

n

w

T

Stronger applied force,
box just about to slide.

Static friction:
fs 5 msn

fk

n

w

T

Box sliding at
constant speed.
Kinetic friction:

fk 5 mkn

(a) (b) (c) (d)

5.19 (a), (b), (c) When there is no relative motion, the magnitude of the static friction force is less than or equal to 
(d) When there is relative motion, the magnitude of the kinetic friction force equals (e) A graph of the friction force 
magnitude as a function of the magnitude T of the applied force. The kinetic friction force varies somewhat as intermolecular 
bonds form and break.

ƒ
mkn.ƒk

msn.ƒs

Application Static Friction and 
Windshield Wipers
The squeak of windshield wipers on dry glass
is a stick-slip phenomenon. The moving wiper
blade sticks to the glass momentarily, then
slides when the force applied to the blade by
the wiper motor overcomes the maximum
force of static friction. When the glass is 
wet from rain or windshield cleaning solution,
friction is reduced and the wiper blade 
doesn’t stick.



In some situations the surfaces will alternately stick (static friction) and slip
(kinetic friction). This is what causes the horrible sound made by chalk held at
the wrong angle while writing on the blackboard and the shriek of tires sliding on
asphalt pavement. A more positive example is the motion of a violin bow against
the string.

When a body slides on a layer of gas, friction can be made very small. In the
linear air track used in physics laboratories, the gliders are supported on a layer
of air. The frictional force is velocity dependent, but at typical speeds the effec-
tive coefficient of friction is of the order of 0.001.
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Example 5.13 Friction in horizontal motion

You want to move a 500-N crate across a level floor. To start the
crate moving, you have to pull with a 230-N horizontal force.
Once the crate “breaks loose” and starts to move, you can keep it
moving at constant velocity with only 200 N. What are the coeffi-
cients of static and kinetic friction?

SOLUTION

IDENTIFY and SET UP: The crate is in equilibrium both when it is
at rest and when it is moving with constant velocity, so we use
Newton’s first law, as expressed by Eqs. (5.2). We use Eqs. (5.5)
and (5.6) to find the target variables and 

Figures 5.20a and 5.20b show our sketch and free-body 
diagram for the instant just before the crate starts to move, 
when the static friction force has its maximum possible value

mk.ms

Once the crate is moving, the friction force changes
to its kinetic form (Fig. 5.20c). In both situations, four forces act
on the crate: the downward weight (magnitude ), the
upward normal force (magnitude n) exerted by the floor, a ten-
sion force (magnitude T ) to the right exerted by the rope, and a
friction force to the left exerted by the ground. Because the rope in
Fig. 5.20a is in equilibrium, the tension is the same at both ends.
Hence the tension force that the rope exerts on the crate has the
same magnitude as the force you exert on the rope. Since it’s easier
to keep the crate moving than to start it moving, we expect that

.

EXECUTE: Just before the crate starts to move (Fig. 5.20b), we have
from Eqs. (5.2)

Now we solve Eq. (5.6), for the value of 

After the crate starts to move (Fig. 5.20c) we have

Using from Eq. (5.5), we find

EVALUATE: As expected, the coefficient of kinetic friction is less
than the coefficient of static friction.

mk =
ƒk

n
=

200 N

500 N
= 0.40

ƒk = mkn

aFy = n + 1-w2 = 0  so n = w = 500 N
aFx = T + 1-ƒk2 = 0  so  ƒk = T = 200 N

ms =
1ƒs2max

n
=

230 N

500 N
= 0.46

ms:1ƒs2max = msn,

aFy = n + 1-w2 = 0  so n = w = 500 N
aFx = T + 1-1ƒs2max2 = 0   so 1ƒs2max = T = 230 N

mk 6 ms

w = 500 N

1ƒs2max = msn.

(a) Pulling a crate (b) Free-body diagram
for crate just before it
starts to move

(c) Free-body diagram
for crate moving at
constant speed

5.20 Our sketches for this problem.

Example 5.14 Static friction can be less than the maximum

In Example 5.13, what is the friction force if the crate is at rest on
the surface and a horizontal force of 50 N is applied to it?

SOLUTION

IDENTIFY and SET UP: The applied force is less than the maximum
force of static friction, Hence the crate remains
at rest and the net force acting on it is zero. The target variable is
the magnitude of the friction force. The free-body diagram is thefs

1ƒs2max = 230 N.

same as in Fig. 5.20b, but with replaced by and
replaced by 

EXECUTE: From the equilibrium conditions, Eqs. (5.2), we have

EVALUATE: The friction force can prevent motion for any horizon-
tal applied force up to Below that value,

has the same magnitude as the applied force.fs

1 fs2max = msn = 230 N.

aFx = T + 1-ƒs2 = 0  so  ƒs = T = 50 N

T = 50 N.T = 230 N
ƒs1ƒs2max

PhET: Forces in 1 Dimension
PhET: Friction
PhET: The Ramp
ActivPhysics 2.5: Truck Pulls Crate
ActivPhysics 2.6: Pushing a Crate Up a Wall
ActivPhysics 2.7: Skier Goes Down a Slope
ActivPhysics 2.8: Skier and Rope Tow
ActivPhysics 2.10: Truck Pulls Two Crates
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Example 5.15 Minimizing kinetic friction

In Example 5.13, suppose you move the crate by pulling upward
on the rope at an angle of above the horizontal. How hard must
you pull to keep it moving with constant velocity? Assume that

SOLUTION

IDENTIFY and SET UP: The crate is in equilibrium because its
velocity is constant, so we again apply Newton’s first law. Since
the crate is in motion, the floor exerts a kinetic friction force. The
target variable is the magnitude T of the tension force.

Figure 5.21 shows our sketch and free-body diagram. The
kinetic friction force is still equal to but now the normalmkn,ƒk

mk = 0.40.

30°
force n is not equal in magnitude to the crate’s weight. The force
exerted by the rope has a vertical component that tends to lift the
crate off the floor; this reduces n and so reduces .

EXECUTE: From the equilibrium conditions and the equation
we have

These are two equations for the two unknown quantities T and n.
One way to find T is to substitute the expression for n in the second
equation into the first equation and then solve the resulting equa-
tion for T:

We can substitute this result into either of the original equations to
obtain n. If we use the second equation, we get

EVALUATE: As expected, the normal force is less than the 500-N
weight of the box. It turns out that the tension required to keep the
crate moving at constant speed is a little less than the 200-N force
needed when you pulled horizontally in Example 5.13. Can you
find an angle where the required pull is minimum? (See Challenge
Problem 5.121.)

n = w - T sin 30° = 1500 N2 - 1188 N2 sin 30° = 406 N

T =
mkw

cos 30° + mk sin 30°
= 188 N

T cos 30° = mk1w - T sin 30°2

aFy = T sin 30° + n + 1-w2 = 0 so n = w - T sin 30°
aFx = T cos 30° + 1-ƒk2 = 0 so T cos 30° = mkn

ƒk = mkn,

ƒk

(a) Pulling a crate at an angle

(b) Free-body diagram for moving crate

5.21 Our sketches for this problem.

Example 5.16 Toboggan ride with friction I

Let’s go back to the toboggan we studied in Example 5.10. The
wax has worn off, so there is now a nonzero coefficient of kinetic
friction The slope has just the right angle to make the toboggan
slide with constant velocity. Find this angle in terms of w and

SOLUTION

IDENTIFY and SET UP: Our target variable is the slope angle 
The toboggan is in equilibrium because its velocity is constant, so
we use Newton’s first law in the form of Eqs. (5.2).

Three forces act on the toboggan: its weight, the normal force,
and the kinetic friction force. The motion is downhill, so the friction
force (which opposes the motion) is directed uphill. Figure 5.22
shows our sketch and free-body diagram (compare Fig. 5.12b in
Example 5.10). The magnitude of the kinetic friction force is

. We expect that the greater the value of , the steeper
will be the required slope.

EXECUTE: The equilibrium conditions are

Rearranging these two equations, we get

As in Example 5.10, the normal force is not equal to the weight.
We eliminate n by dividing the first of these equations by the 

mkn = w sin a and n = w cos a

aFy = n + 1-w cos a2 = 0
aFx = w sin a + 1-ƒk2 = w sin a - mkn = 0

mkƒk = mkn

a.

mk.
mk.

second, with the result

EVALUATE: The weight w doesn’t appear in this expression. Any
toboggan, regardless of its weight, slides down an incline with
constant speed if the coefficient of kinetic friction equals the tan-
gent of the slope angle of the incline. The arctangent function
increases as its argument increases, so it’s indeed true that the
slope angle increases as increases.mka

mk =
sin a

cos a
= tan a so a = arctan mk

(a) The situation (b) Free-body diagram for toboggan

5.22 Our sketches for this problem.



Rolling Friction
It’s a lot easier to move a loaded filing cabinet across a horizontal floor using a
cart with wheels than to slide it. How much easier? We can define a coefficient of
rolling friction which is the horizontal force needed for constant speed on a
flat surface divided by the upward normal force exerted by the surface. Trans-
portation engineers call the tractive resistance. Typical values of are 0.002
to 0.003 for steel wheels on steel rails and 0.01 to 0.02 for rubber tires on con-
crete. These values show one reason railroad trains are generally much more fuel
efficient than highway trucks.

Fluid Resistance and Terminal Speed
Sticking your hand out the window of a fast-moving car will convince you of the
existence of fluid resistance, the force that a fluid (a gas or liquid) exerts on a
body moving through it. The moving body exerts a force on the fluid to push it
out of the way. By Newton’s third law, the fluid pushes back on the body with an
equal and opposite force.

The direction of the fluid resistance force acting on a body is always opposite
the direction of the body’s velocity relative to the fluid. The magnitude of the
fluid resistance force usually increases with the speed of the body through the fluid.

mrmr

mr,
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Example 5.17 Toboggan ride with friction II

The same toboggan with the same coefficient of friction as in
Example 5.16 accelerates down a steeper hill. Derive an expres-
sion for the acceleration in terms of g, and w.

SOLUTION

IDENTIFY and SET UP: The toboggan is accelerating, so we must
use Newton’s second law as given in Eqs. (5.4). Our target variable
is the downhill acceleration.

Our sketch and free-body diagram (Fig. 5.23) are almost the
same as for Example 5.16. The toboggan’s y-component of accel-
eration is still zero but the x-component is not, so we’ve
drawn the downhill component of weight as a longer vector than
the (uphill) friction force.

EXECUTE: It’s convenient to express the weight as Then
Newton’s second law in component form says

aFy = n + 1-mg cos a2 = 0
aFx = mg sin a + 1-ƒk2 = max

w = mg.

axay

mk,a,

From the second equation and Eq. (5.5) we get an expression for 

We substitute this into the x-component equation and solve for :

EVALUATE: As for the frictionless toboggan in Example 5.10, the
acceleration doesn’t depend on the mass m of the toboggan. That’s
because all of the forces that act on the toboggan (weight, normal
force, and kinetic friction force) are proportional to m.

Let’s check some special cases. If the hill is vertical ( )
so that and we have (the toboggan
falls freely). For a certain value of the acceleration is zero; this
happens if

This agrees with our result for the constant-velocity toboggan in
Example 5.16. If the angle is even smaller, is greater than

and is negative; if we give the toboggan an initial down-
hill push to start it moving, it will slow down and stop. Finally, if
the hill is frictionless so that , we retrieve the result of
Example 5.10: .

Notice that we started with a simple problem (Example 5.10)
and extended it to more and more general situations. The general
result we found in this example includes all the previous ones as
special cases. Don’t memorize this result, but do make sure you
understand how we obtained it and what it means.

Suppose instead we give the toboggan an initial push up the
hill. The direction of the kinetic friction force is now reversed, so
the acceleration is different from the downhill value. It turns out
that the expression for is the same as for downhill motion except
that the minus sign becomes plus. Can you show this?

ax

ax = g sin a
mk = 0

axsin a
mk cos a

sin a = mk cos a  and  mk = tan a

a

ax = gcos a = 0,sin a = 1
a = 90°

ax = g1sin a - mk cos a2

mg sin a + 1-mkmg cos a2 = max

ax

 ƒk = mkn = mkmg cos a

n = mg cos a

ƒk:

(a) The situation (b) Free-body diagram for toboggan

5.23 Our sketches for this problem.
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This is very different from the kinetic friction force between two surfaces in con-
tact, which we can usually regard as independent of speed. For small objects
moving at very low speeds, the magnitude of the fluid resistance force is
approximately proportional to the body’s speed 

(fluid resistance at low speed) (5.7)

where k is a proportionality constant that depends on the shape and size of the
body and the properties of the fluid. Equation (5.7) is appropriate for dust parti-
cles falling in air or a ball bearing falling in oil. For larger objects moving
through air at the speed of a tossed tennis ball or faster, the resisting force is
approximately proportional to rather than to It is then called air drag or
simply drag. Airplanes, falling raindrops, and bicyclists all experience air drag.
In this case we replace Eq. (5.7) by

(fluid resistance at high speed) (5.8)

Because of the dependence, air drag increases rapidly with increasing speed.
The air drag on a typical car is negligible at low speeds but comparable to or
greater than rolling resistance at highway speeds. The value of D depends on the
shape and size of the body and on the density of the air. You should verify that
the units of the constant k in Eq. (5.7) are or and that the units of
the constant D in Eq. (5.8) are or 

Because of the effects of fluid resistance, an object falling in a fluid does not
have a constant acceleration. To describe its motion, we can’t use the constant-
acceleration relationships from Chapter 2; instead, we have to start over using
Newton’s second law. As an example, suppose you drop a metal ball at the sur-
face of a bucket of oil and let it fall to the bottom (Fig. 5.24a). The fluid resist-
ance force in this situation is given by Eq. (5.7). What are the acceleration,
velocity, and position of the metal ball as functions of time?

Figure 5.24b shows the free-body diagram. We take the positive y-direction to
be downward and neglect any force associated with buoyancy in the oil. Since
the ball is moving downward, its speed is equal to its y-velocity and the fluid
resistance force is in the There are no x-components, so Newton’s
second law gives

When the ball first starts to move, the resisting force is zero, and the initial
acceleration is As the speed increases, the resisting force also increases,
until finally it is equal in magnitude to the weight. At this time the
acceleration becomes zero, and there is no further increase in speed. The final speed

called the terminal speed, is given by or

(terminal speed, fluid resistance (5.9)

Figure 5.25 shows how the acceleration, velocity, and position vary with time. As
time goes by, the acceleration approaches zero and the velocity approaches vt

ƒ = kv)vt =
mg

k

mg - kvt = 0,vt,

mg - kvy = 0,
ay = g.

vy = 0,

aFy = mg + 1-kvy2 = may

-y-direction.
vyv

kg>m.N # s2>m2
kg>s,N # s>m

v2

ƒ = Dv2

v.v2

ƒ = kv

v:
ƒ

y

x

w � mg

f

(a) Metal ball falling
through oil

(b) Free-body diagram
for ball in oil

5.24 A metal ball falling through a fluid
(oil).

Application Pollen and Fluid 
Resistance
These spiky spheres are pollen grains from the
ragweed flower (Ambrosia psilostachya) and a
common cause of hay fever. Because of their
small radius (about 10 μm = 0.01 mm), when
they are released into the air the fluid resist-
ance force on them is proportional to their
speed. The terminal speed given by Eq. (5.9)
is only about 1 cm s. Hence even a moderate
wind can keep pollen grains aloft and carry
them substantial distances from their source.

>

Acceleration versus time Velocity versus time Position versus time
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With fluid resistance:
acceleration decreases.

No fluid resistance:
constant acceleration.

With fluid resistance:
velocity has an upper limit.

No fluid resistance:
velocity keeps increasing.

With fluid resistance:
curve straightens out.

No fluid resistance:
parabolic curve.

5.25 Graphs of the motion of a body falling without fluid resistance and with fluid resistance proportional to the speed.



(remember that we chose the positive y-direction to be down). The slope of the
graph of y versus t becomes constant as the velocity becomes constant.

To see how the graphs in Fig. 5.25 are derived, we must find the relationship
between velocity and time during the interval before the terminal speed is
reached. We go back to Newton’s second law, which we rewrite using

After rearranging terms and replacing by we integrate both sides, noting
that when 

which integrates to

and finally

(5.10)

Note that becomes equal to the terminal speed only in the limit that 
the ball cannot attain terminal speed in any finite length of time.

The derivative of gives as a function of time, and the integral of gives
y as a function of time. We leave the derivations for you to complete; the results
are

(5.11)

(5.12)

Now look again at Fig. 5.25, which shows graphs of these three relationships.
In deriving the terminal speed in Eq. (5.9), we assumed that the fluid resist-

ance force is proportional to the speed. For an object falling through the air at
high speeds, so that the fluid resistance is equal to as in Eq. (5.8), the termi-
nal speed is reached when equals the weight mg (Fig. 5.26a). You can show
that the terminal speed is given by

(terminal speed, fluid resistance (5.13)

This expression for terminal speed explains why heavy objects in air tend to fall
faster than light objects. Two objects with the same physical size but different
mass (say, a table-tennis ball and a lead ball with the same radius) have the same
value of D but different values of m. The more massive object has a higher termi-
nal speed and falls faster. The same idea explains why a sheet of paper falls faster
if you first crumple it into a ball; the mass m is the same, but the smaller size
makes D smaller (less air drag for a given speed) and larger. Skydivers use the
same principle to control their descent (Fig. 5.26b).

Figure 5.27 shows the trajectories of a baseball with and without air drag,
assuming a coefficient (appropriate for a batted ball at
sea level). You can see that both the range of the baseball and the maximum
height reached are substantially less than the zero-drag calculation would lead
you to believe. Hence the baseball trajectory we calculated in Example 3.8 (Sec-
tion 3.3) by ignoring air drag is unrealistic. Air drag is an important part of the
game of baseball!

D = 1.3 * 10-3 kg>m

vt

ƒ = Dv2)vt =
A

mg

D

vt

Dv2
Dv2

y = vt c t -
m

k
11 - e-1k>m2t2 d

ay = ge-1k>m2t

vyayvy

tS q ;vtvy

vy = vt31 - e-1k>m2t4

ln
vt - vy

vt
= -

k

m
t  or  1 -

vy

vt
= e-1k>m2t

L
v

0

dvy

vy - vt
= -

k

m L
t

0
dt

t = 0:vy = 0
vt,mg>k

m
dvy

dt
= mg - kvy

ay = dvy>dt:

5.3 Frictional Forces 153

(a) Free-body diagrams for falling with air drag

y

mg

ay

Dv2 , mg

Dv2 5 mg

mg

y

Before terminal
speed: Object
accelerating, drag
force less than 
weight.

At terminal speed vt:
Object in equilibrium,
drag force equals
weight.

(b) A skydiver falling at terminal speed

5.26 (a) Air drag and terminal speed. 
(b) By changing the positions of their arms
and legs while falling, skydivers can
change the value of the constant D in
Eq. (5.8) and hence adjust the terminal
speed of their fall [Eq. (5.13)].

x (m) 2500

y 
(m

)

50 No air drag: path is a parabola.

With air drag: range and
maximum height are less;
path is not parabolic.

5.27 Computer-generated trajectories of
a baseball launched at at above
the horizontal. Note that the scales are dif-
ferent on the horizontal and vertical axes.

35°50 m>s
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5.4 Dynamics of Circular Motion
We talked about uniform circular motion in Section 3.4. We showed that when a
particle moves in a circular path with constant speed, the particle’s acceleration is
always directed toward the center of the circle (perpendicular to the instanta-
neous velocity). The magnitude of the acceleration is constant and is given in
terms of the speed and the radius R of the circle by

(uniform circular motion) (5.14)

The subscript “rad” is a reminder that at each point the acceleration is radially
inward toward the center of the circle, perpendicular to the instantaneous veloc-
ity. We explained in Section 3.4 why this acceleration is often called centripetal
acceleration.

We can also express the centripetal acceleration in terms of the period T,
the time for one revolution:

(5.15)

In terms of the period, is

(uniform circular motion) (5.16)

Uniform circular motion, like all other motion of a particle, is governed by
Newton’s second law. To make the particle accelerate toward the center of the
circle, the net force on the particle must always be directed toward the center
(Fig. 5.28). The magnitude of the acceleration is constant, so the magnitude 
of the net force must also be constant. If the inward net force stops acting, the
particle flies off in a straight line tangent to the circle (Fig. 5.29).

Fnet

gF
S

arad =
4p2R

T2

arad

T =
2pR

v

arad

arad =
v2

R

v
arad

Example 5.18 Terminal speed of a skydiver

For a human body falling through air in a spread-eagle position
(Fig. 5.26b), the numerical value of the constant D in Eq. (5.8) is
about Find the terminal speed for a lightweight 50-kg
skydiver.

SOLUTION

IDENTIFY and SET UP: This example uses the relationship among
terminal speed, mass, and drag coefficient. We use Eq. (5.13) to
find the target variable 

EXECUTE: We find for 

= 44 m>s 1about 160 km>h, or 99 mi>h2

vt =
A

mg

D
=
B

150 kg219.8 m>s22

0.25 kg>m

m = 50 kg:

vt.

0.25 kg>m.

EVALUATE: The terminal speed is proportional to the square root of
the skydiver’s mass. A skydiver with the same drag coefficient D
but twice the mass would have a terminal speed times
greater, or (A more massive skydiver would also have
more frontal area and hence a larger drag coefficient, so his termi-
nal speed would be a bit less than ) Even the lightweight
skydiver’s terminal speed is quite high, so skydives don’t last very
long. A drop from 2800 m (9200 ft) to the surface at the terminal
speed takes only 

When the skydiver deploys the parachute, the value of D
increases greatly. Hence the terminal speed of the skydiver and
parachute decreases dramatically to a much lower value.

12800 m2>144 m>s2 = 64 s.

63 m>s.

63 m>s.
12 = 1.41

Test Your Understanding of Section 5.3 Consider a box that is placed
on different surfaces. (a) In which situation(s) is there no friction force acting on
the box? (b) In which situation(s) is there a static friction force acting on the box?
(c) In which situation(s) is there a kinetic friction force on the box? (i) The box is at rest
on a rough horizontal surface. (ii) The box is at rest on a rough tilted surface. (iii) The
box is on the rough-surfaced flat bed of a truck—the truck is moving at a constant veloc-
ity on a straight, level road, and the box remains in the same place in the middle of the
truck bed. (iv) The box is on the rough-surfaced flat bed of a truck—the truck is speeding
up on a straight, level road, and the box remains in the same place in the middle of the
truck bed. (v) The box is on the rough-surfaced flat bed of a truck—the truck is climbing
a hill, and the box is sliding toward the back of the truck. ❙

In uniform circular
motion, the acceleration
and net force are both
directed toward the
center of the circle.

vS

aS

vS
aS

vS
aS

S
ΣF

S
ΣF

S
ΣF

5.28 Net force, acceleration, and veloc-
ity in uniform circular motion.

Suddenly, the
string breaks.

SF
S

SF
S

No net force now acts on the ball, so it
obeys Newton’s first law—it moves in a
straight line at constant velocity.

A ball attached to a string whirls in a
circle on a frictionless surface.

vS

vS

vS

aS

aS

vS

5.29 What happens if the inward radial
force suddenly ceases to act on a body in
circular motion?



The magnitude of the radial acceleration is given by so the mag-
nitude of the net force on a particle with mass m in uniform circular motion
must be

(uniform circular motion) (5.17)

Uniform circular motion can result from any combination of forces, just so the net
force is always directed toward the center of the circle and has a constant mag-
nitude. Note that the body need not move around a complete circle: Equation (5.17)
is valid for any path that can be regarded as part of a circular arc.

CAUTION Avoid using “centrifugal force” Figure 5.30 shows both a correct free-body
diagram for uniform circular motion (Fig. 5.30a) and a common incorrect diagram
(Fig. 5.30b). Figure 5.30b is incorrect because it includes an extra outward force of magni-
tude to “keep the body out there” or to “keep it in equilibrium.” There are three
reasons not to include such an outward force, usually called centrifugal force (“centrifugal”
means “fleeing from the center”). First, the body does not “stay out there”: It is in constant
motion around its circular path. Because its velocity is constantly changing in direction,
the body accelerates and is not in equilibrium. Second, if there were an additional outward
force that balanced the inward force, the net force would be zero and the body would
move in a straight line, not a circle (Fig. 5.29). And third, the quantity is not a
force; it corresponds to the side of and does not appear in (Fig. 5.30a).
It’s true that when you ride in a car that goes around a circular path, you tend to slide to the
outside of the turn as though there was a “centrifugal force.” But we saw in Section 4.2
that what really happens is that you tend to keep moving in a straight line, and the outer
side of the car “runs into” you as the car turns (Fig. 4.11c). In an inertial frame of refer-
ence there is no such thing as “centrifugal force.” We won’t mention this term again, and
we strongly advise you to avoid using it as well. ❙

gF
SgF

S
� maSmaS

m1v2>R2

m1v2>R2

gF
S

Fnet = marad = m 

v2

R

Fnet

arad = v2>R,
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(a) Correct free-body diagram

(b) Incorrect free-body diagram

If you include the acceleration, draw it to one
side of the body to show that it’s not a force.

The quantity mv2/R is not a force—it
doesn’t belong in a free-body diagram.

aradF

F

mv2

R
WRONG

RIGHT!

5.30 (a) Correct and (b) incorrect free-
body diagrams for a body in uniform cir-
cular motion.

Example 5.19 Force in uniform circular motion

A sled with a mass of 25.0 kg rests on a horizontal sheet of essen-
tially frictionless ice. It is attached by a 5.00-m rope to a post set in
the ice. Once given a push, the sled revolves uniformly in a circle
around the post (Fig. 5.31a). If the sled makes five complete revo-
lutions every minute, find the force F exerted on it by the rope.

SOLUTION

IDENTIFY and SET UP: The sled is in uniform circular motion, so it
has a constant radial acceleration. We’ll apply Newton’s second
law to the sled to find the magnitude F of the force exerted by the
rope (our target variable).

Figure 5.31b shows our free-body diagram for the sled. The accel-
eration has only an x-component; this is toward the center of the cir-
cle, so we denote it as The acceleration isn’t given, so we’ll need
to determine its value using either Eq. (5.14) or Eq. (5.16).

EXECUTE: The force F appears in Newton’s second law for the 
x-direction:

We can find the centripetal acceleration using Eq. (5.16). The
sled moves in a circle of radius with a period

so

The magnitude F of the force exerted by the rope is then

EVALUATE: You can check our value for by first finding the
speed using Eq. (5.15), , and then using 
from Eq. (5.14). Do you get the same result?

A greater force would be needed if the sled moved around the
circle at a higher speed In fact, if were doubled while R
remained the same, F would be four times greater. Can you show
this? How would F change if remained the same but the radius R
were doubled?

v

vv.

arad = v2>Rv = 2pR>T
arad

 = 34.3 kg # m>s2 = 34.3 N

 F = marad = 125.0 kg211.37 m>s22

arad =
4p2R

T2
=

4p215.00 m2

112.0 s22
= 1.37 m>s2

T = 160.0 s2 >  15 rev2 = 12.0 s,
R = 5.00 m

arad

aFx = F = marad

arad.

We point the positive
x-direction toward the
center of the circle.

(a) A sled in uniform circular motion (b) Free-body diagram
for sled

R

5.31 (a) The situation. (b) Our free-body diagram.
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Example 5.20 A conical pendulum

An inventor designs a pendulum clock using a bob with mass m at
the end of a thin wire of length L. Instead of swinging back and
forth, the bob is to move in a horizontal circle with constant speed 
with the wire making a fixed angle with the vertical direction
(Fig. 5.32a). This is called a conical pendulum because the sus-
pending wire traces out a cone. Find the tension F in the wire and
the period T (the time for one revolution of the bob).

SOLUTION

IDENTIFY and SET UP: To find our target variables, the tension F
and period T, we need two equations. These will be the horizontal
and vertical components of Newton’s second law applied to the
bob. We’ll find the radial acceleration of the bob using one of the
circular motion equations.

Figure 5.32b shows our free-body diagram and coordinate sys-
tem for the bob at a particular instant. There are just two forces on
the bob: the weight mg and the tension F in the wire. Note that the

b

v,

center of the circular path is in the same horizontal plane as the
bob, not at the top end of the wire. The horizontal component of
tension is the force that produces the radial acceleration .

EXECUTE: The bob has zero vertical acceleration; the horizontal
acceleration is toward the center of the circle, which is why we use
the symbol . Newton’s second law says

These are two equations for the two unknowns F and The equa-
tion for gives that’s our target expression for
F in terms of . Substituting this result into the equation for 
and using we find

To relate to the period T, we use Eq. (5.16) for , solve for T,
and insert :

Figure 5.32a shows that . We substitute this and use
:

EVALUATE: For a given length L, as the angle increases, 
decreases, the period T becomes smaller, and the tension

increases. The angle can never be however;
this would require that and A conical
pendulum would not make a very good clock because the period
depends on the angle in such a direct way.b

v = q .F = q ,T = 0,
90°,F = mg>cos b

cos bb

T = 2p
B

L cos b

g

sin b> tan b = cos b
R = L sin b

T = 2p
A

R

g tan b

arad =
4p2R

T2
so T2 =

4p2R

arad

arad = g tan b
aradb

arad = g tan b

sin b>cos b = tan b,
gFxb

F = mg>cos b;g Fy

b.

aFy = F cos b + 1-mg2 = 0
aFx = F sin b = marad

arad

arad

We point the positive
x-direction toward the
center of the circle.

b

(a) The situation (b) Free-body diagram
for pendulum bob

R

v

L

5.32 (a) The situation. (b) Our free-body diagram.

Example 5.21 Rounding a flat curve

The sports car in Example 3.11 (Section 3.4) is rounding a flat,
unbanked curve with radius R (Fig. 5.33a). If the coefficient of
static friction between tires and road is what is the maximum
speed at which the driver can take the curve without sliding?

SOLUTION

IDENTIFY and SET UP: The car’s acceleration as it rounds the
curve has magnitude Hence the maximum speed 
(our target variable) corresponds to the maximum acceleration 
and to the maximum horizontal force on the car toward the center
of its circular path. The only horizontal force acting on the car is
the friction force exerted by the road. So to solve this problem
we’ll need Newton’s second law, the equations of uniform circular
motion, and our knowledge of the friction force from Section 5.3.

The free-body diagram in Fig. 5.33b includes the car’s weight
and the two forces exerted by the road: the normal force 

and the horizontal friction force The friction force must point
toward the center of the circular path in order to cause the radial
acceleration. The car doesn’t slide toward or away from the center

f.
nw = mg

arad

vmaxarad = v2>R.

vmax

ms,

of the circle, so the friction force is static friction, with a maximum
magnitude [see Eq. (5.6)].fmax = msn

(a) Car rounding flat curve (b) Free-body
diagram for car

R

5.33 (a) The situation. (b) Our free-body diagram.



EXECUTE: The acceleration toward the center of the circular path is
. There is no vertical acceleration. Thus we have

The second equation shows that The first equation shows
that the friction force needed to keep the car moving in its circular
path increases with the car’s speed. But the maximum friction
force available is and this determines the
car’s maximum speed. Substituting for and for in
the first equation, we find

msmg = m
v2

max

R
so vmax = 2msgR

vvmaxƒmsmg
ƒmax = msn = msmg,

n = mg.

aFy = n + 1-mg2 = 0

aFx = ƒ = marad = m
v2

R

arad = v2>R
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As an example, if and we have

or about This is the maximum speed for
this radius.

EVALUATE: If the car’s speed is slower than the
required friction force is less than the maximum value

, and the car can easily make the curve. If we try to
take the curve going faster than , we will skid. We could still
go in a circle without skidding at this higher speed, but the radius
would have to be larger.

The maximum centripetal acceleration (called the “lateral
acceleration” in Example 3.11) is equal to That’s why it’s best
to take curves at less than the posted speed limit if the road is wet
or icy, either of which can reduce the value of and hence .msgms

msg.

vmax

fmax = msmg

v max = 2msgR,

1100 mi>h2.170 km>h

vmax = 210.96219.8 m>s221230 m2 = 47 m>s

R = 230 m,ms = 0.96

Example 5.22 Rounding a banked curve

For a car traveling at a certain speed, it is possible to bank a curve at
just the right angle so that no friction at all is needed to maintain the
car’s turning radius. Then a car can safely round the curve even on
wet ice. (Bobsled racing depends on this same idea.) Your engineer-
ing firm plans to rebuild the curve in Example 5.21 so that a car mov-
ing at a chosen speed can safely make the turn even with no friction
(Fig. 5.34a). At what angle should the curve be banked?

SOLUTION

IDENTIFY and SET UP: With no friction, the only forces acting on
the car are its weight and the normal force. Because the road is
banked, the normal force (which acts perpendicular to the road sur-
face) has a horizontal component. This component causes the car’s
horizontal acceleration toward the center of the car’s circular path.
We’ll use Newton’s second law to find the target variable 

Our free-body diagram (Fig. 5.34b) is very similar to the dia-
gram for the conical pendulum in Example 5.20 (Fig. 5.32b). The
normal force acting on the car plays the role of the tension force
exerted by the wire on the pendulum bob.

EXECUTE: The normal force is perpendicular to the roadway
and is at an angle with the vertical (Fig. 5.34b). Thus it has a
vertical component and a horizontal component n sin b.n cos b

b

nS

b.

b

v

The acceleration in the x-direction is the centripetal acceleration
there is no acceleration in the y-direction. Thus the

equations of Newton’s second law are

From the equation, Substituting this into the
equation and using , we get an expression for the

bank angle:

EVALUATE: The bank angle depends on both the speed and the
radius. For a given radius, no one angle is correct for all speeds. In
the design of highways and railroads, curves are often banked for
the average speed of the traffic over them. If and

(equal to a highway speed of or ),
then

This is within the range of banking angles actually used in highways.

b = arctan
125 m>s22

19.8 m>s221230 m2
= 15°

55 mi>h88 km>h,v = 25 m>s
R = 230 m

tan b =
arad

g
=

v2

gR
  so  b = arctan

v2

gR

arad = v2>Rg Fx

n = mg>cos b.g Fy

aFy = n cos b + 1-mg2 = 0
aFx = n sin b = marad

arad = v2>R;

R

b

(a) Car rounding banked curve (b) Free-body
diagram for car

5.34 (a) The situation. (b) Our free-body diagram.
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Banked Curves and the Flight of Airplanes
The results of Example 5.22 also apply to an airplane when it makes a turn in
level flight (Fig. 5.35). When an airplane is flying in a straight line at a constant
speed and at a steady altitude, the airplane’s weight is exactly balanced by the lift
force exerted by the air. (The upward lift force that the air exerts on the wings
is a reaction to the downward push the wings exert on the air as they move
through it.) To make the airplane turn, the pilot banks the airplane to one side so
that the lift force has a horizontal component as Fig. 5.35 shows. (The pilot also
changes the angle at which the wings “bite” into the air so that the vertical com-
ponent of lift continues to balance the weight.) The bank angle is related to the
airplane’s speed and the radius R of the turn by the same expression as in
Example 5.22: For an airplane to make a tight turn (small R) at
high speed (large must be large and the required bank angle must
approach

We can also apply the results of Example 5.22 to the pilot of an airplane. The
free-body diagram for the pilot of the airplane is exactly as shown in Fig. 5.34b; the
normal force is exerted on the pilot by the seat. As in Example 5.9,
n is equal to the apparent weight of the pilot, which is greater than the pilot’s true
weight mg. In a tight turn with a large bank angle the pilot’s apparent weight
can be tremendous: at and at Pilots
black out in such tight turns because the apparent weight of their blood increases
by the same factor, and the human heart isn’t strong enough to pump such appar-
ently “heavy” blood to the brain.

Motion in a Vertical Circle
In Examples 5.19, 5.20, 5.21, and 5.22 the body moved in a horizontal circle.
Motion in a vertical circle is no different in principle, but the weight of the body
has to be treated carefully. The following example shows what we mean.

b = 84°.n = 9.6mgb = 80°n = 5.8mg
b,

n = mg>cosb

90°.
btanbv),

tanb = v2>gR.
v

L
S

w 5 mg

L cos b

b

L

L sin b

5.35 An airplane banks to one side in
order to turn in that direction. The vertical
component of the lift force balances the
force of gravity; the horizontal component
of causes the acceleration v2>R.L

S

L
S

(c) Free-body diagram
for passenger at bottom

(b) Free-body diagram
for passenger at top

(a) Sketch of two positions

5.36 Our sketches for this problem.

Example 5.23 Uniform circular motion in a vertical circle

A passenger on a carnival Ferris wheel moves in a vertical circle of
radius R with constant speed The seat remains upright during
the motion. Find expressions for the force the seat exerts on the
passenger at the top of the circle and at the bottom.

SOLUTION

IDENTIFY and SET UP: The target variables are , the upward
normal force the seat applies to the passenger at the top of the
circle, and , the normal force at the bottom. We’ll find these
using Newton’s second law and the uniform circular motion
equations.

Figure 5.36a shows the passenger’s velocity and acceleration at
the two positions. The acceleration always points toward the center
of the circle—downward at the top of the circle and upward at the
bottom of the circle. At each position the only forces acting are
vertical: the upward normal force and the downward force of grav-
ity. Hence we need only the vertical component of Newton’s sec-
ond law. Figures 5.36b and 5.36c show free-body diagrams for the
two positions. We take the positive y-direction as upward in both
cases (that is, opposite the direction of the acceleration at the top of
the circle).

EXECUTE: At the top the acceleration has magnitude but its
vertical component is negative because its direction is downward.

v2>R,

nB

nT

v.
Hence and Newton’s second law tells us that

Top: or

nT = mga1 -
v2

gR
b

aFy = nT + 1-mg2 = -m
v2

R

ay = -v2>R

ActivPhysics 4.2: Circular Motion Problem
Solving
ActivPhysics 4.3: Cart Goes over Circular
Path
ActivPhysics 4.4: Ball Swings on a String
ActivPhysics 4.5: Car Circles a Track



At the bottom the acceleration is upward, so and
Newton’s second law says

Bottom: or

EVALUATE: Our result for tells us that at the top of the Ferris
wheel, the upward force the seat applies to the passenger is smaller

nT

nB = mga1 +
v2

gR
b

aFy = nB + 1-mg2 = +m 
v2

R

ay = +v2
 >  R
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in magnitude than the passenger’s weight If the ride goes
fast enough that becomes zero, the seat applies no force,
and the passenger is about to become airborne. If becomes still
larger, becomes negative; this means that a downward force
(such as from a seat belt) is needed to keep the passenger in the
seat. By contrast, the normal force at the bottom is always
greater than the passenger’s weight. You feel the seat pushing up
on you more firmly than when you are at rest. You can see that 
and are the values of the passenger’s apparent weight at the top
and bottom of the circle (see Section 5.2).

nB

nT

nB

nT

v
g - v2>R

w = mg.

When we tie a string to an object and whirl it in a vertical circle, the analysis
in Example 5.23 isn’t directly applicable. The reason is that is not constant in
this case; except at the top and bottom of the circle, the net force (and hence the
acceleration) does not point toward the center of the circle (Fig. 5.37). So both

and have a component tangent to the circle, which means that the speed
changes. Hence this is a case of nonuniform circular motion (see Section 3.4).
Even worse, we can’t use the constant-acceleration formulas to relate the speeds
at various points because neither the magnitude nor the direction of the accelera-
tion is constant. The speed relationships we need are best obtained by using the
concept of energy. We’ll consider such problems in Chapter 7.

aSgF
S

v When a ball moves in a vertical circle ...

... the net force on the ball has
a component toward the center
of the circle ...

... but also a component
tangent to the circle...

... so the net acceleration
is not purely radial.

T

a

w 5 mg

5.37 A ball moving in a vertical circle.

Test Your Understanding of Section 5.4 Satellites are held in orbit by
the force of our planet’s gravitational attraction. A satellite in a small-radius orbit
moves at a higher speed than a satellite in an orbit of large radius. Based on this
information, what you can conclude about the earth’s gravitational attraction for the satel-
lite? (i) It increases with increasing distance from the earth. (ii) It is the same at all dis-
tances from the earth. (iii) It decreases with increasing distance from the earth. (iv) This
information by itself isn’t enough to answer the question. ❙

5.5 The Fundamental Forces of Nature
We have discussed several kinds of forces—including weight, tension, friction,
fluid resistance, and the normal force—and we will encounter others as we con-
tinue our study of physics. But just how many kinds of forces are there? Our cur-
rent understanding is that all forces are expressions of just four distinct classes of
fundamental forces, or interactions between particles (Fig. 5.38). Two are famil-
iar in everyday experience. The other two involve interactions between sub-
atomic particles that we cannot observe with the unaided senses.

Gravitational interactions include the familiar force of your weight, which
results from the earth’s gravitational attraction acting on you. The mutual gravita-
tional attraction of various parts of the earth for each other holds our planet
together (Fig. 5.38a). Newton recognized that the sun’s gravitational attraction for
the earth keeps the earth in its nearly circular orbit around the sun. In Chapter 13
we will study gravitational interactions in greater detail, and we will analyze their
vital role in the motions of planets and satellites.

The second familiar class of forces, electromagnetic interactions, includes
electric and magnetic forces. If you run a comb through your hair, the comb ends
up with an electric charge; you can use the electric force exerted by this charge to
pick up bits of paper. All atoms contain positive and negative electric charge, so
atoms and molecules can exert electric forces on one another (Fig. 5.38b). Con-
tact forces, including the normal force, friction, and fluid resistance, are the com-
bination of all such forces exerted on the atoms of a body by atoms in its
surroundings. Magnetic forces, such as those between magnets or between a
magnet and a piece of iron, are actually the result of electric charges in motion.
For example, an electromagnet causes magnetic interactions because electric
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charges move through its wires. We will study electromagnetic interactions in
detail in the second half of this book.

On the atomic or molecular scale, gravitational forces play no role because
electric forces are enormously stronger: The electrical repulsion between two
protons is stronger than their gravitational attraction by a factor of about 
But in bodies of astronomical size, positive and negative charges are usually
present in nearly equal amounts, and the resulting electrical interactions nearly
cancel out. Gravitational interactions are thus the dominant influence in the
motion of planets and in the internal structure of stars.

The other two classes of interactions are less familiar. One, the strong inter-
action, is responsible for holding the nucleus of an atom together. Nuclei contain
electrically neutral neutrons and positively charged protons. The electric force
between charged protons tries to push them apart; the strong attractive force
between nuclear particles counteracts this repulsion and makes the nucleus sta-
ble. In this context the strong interaction is also called the strong nuclear force. It
has much shorter range than electrical interactions, but within its range it is much
stronger. The strong interaction plays a key role in thermonuclear reactions that
take place at the sun’s core and generate the sun’s heat and light (Fig. 5.38c).

Finally, there is the weak interaction. Its range is so short that it plays a role
only on the scale of the nucleus or smaller. The weak interaction is responsible
for a common form of radioactivity called beta decay, in which a neutron in a
radioactive nucleus is transformed into a proton while ejecting an electron and a
nearly massless particle called an antineutrino. The weak interaction between the
antineutrino and ordinary matter is so feeble that an antineutrino could easily
penetrate a wall of lead a million kilometers thick! Yet when a giant star under-
goes a cataclysmic explosion called a supernova, most of the energy is released
by way of the weak interaction (Fig. 5.38d).

In the 1960s physicists developed a theory that described the electromagnetic
and weak interactions as aspects of a single electroweak interaction. This theory
has passed every experimental test to which it has been put. Encouraged by this
success, physicists have made similar attempts to describe the strong, electro-
magnetic, and weak interactions in terms of a single grand unified theory (GUT),
and have taken steps toward a possible unification of all interactions into a theory
of everything (TOE). Such theories are still speculative, and there are many unan-
swered questions in this very active field of current research.

1035.

Star

Supernova

(a) Gravitational forces hold planets together.

(b) Electromagnetic forces hold molecules 
together.

(c) Strong forces release energy to power the sun.

(d) Weak forces play a role in exploding stars.

5.38 Examples of the fundamental inter-
actions in nature. (a) The moon and the
earth are held together and held in orbit by
gravitational forces. (b) This molecule of
bacterial plasmid DNA is held together by
electromagnetic forces between its atoms.
(c) The sun shines because in its core,
strong forces between nuclear particles
cause the release of energy. (d) When a
massive star explodes into a supernova, a
flood of energy is released by weak interac-
tions between the star’s nuclear particles.
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CHAPTER 5 SUMMARY

(vector form) (5.1)

(component form) (5.2)
 aFy = 0

 aFx = 0

aF
S

� 0

Using Newton’s second law: If the vector sum of forces
on a body is not zero, the body accelerates. The acceler-
ation is related to the net force by Newton’s second law.

Just as for equilibrium problems, free-body diagrams
are essential for solving problems involving Newton’s
second law, and the normal force exerted on a body is
not always equal to its weight. (See Examples
5.6–5.12.)

Forces in circular motion: In uniform circular motion,
the acceleration vector is directed toward the center of
the circle. The motion is governed by Newton’s second
law, (See Examples 5.19–5.23.)gF

S
� maS.

Acceleration in uniform circular motion:

(5.14), (5.16)arad =
v2

R
=

4p2R

T2

Vector form:

(5.3)

Component form:

(5.4)aFx = max  aFy = may

aF
S

� maS

Friction and fluid resistance: The contact force between
two bodies can always be represented in terms of a nor-
mal force perpendicular to the surface of contact and a
friction force parallel to the surface.

When a body is sliding over the surface, the friction
force is called kinetic friction. Its magnitude is
approximately equal to the normal force magnitude n
multiplied by the coefficient of kinetic friction 
When a body is not moving relative to a surface, the
friction force is called static friction. The maximum pos-
sible static friction force is approximately equal to the
magnitude of the normal force multiplied by the coef-
ficient of static friction The actual static friction
force may be anything from zero to this maximum
value, depending on the situation. Usually is greater
than for a given pair of surfaces in contact. (See
Examples 5.13–5.17.)

Rolling friction is similar to kinetic friction, but the
force of fluid resistance depends on the speed of an
object through a fluid. (See Example 5.18.)

mk
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ms .
n

mk .

ƒk

ƒ
S

nS

Magnitude of kinetic friction force:

(5.5)

Magnitude of static friction force:

(5.6)ƒs … ms n

ƒk = mk n

Using Newton’s first law: When a body is in equilibrium
in an inertial frame of reference—that is, either at rest or
moving with constant velocity—the vector sum of
forces acting on it must be zero (Newton’s first law).
Free-body diagrams are essential in identifying the
forces that act on the body being considered.

Newton’s third law (action and reaction) is also fre-
quently needed in equilibrium problems. The two forces
in an action–reaction pair never act on the same body.
(See Examples 5.1–5.5.)

The normal force exerted on a body by a surface is not
always equal to the body’s weight. (See Example 5.3.)
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A small block with mass m is placed inside an inverted cone that is
rotating about a vertical axis such that the time for one revolution
of the cone is T (Fig. 5.39). The walls of the cone make an angle 
with the horizontal. The coefficient of static friction between the
block and the cone is If the block is to remain at a constant
height h above the apex of the cone, what are (a) the maximum
value of T and (b) the minimum value of T ? (That is, find expres-
sions for and in terms of and h.)

SOLUTION GUIDE

See MasteringPhysics® Study Area for a Video Tutor solution.

IDENTIFY and SET UP
1. Although we want the block to not slide up or down on the

inside of the cone, this is not an equilibrium problem. The block
rotates with the cone and is in uniform circular motion, so it has
an acceleration directed toward the center of its circular path.

2. Identify the forces on the block. What is the direction of the fric-
tion force when the cone is rotating as slowly as possible, so T
has its maximum value What is the direction of the fric-
tion force when the cone is rotating as rapidly as possible, so T
has its minimum value In these situations does the static
friction force have its maximum magnitude? Why or why not?

3. Draw a free-body diagram for the block when the cone is rotat-
ing with and a free-body diagram when the cone is
rotating with Choose coordinate axes, and remember
that it’s usually easiest to choose one of the axes to be in the
direction of the acceleration.

4. What is the radius of the circular path that the block follows?
Express this in terms of and h.

5. Make a list of the unknown quantities, and decide which of
these are the target variables.

b

T = Tmin.
T = Tmax

Tmin?

Tmax?

bTminTmax

ms.

b

EXECUTE
6. Write Newton’s second law in component form for the case in

which the cone is rotating with Write the accelera-
tion in terms of , and h, and write the static friction
force in terms of the normal force n.

7. Solve these equations for the target variable   
8. Repeat steps 6 and 7 for the case in which the cone is rotating

with and solve for the target variable Tmin.T = Tmin,

Tmax.

bTmax,
T = Tmax.

Time for 1 rotation 5 T

m

b

R

h

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q5.1 A man sits in a seat that is suspended from a rope. The rope
passes over a pulley suspended from the ceiling, and the man holds
the other end of the rope in his hands. What is the tension in the
rope, and what force does the seat exert on the man? Draw a free-
body force diagram for the man.
Q5.2 “In general, the normal force is not equal to the weight.”
Give an example where these two forces are equal in magnitude,
and at least two examples where they are not.
Q5.3 A clothesline hangs between two poles. No matter how tightly
the line is stretched, it always sags a little at the center. Explain why.
Q5.4 A car is driven up a steep hill at constant speed. Discuss all
the forces acting on the car. What pushes it up the hill?
Q5.5 For medical reasons it is important for astronauts in outer
space to determine their body mass at regular intervals. Devise a
scheme for measuring body mass in an apparently weightless
environment.

Q5.6 To push a box up a ramp, is the force required smaller if you
push horizontally or if you push parallel to the ramp? Why?
Q5.7 A woman in an elevator lets go of her briefcase but it does
not fall to the floor. How is the elevator moving?
Q5.8 You can classify scales for weighing objects as those that use
springs and those that use standard masses to balance unknown
masses. Which group would be more accurate when used in an
accelerating spaceship? When used on the moon?
Q5.9 When you tighten a nut on a bolt, how are you increasing the
frictional force? How does a lock washer work?
Q5.10 A block rests on an inclined plane with enough friction to
prevent it from sliding down. To start the block moving, is it easier
to push it up the plane or down the plane? Why?
Q5.11 A crate of books rests on a level floor. To move it along the
floor at a constant velocity, why do you exert a smaller force if you
pull it at an angle above the horizontal than if you push it at the
same angle below the horizontal?

u

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.

BRIDGING PROBLEM In a Rotating Cone

5.39 A block inside a spinning cone.

EVALUATE
9. You’ll end up with some fairly complicated expressions for

and so check them over carefully. Do they have the
correct units? Is the minimum time less than the maxi-
mum time as it must be?

10. What do your expressions for and become if
? Check your results by comparing with Example

5.22 in Section 5.4.
ms = 0

TminTmax

Tmax,
Tmin

Tmin,Tmax

www.masteringphysics.com


Q5.12 In a world without friction, which of the following activities
could you do (or not do)? Explain your reasoning. (a) drive around
an unbanked highway curve; (b) jump into the air; (c) start walking
on a horizontal sidewalk; (d) climb a vertical ladder; (e) change
lanes on the freeway.
Q5.13 Walking on horizontal slippery ice can be much more tiring
than walking on ordinary pavement. Why?
Q5.14 When you stand with bare feet in a wet bathtub, the grip
feels fairly secure, and yet a catastrophic slip is quite possible.
Explain this in terms of the two coefficients of friction.
Q5.15 You are pushing a large crate from the back of a freight ele-
vator to the front as the elevator is moving to the next floor. In
which situation is the force you must apply to move the crate the
smallest and in which is it the largest: when the elevator is acceler-
ating upward, when it is accelerating downward, or when it is trav-
eling at constant speed? Explain.
Q5.16 The moon is accelerating toward the earth. Why isn’t it get-
ting closer to us?
Q5.17 An automotive magazine calls decreasing-radius curves
“the bane of the Sunday driver.” Explain.
Q5.18 You often hear people say that “friction always opposes
motion.” Give at least one example where (a) static friction causes
motion, and (b) kinetic friction causes motion.
Q5.19 If there is a net force on a particle in uniform circular
motion, why doesn’t the particle’s speed change?
Q5.20 A curve in a road has the banking angle calculated and
posted for However, the road is covered with ice so you
cautiously plan to drive slower than this limit. What may happen to
your car? Why?
Q5.21 You swing a ball on the end of a lightweight string in a hor-
izontal circle at constant speed. Can the string ever be truly hori-
zontal? If not, would it slope above the horizontal or below the
horizontal? Why?
Q5.22 The centrifugal force is not included in the free-body dia-
grams of Figs. 5.34b and 5.35. Explain why not.
Q5.23 A professor swings a rubber stopper in a horizontal circle
on the end of a string in front of his class. He tells Caroline, in the
first row, that he is going to let the string go when the stopper is
directly in front of her face. Should Caroline worry?
Q5.24 To keep the forces on the riders within allowable limits,
loop-the-loop roller coaster rides are often designed so that the
loop, rather than being a perfect circle, has a larger radius of curva-
ture at the bottom than at the top. Explain.
Q5.25 A tennis ball drops from rest at the top of a tall glass cylinder,
first with the air pumped out of the cylinder so there is no air resist-
ance, and then a second time after the air has been readmitted to the
cylinder. You examine multiflash photographs of the two drops.
From these photos how can you tell which one is which, or can you?
Q5.26 If you throw a baseball straight upward with speed how
does its speed, when it returns to the point from where you threw
it, compare to (a) in the absence of air resistance and (b) in the
presence of air resistance? Explain.
Q5.27 You throw a baseball straight upward. If air resistance is not
ignored, how does the time required for the ball to go from the
height at which it was thrown up to its maximum height compare to
the time required for it to fall from its maximum height back down
to the height from which it was thrown? Explain your answer.
Q5.28 You take two identical tennis balls and fill one with water.
You release both balls simultaneously from the top of a tall build-
ing. If air resistance is negligible, which ball strikes the ground
first? Explain. What is the answer if air resistance is not
negligible?

v0

v0,

80 km>h.

Q5.29 A ball is dropped from rest and feels air resistance as it falls.
Which of the graphs in Fig. Q5.29 best represents its acceleration
as a function of time?

Q5.30 A ball is dropped from rest and feels air resistance as it falls.
Which of the graphs in Fig. Q5.30 best represents its vertical
velocity component as a function of time?

Q5.31 When does a baseball in flight have an acceleration with a
positive upward component? Explain in terms of the forces on the
ball and also in terms of the velocity components compared to the
terminal speed. Do not ignore air resistance.
Q5.32 When a batted baseball moves with air drag, does it travel a
greater horizontal distance while climbing to its maximum height
or while descending from its maximum height back to the ground?
Or is the horizontal distance traveled the same for both? Explain in
terms of the forces acting on the ball.
Q5.33 “A ball is thrown from the edge of a high cliff. No matter
what the angle at which it is thrown, due to air resistance, the ball
will eventually end up moving vertically downward.” Justify this
statement.

EXERCISES
Section 5.1 Using Newton’s First Law: 
Particles in Equilibrium
5.1 . Two 25.0-N weights are suspended at opposite ends of a
rope that passes over a light, frictionless pulley. The pulley is
attached to a chain that goes to the ceiling. (a) What is the tension
in the rope? (b) What is the tension in the chain?
5.2 . In Fig. E5.2 each of the suspended blocks has weight w. The
pulleys are frictionless and the ropes have negligible weight. Cal-
culate, in each case, the tension T in the rope in terms of the weight
w. In each case, include the free-body diagram or diagrams you
used to determine the answer.
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5.3 . A 75.0-kg wrecking ball hangs from a uniform heavy-duty
chain having a mass of 26.0 kg. (a) Find the maximum and mini-
mum tension in the chain. (b) What is the tension at a point three-
fourths of the way up from the bottom of the chain?
5.4 .. BIO Injuries to the Spinal Column. In the treatment of
spine injuries, it is often necessary to provide some tension along
the spinal column to stretch the backbone. One device for doing
this is the Stryker frame, illustrated in Fig. E5.4a. A weight W is
attached to the patient (sometimes around a neck collar, as
shown in Fig. E5.4b), and friction between the person’s body and
the bed prevents sliding. (a) If the coefficient of static friction
between a 78.5-kg patient’s body and the bed is 0.75, what is the
maximum traction force along the spinal column that W can pro-
vide without causing the patient to slide? (b) Under the conditions
of maximum traction, what is the tension in each cable attached to
the neck collar?

5.5 .. A picture frame hung against a wall is suspended by two
wires attached to its upper corners. If the two wires make the same
angle with the vertical, what must this angle be if the tension in
each wire is equal to 0.75 of the weight of the frame? (Ignore any
friction between the wall and the picture frame.)
5.6 .. A large wrecking ball
is held in place by two light
steel cables (Fig. E5.6). If the
mass m of the wrecking ball is
4090 kg, what are (a) the ten-
sion in the cable that makes
an angle of with the verti-
cal and (b) the tension in the
horizontal cable?
5.7 .. Find the tension in
each cord in Fig. E5.7 if the
weight of the suspended object is w.

5.8 .. A 1130-kg car is held in place by a light cable on a very
smooth (frictionless) ramp, as shown in Fig. E5.8. The cable

TA

40°
TB

makes an angle of 31.0° above
the surface of the ramp, and
the ramp itself rises at 25.0°
above the horizontal. (a) Draw
a free-body diagram for the
car. (b) Find the tension in 
the cable. (c) How hard does the
surface of the ramp push on the
car?
5.9 .. A man pushes on a
piano with mass 180 kg so that
it slides at constant velocity down a ramp that is inclined at 
above the horizontal floor. Neglect any friction acting on the piano.
Calculate the magnitude of the force applied by the man if he
pushes (a) parallel to the incline and (b) parallel to the floor.
5.10 .. In Fig. E5.10 the weight w is 60.0 N. (a) What is the ten-
sion in the diagonal string? (b) Find the magnitudes of the horizon-
tal forces and that must be applied to hold the system in the
position shown.

Section 5.2 Using Newton’s Second Law: 
Dynamics of Particles
5.11 .. BIO Stay Awake! An astronaut is inside a 
rocket that is blasting off vertically from the launch pad. You want
this rocket to reach the speed of sound as quickly as
possible, but you also do not want the astronaut to black out. Medical
tests have shown that astronauts are in danger of blacking out at an
acceleration greater than 4g. (a) What is the maximum thrust the
engines of the rocket can have to just barely avoid blackout? Start
with a free-body diagram of the rocket. (b) What force, in terms of
her weight w, does the rocket exert on the astronaut? Start with a
free-body diagram of the astronaut. (c) What is the shortest time it
can take the rocket to reach the speed of sound?
5.12 .. A 125-kg (including all the contents) rocket has an engine
that produces a constant vertical force (the thrust) of 1720 N.
Inside this rocket, a 15.5-N electrical power supply rests on the
floor. (a) Find the acceleration of the rocket. (b) When it has
reached an altitude of 120 m, how hard does the floor push on the
power supply? (Hint: Start with a free-body diagram for the power
supply.)
5.13 .. CP Genesis Crash. On September 8, 2004, the Genesis
spacecraft crashed in the Utah desert because its parachute did not
open. The 210-kg capsule hit the ground at and pene-
trated the soil to a depth of 81.0 cm. (a) Assuming it to be constant,
what was its acceleration (in and in g’s) during the crash?
(b) What force did the ground exert on the capsule during the
crash? Express the force in newtons and as a multiple of the cap-
sule’s weight. (c) For how long did this force last?
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5.14 . Three sleds are being pulled horizontally on frictionless
horizontal ice using horizontal ropes (Fig. E5.14). The pull is of
magnitude 125 N. Find (a) the acceleration of the system and (b)
the tension in ropes A and B.

5.15 .. Atwood’s Machine. A
15.0-kg load of bricks hangs from
one end of a rope that passes over
a small, frictionless pulley. A 28.0-
kg counterweight is suspended
from the other end of the rope, as
shown in Fig. E5.15. The system
is released from rest. (a) Draw
two free-body diagrams, one for
the load of bricks and one for the
counterweight. (b) What is the
magnitude of the upward acceler-
ation of the load of bricks? (c)
What is the tension in the rope
while the load is moving? How
does the tension compare to the
weight of the load of bricks? To
the weight of the counterweight?
5.16 .. CP A 8.00-kg block of ice, released from rest at the top of
a 1.50-m-long frictionless ramp, slides downhill, reaching a speed
of at the bottom. (a) What is the angle between the ramp
and the horizontal? (b) What would be the speed of the ice at the
bottom if the motion were opposed by a constant friction force of
10.0 N parallel to the surface of the ramp?
5.17 .. A light rope is attached to a block with mass 4.00 kg that
rests on a frictionless, horizontal surface. The horizontal rope
passes over a frictionless, massless pulley, and a block with mass m
is suspended from the other end. When the blocks are released, the
tension in the rope is 10.0 N. (a) Draw two free-body diagrams,
one for the 4.00-kg block and one for the block with mass m.
(b) What is the acceleration of either block? (c) Find the mass m of
the hanging block. (d) How does the tension compare to the weight
of the hanging block?
5.18 .. CP Runway Design. A transport plane takes off from a
level landing field with two gliders in tow, one behind the other.
The mass of each glider is 700 kg, and the total resistance (air drag
plus friction with the runway) on each may be assumed constant
and equal to 2500 N. The tension in the towrope between the trans-
port plane and the first glider is not to exceed 12,000 N. (a) If a
speed of is required for takeoff, what minimum length of
runway is needed? (b) What is the tension in the towrope between
the two gliders while they are accelerating for the takeoff?
5.19 .. CP A 750.0-kg boulder is raised from a quarry 125 m
deep by a long uniform chain having a mass of 575 kg. This chain
is of uniform strength, but at any point it can support a maximum
tension no greater than 2.50 times its weight without breaking. (a)
What is the maximum acceleration the boulder can have and still
get out of the quarry, and (b) how long does it take to be lifted out
at maximum acceleration if it started from rest?
5.20 .. Apparent Weight. A 550-N physics student stands on a
bathroom scale in an 850-kg (including the student) elevator that is
supported by a cable. As the elevator starts moving, the scale reads

40 m>s

2.50 m>s

450 N. (a) Find the acceleration of the elevator (magnitude and
direction). (b) What is the acceleration if the scale reads 670 N?
(c) If the scale reads zero, should the student worry? Explain. 
(d) What is the tension in the cable in parts (a) and (c)?
5.21 .. CP BIO Force During a Jump. An average person can
reach a maximum height of about 60 cm when jumping straight up
from a crouched position. During the jump itself, the person’s
body from the knees up typically rises a distance of around 50 cm.
To keep the calculations simple and yet get a reasonable result,
assume that the entire body rises this much during the jump. 
(a) With what initial speed does the person leave the ground to
reach a height of 60 cm? (b) Draw a free-body diagram of the per-
son during the jump. (c) In terms of this jumper’s weight w, what
force does the ground exert on him or her during the jump?
5.22 .. CP CALC A 2540-kg test rocket is launched vertically from
the launch pad. Its fuel (of negligible mass) provides a thrust force so
that its vertical velocity as a function of time is given by

where A and B are constants and time is measured from the
instant the fuel is ignited. At the instant of ignition, the rocket has an
upward acceleration of and later an upward velocity
of (a) Determine A and B, including their SI units. (b) At
4.00 s after fuel ignition, what is the acceleration of the rocket, and (c)
what thrust force does the burning fuel exert on it, assuming no air
resistance? Express the thrust in newtons and as a multiple of the
rocket’s weight. (d) What was the initial thrust due to the fuel?
5.23 .. CP CALC A 2.00-kg box is moving to the right with speed

on a horizontal, frictionless surface. At a horizon-
tal force is applied to the box. The force is directed to the left and
has magnitude . (a) What distance does the
box move from its position at before its speed is reduced to
zero? (b) If the force continues to be applied, what is the speed of
the box at ?
5.24 .. CP CALC A 5.00-kg crate is suspended from the end of a
short vertical rope of negligible mass. An upward force is
applied to the end of the rope, and the height of the crate above its
initial position is given by .
What is the magnitude of the force F when ?

Section 5.3 Frictional Forces
5.25 . BIO The Trendelenburg Position. In emergencies with
major blood loss, the doctor will order the patient placed in the
Trendelenburg position, in which the foot of the bed is raised to get
maximum blood flow to the brain. If the coefficient of static fric-
tion between the typical patient and the bedsheets is 1.20, what is
the maximum angle at which the bed can be tilted with respect to
the floor before the patient begins to slide?
5.26 . In a laboratory experiment on friction, a 135-N block rest-
ing on a rough horizontal table is pulled by a horizontal wire. The
pull gradually increases until the block begins to move and contin-
ues to increase thereafter. Figure E5.26 shows a graph of the fric-
tion force on this block as a function of the pull. (a) Identify the
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regions of the graph where static and kinetic friction occur. 
(b) Find the coefficients of static and kinetic friction between the
block and the table. (c) Why does the graph slant upward in the
first part but then level out? (d) What would the graph look like if a
135-N brick were placed on the box, and what would the coeffi-
cients of friction be in that case?
5.27 .. CP A stockroom worker pushes a box with mass 11.2 kg
on a horizontal surface with a constant speed of The
coefficient of kinetic friction between the box and the surface is
0.20. (a) What horizontal force must the worker apply to maintain
the motion? (b) If the force calculated in part (a) is removed, how
far does the box slide before coming to rest?
5.28 .. A box of bananas weighing 40.0 N rests on a horizontal
surface. The coefficient of static friction between the box and the
surface is 0.40, and the coefficient of kinetic friction is 0.20. (a) If
no horizontal force is applied to the box and the box is at rest, how
large is the friction force exerted on the box? (b) What is the magni-
tude of the friction force if a monkey applies a horizontal force of
6.0 N to the box and the box is initially at rest? (c) What minimum
horizontal force must the monkey apply to start the box in motion?
(d) What minimum horizontal force must the monkey apply to keep
the box moving at constant velocity once it has been started? (e) If
the monkey applies a horizontal force of 18.0 N, what is the magni-
tude of the friction force and what is the box’s acceleration?
5.29 .. A 45.0-kg crate of tools rests on a horizontal floor. You
exert a gradually increasing horizontal push on it and observe that
the crate just begins to move when your force exceeds 313 N. After
that you must reduce your push to 208 N to keep it moving at a
steady (a) What are the coefficients of static and kinetic
friction between the crate and the floor? (b) What push must you
exert to give it an acceleration of (c) Suppose you were
performing the same experiment on this crate but were doing it on the
moon instead, where the acceleration due to gravity is 
(i) What magnitude push would cause it to move? (ii) What would its
acceleration be if you maintained the push in part (b)?
5.30 .. Some sliding rocks approach the base of a hill with a
speed of The hill rises at 36° above the horizontal and has
coefficients of kinetic and static friction of 0.45 and 0.65, respec-
tively, with these rocks. (a) Find the acceleration of the rocks as
they slide up the hill. (b) Once a rock reaches its highest point, will
it stay there or slide down the hill? If it stays there, show why. If it
slides down, find its acceleration on the way down.
5.31 .. You are lowering two boxes, one on top of the other,
down the ramp shown in Fig. E5.31 by pulling on a rope parallel to
the surface of the ramp. Both boxes move together at a constant
speed of The coefficient of kinetic friction between the
ramp and the lower box is 0.444, and the coefficient of static fric-
tion between the two boxes is 0.800. (a) What force do you need to
exert to accomplish this? (b) What are the magnitude and direction
of the friction force on the upper box?

15.0 cm>s.

12 m>s .

1.62 m>s2.

1.10 m>s2?

25.0 cm>s.

3.50 m>s.

5.32 .. A pickup truck is carrying a toolbox, but the rear gate of
the truck is missing, so the box will slide out if it is set moving.
The coefficients of kinetic and static friction between the box and
the bed of the truck are 0.355 and 0.650, respectively. Starting
from rest, what is the shortest time this truck could accelerate uni-
formly to without causing the box to slide? Include a
free-body diagram of the toolbox as part of your solution.
5.33 .. CP Stopping Distance. (a) If the coefficient of kinetic
friction between tires and dry pavement is 0.80, what is the short-
est distance in which you can stop an automobile by locking the
brakes when traveling at about ? (b) On wet
pavement the coefficient of kinetic friction may be only 0.25. How
fast should you drive on wet pavement in order to be able to stop in
the same distance as in part (a)? (Note: Locking the brakes is not
the safest way to stop.)
5.34 .. Consider the
system shown in Fig.
E5.34. Block A weighs
45.0 N and block B
weighs 25.0 N. Once
block B is set into
downward motion, it
descends at a constant
speed. (a) Calculate the coefficient of kinetic friction between
block A and the tabletop. (b) A cat, also of weight 45.0 N, falls
asleep on top of block A. If block B is now set into downward
motion, what is its acceleration (magnitude and direction)?
5.35 . Two crates connected by a rope lie on a horizontal surface
(Fig. E5.35). Crate A has mass and crate B has mass The
coefficient of kinetic friction between each crate and the surface
is The crates are pulled to the right at constant velocity by a
horizontal force In terms of and calculate (a) the
magnitude of the force and (b) the tension in the rope connecting
the blocks. Include the free-body diagram or diagrams you used to
determine each answer.

5.36 .. CP A 25.0-kg box of textbooks rests on a loading ramp
that makes an angle with the horizontal. The coefficient of
kinetic friction is 0.25, and the coefficient of static friction is 0.35.
(a) As the angle is increased, find the minimum angle at which
the box starts to slip. (b) At this angle, find the acceleration once
the box has begun to move. (c) At this angle, how fast will the box
be moving after it has slid 5.0 m along the loading ramp?
5.37 .. CP As shown in Fig. E5.34, block A (mass 2.25 kg) rests on a
tabletop. It is connected by a horizontal cord passing over a light, fric-
tionless pulley to a hanging block B (mass 1.30 kg). The coefficient of
kinetic friction between block A and the tabletop is 0.450. After the
blocks are released from rest, find (a) the speed of each block after
moving 3.00 cm and (b) the tension in the cord. Include the free-body
diagram or diagrams you used to determine the answers.
5.38 .. A box with mass m is dragged across a level floor having
a coefficient of kinetic friction by a rope that is pulled upward
at an angle above the horizontal with a force of magnitude F.
(a) In terms of m, and g, obtain an expression for the magni-
tude of the force required to move the box with constant speed. (b)
Knowing that you are studying physics, a CPR instructor asks you

u,mk,
u

mk

a

a

F
S

mk,mB,mA,F
S

.
mk.

mB.mA

265 mi>h128.7 m>s

30.0 m>s

32.0

kg

48.0

kg

4.75 m

2.50 m

Figure E5.31

B

A

Figure E5.34

A B
F
S

Figure E5.35



how much force it would take to slide a 90-kg patient across a floor
at constant speed by pulling on him at an angle of above the
horizontal. By dragging some weights wrapped in an old pair of
pants down the hall with a spring balance, you find that 
Use the result of part (a) to answer the instructor’s question.
5.39 .. A large crate with mass m rests on a horizontal floor. The
coefficients of friction between the crate and the floor are and 
A woman pushes downward at an angle below the horizontal on
the crate with a force (a) What magnitude of force is required
to keep the crate moving at constant velocity? (b) If is greater
than some critical value, the woman cannot start the crate moving no
matter how hard she pushes. Calculate this critical value of 
5.40 .. You throw a baseball straight up. The drag force is pro-
portional to In terms of g, what is the y-component of the ball’s
acceleration when its speed is half its terminal speed and (a) it is
moving up? (b) It is moving back down?
5.41 . (a) In Example 5.18 (Section 5.3), what value of D is
required to make for the skydiver? (b) If the sky-
diver’s daughter, whose mass is 45 kg, is falling through the air
and has the same D as her father, what is the daugh-
ter’s terminal speed?

Section 5.4 Dynamics of Circular Motion
5.42 .. A small car with mass
0.800 kg travels at constant
speed on the inside of a track
that is a vertical circle with
radius 5.00 m (Fig. E5.42). If
the normal force exerted by the
track on the car when it is at the
top of the track (point B) is 6.00
N, what is the normal force on
the car when it is at the bottom
of the track (point A)?
5.43 .. A machine part con-
sists of a thin 40.0-cm-long bar
with small 1.15-kg masses fas-
tened by screws to its ends. The
screws can support a maximum
force of 75.0 N without pulling out. This bar rotates about an axis
perpendicular to it at its center. (a) As the bar is turning at a constant
rate on a horizontal, frictionless surface, what is the maximum
speed the masses can have without pulling out the screws? (b)
Suppose the machine is redesigned so that the bar turns at a con-
stant rate in a vertical circle. Will one of the screws be more likely
to pull out when the mass is at the top of the circle or at the bot-
tom? Use a free-body diagram to see why. (c) Using the result of
part (b), what is the greatest speed the masses can have without
pulling a screw?
5.44 . A flat (unbanked) curve on a highway has a radius of
220.0 m. A car rounds the curve at a speed of (a) What
is the minimum coefficient of friction that will prevent sliding?
(b) Suppose the highway is icy and the coefficient of friction
between the tires and pavement is only one-third what you found
in part (a). What should be the maximum speed of the car so it can
round the curve safely?
5.45 .. A 1125-kg car and a 2250-kg pickup truck approach a
curve on the expressway that has a radius of 225 m. (a) At what
angle should the highway engineer bank this curve so that vehicles
traveling at can safely round it regardless of the condi-
tion of their tires? Should the heavy truck go slower than the
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lighter car? (b) As the car and truck round the curve at find the
normal force on each one due to the highway surface.
5.46 .. The “Giant Swing” at a county fair consists of a vertical
central shaft with a number of horizontal arms attached at its upper
end (Fig. E5.46). Each arm supports a seat suspended from a cable
5.00 m long, the upper end of the cable being fastened to the arm at
a point 3.00 m from the central shaft. (a) Find the time of one rev-
olution of the swing if the cable supporting a seat makes an angle
of with the vertical. (b) Does the angle depend on the weight
of the passenger for a given rate of revolution?

5.47 .. In another version of
the “Giant Swing” (see Exer-
cise 5.46), the seat is connected
to two cables as shown in Fig.
E5.47, one of which is horizon-
tal. The seat swings in a hori-
zontal circle at a rate of 32.0
rpm If the seat
weighs 255 N and an 825-N per-
son is sitting in it, find the ten-
sion in each cable.
5.48 .. A small button placed
on a horizontal rotating plat-
form with diameter 0.320 m
will revolve with the platform when it is brought up to a speed of

provided the button is no more than 0.150 m from
the axis. (a) What is the coefficient of static friction between the
button and the platform? (b) How far from the axis can the button
be placed, without slipping, if the platform rotates at 
5.49 .. Rotating Space Stations. One problem for humans
living in outer space is that they are apparently weightless. One way
around this problem is to design a space station that spins about its
center at a constant rate. This creates “artificial gravity” at the outside
rim of the station. (a) If the diameter of the space station is 800 m,
how many revolutions per minute are needed for the “artificial grav-
ity” acceleration to be (b) If the space station is a waiting
area for travelers going to Mars, it might be desirable to simulate the
acceleration due to gravity on the Martian surface How
many revolutions per minute are needed in this case?
5.50 . The Cosmoclock 21 Ferris wheel in Yokohama City,
Japan, has a diameter of 100 m. Its name comes from its 60 arms,
each of which can function as a second hand (so that it makes one
revolution every 60.0 s). (a) Find the speed of the passengers
when the Ferris wheel is rotating at this rate. (b) A passenger
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weighs 882 N at the weight-guessing booth on the ground. What
is his apparent weight at the highest and at the lowest point on the
Ferris wheel? (c) What would be the time for one revolution if the
passenger’s apparent weight at the highest point were zero? 
(d) What then would be the passenger’s apparent weight at the
lowest point?
5.51 .. An airplane flies in a loop (a circular path in a vertical
plane) of radius 150 m. The pilot’s head always points toward the
center of the loop. The speed of the airplane is not constant; the
airplane goes slowest at the top of the loop and fastest at the bot-
tom. (a) At the top of the loop, the pilot feels weightless. What is
the speed of the airplane at this point? (b) At the bottom of the
loop, the speed of the airplane is What is the apparent
weight of the pilot at this point? His true weight is 700 N.
5.52 .. A 50.0-kg stunt pilot who has been diving her airplane
vertically pulls out of the dive by changing her course to a circle
in a vertical plane. (a) If the plane’s speed at the lowest point of
the circle is what is the minimum radius of the circle for
the acceleration at this point not to exceed 4.00g? (b) What is the
apparent weight of the pilot at the lowest point of the pullout?
5.53 . Stay Dry! You tie a cord to a pail of water, and you
swing the pail in a vertical circle of radius 0.600 m. What mini-
mum speed must you give the pail at the highest point of the circle
if no water is to spill from it?
5.54 .. A bowling ball weighing 71.2 N is attached to
the ceiling by a 3.80-m rope. The ball is pulled to one side and
released; it then swings back and forth as a pendulum. As the rope
swings through the vertical, the speed of the bowling ball is

(a) What is the acceleration of the bowling ball, in mag-
nitude and direction, at this instant? (b) What is the tension in the
rope at this instant?
5.55 .. BIO Effect on Blood of Walking. While a person is
walking, his arms swing through approximately a 45° angle in s.
As a reasonable approximation, we can assume that the arm moves
with constant speed during each swing. A typical arm is 70.0 cm
long, measured from the shoulder joint. (a) What is the acceleration
of a 1.0-g drop of blood in the fingertips at the bottom of the swing?
(b) Draw a free-body diagram of the drop of blood in part (a). (c)
Find the force that the blood vessel must exert on the drop of blood
in part (a). Which way does this force point? (d) What force would
the blood vessel exert if the arm were not swinging?

PROBLEMS
5.56 .. An adventurous archaeologist crosses between two rock
cliffs by slowly going hand over hand along a rope stretched between
the cliffs. He stops to rest at the middle of the rope (Fig. P5.56).
The rope will break if the tension in it exceeds and
our hero’s mass is 90.0 kg. (a) If the angle is find the
tension in the rope. (b) What is the smallest value the angle can
have if the rope is not to break?

u
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2.50 * 104 N,
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95.0 m>s,

280 km>h.

5.57 ... Two ropes are connected
to a steel cable that supports a
hanging weight as shown in Fig.
P5.57. (a) Draw a free-body dia-
gram showing all of the forces act-
ing at the knot that connects the
two ropes to the steel cable. Based
on your force diagram, which of the
two ropes will have the greater ten-
sion? (b) If the maximum tension either rope can sustain without
breaking is 5000 N, determine the maximum value of the hanging
weight that these ropes can safely support. You can ignore the
weight of the ropes and the steel cable.
5.58 .. In Fig. P5.58 a worker
lifts a weight w by pulling
down on a rope with a force 
The upper pulley is attached to
the ceiling by a chain, and the
lower pulley is attached to the
weight by another chain. In
terms of w, find the tension in
each chain and the magnitude
of the force if the weight is
lifted at constant speed. Include
the free-body diagram or dia-
grams you used to determine
your answers. Assume that the
rope, pulleys, and chains all
have negligible weights.
5.59 ... A solid uniform 
45.0-kg ball of diameter 32.0 cm
is supported against a vertical,
frictionless wall using a thin
30.0-cm wire of negligible
mass, as shown in Fig. P5.59.
(a) Draw a free-body diagram
for the ball and use it to find
the tension in the wire. (b)
How hard does the ball push
against the wall?
5.60 ... A horizontal wire
holds a solid uniform ball of
mass m in place on a tilted
ramp that rises 35.0° above the
horizontal. The surface of this
ramp is perfectly smooth, and
the wire is directed away from
the center of the ball (Fig.
P5.60). (a) Draw a free-body
diagram for the ball. (b) How hard does the surface of the ramp push
on the ball? (c) What is the tension in the wire?
5.61 .. CP BIO Forces During Chin-ups. People who do chin-
ups raise their chin just over a bar (the chinning bar), supporting
themselves with only their arms. Typically, the body below the
arms is raised by about 30 cm in a time of 1.0 s, starting from rest.
Assume that the entire body of a 680-N person doing chin-ups is
raised this distance and that half the 1.0 s is spent accelerating
upward and the other half accelerating downward, uniformly in
both cases. Draw a free-body diagram of the person’s body, and
then apply it to find the force his arms must exert on him during
the accelerating part of the chin-up.
5.62 .. CP BIO Prevention of Hip Injuries. People (espe-
cially the elderly) who are prone to falling can wear hip pads to
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cushion the impact on their hip from a fall. Experiments have
shown that if the speed at impact can be reduced to or less,
the hip will usually not fracture. Let us investigate the worst-case
scenario in which a 55-kg person completely loses her footing
(such as on icy pavement) and falls a distance of 1.0 m, the dis-
tance from her hip to the ground. We shall assume that the person’s
entire body has the same acceleration, which, in reality, would not
quite be true. (a) With what speed does her hip reach the ground?
(b) A typical hip pad can reduce the person’s speed to 
over a distance of 2.0 cm. Find the acceleration (assumed to be
constant) of this person’s hip while she is slowing down and the
force the pad exerts on it. (c) The force in part (b) is very large. To
see whether it is likely to cause injury, calculate how long it lasts.
5.63 ... CALC A 3.00-kg box that is several hundred meters
above the surface of the earth is suspended from the end of a short
vertical rope of negligible mass. A time-dependent upward force is
applied to the upper end of the rope, and this results in a tension in
the rope of . The box is at rest at . The only
forces on the box are the tension in the rope and gravity. (a) What is
the velocity of the box at (i) and (ii) ? (b) What
is the maximum distance that the box descends below its initial posi-
tion? (c) At what value of t does the box return to its initial position?
5.64 .. CP A 5.00-kg box sits at rest at the bottom of a ramp that
is 8.00 m long and that is inclined at above the horizontal.
The coefficient of kinetic friction is , and the coefficient
of static friction is . What constant force F, applied par-
allel to the surface of the ramp, is required to push the box to the
top of the ramp in a time of 4.00 s?
5.65 .. Two boxes connected by a light horizontal rope are on a
horizontal surface, as shown in Fig. P5.35. The coefficient of
kinetic friction between each box and the surface is .
One box (box B) has mass 5.00 kg, and the other box (box A) has
mass m. A force F with magnitude 40.0 N and direction above
the horizontal is applied to the 5.00-kg box, and both boxes move to
the right with . (a) What is the tension T in the rope
that connects the boxes? (b) What is the mass m of the second box?
5.66 ... A 6.00-kg box sits on a ramp that is inclined at above
the horizontal. The coefficient of kinetic friction between the box and
the ramp is . What horizontal force is required to move the
box up the incline with a constant acceleration of ?
5.67 .. CP In Fig. P5.34 block A has mass m and block B has
mass 6.00 kg. The coefficient of kinetic friction between block A
and the tabletop is . The mass of the rope connecting the
blocks can be neglected. The pulley is light and frictionless. When
the system is released from rest, the hanging block descends 5.00 m
in 3.00 s. What is the mass m of block A?
5.68 .. CP In Fig. P5.68

and
. The coefficient of

kinetic friction between the
block and the incline is 

. What must be the mass
of the hanging block if it

is to descend 12.0 m in the
first 3.00 s after the system is
released from rest?
5.69 ... CP Rolling Friction. Two bicycle tires are set rolling
with the same initial speed of on a long, straight road,
and the distance each travels before its speed is reduced by half 
is measured. One tire is inflated to a pressure of 40 psi and goes
18.1 m; the other is at 105 psi and goes 92.9 m. What is the coeffi-
cient of rolling friction for each? Assume that the net horizontal
force is due to rolling friction only.
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5.70 .. A Rope with Mass. A block with mass M is attached to
the lower end of a vertical, uniform rope with mass m and length L.
A constant upward force is applied to the top of the rope, caus-
ing the rope and block to accelerate upward. Find the tension in the
rope at a distance x from the top end of the rope, where x can have
any value from 0 to L.
5.71 .. A block with mass is placed on an inclined plane with
slope angle and is connected to a second hanging block with mass

by a cord passing over a small, frictionless pulley (Fig. P5.68).
The coefficient of static friction is and the coefficient of kinetic
friction is (a) Find the mass for which block moves up
the plane at constant speed once it is set in motion. (b) Find the
mass for which block moves down the plane at constant
speed once it is set in motion. (c) For what range of values of 
will the blocks remain at rest if they are released from rest?
5.72 .. Block A in Fig. P5.72 weighs 60.0 N. The coefficient of
static friction between the block and the surface on which it rests is
0.25. The weight w is 12.0 N and the system is in equilibrium. 
(a) Find the friction force exerted on block A. (b) Find the maxi-
mum weight w for which the system will remain in equilibrium.

5.73 .. Block A in Fig. P5.73 weighs 2.40 N and block B weighs
3.60 N. The coefficient of kinetic friction between all surfaces is
0.300. Find the magnitude of the horizontal force necessary to
drag block B to the left at constant speed (a) if A rests on B and
moves with it (Fig. P5.73a). (b) If A is held at rest (Fig. P5.73b).

5.74 ... A window washer pushes
his scrub brush up a vertical win-
dow at constant speed by applying
a force as shown in Fig. P5.74.
The brush weighs 15.0 N and the
coefficient of kinetic friction is

Calculate (a) the
magnitude of the force and 
(b) the normal force exerted by the
window on the brush.
5.75 .. BIO The Flying Leap
of a Flea. High-speed motion
pictures of
a jumping flea yielded
the data to plot the flea’s acceler-
ation as a function of time as
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shown in Fig. P5.75. (See “The Flying Leap of the Flea,” by M.
Rothschild et al. in the November 1973 Scientific American.) This
flea was about 2 mm long and jumped at a nearly vertical takeoff
angle. Use the measurements shown on the graph to answer the
questions. (a) Find the initial net external force on the flea. How
does it compare to the flea’s weight? (b) Find the maximum net
external force on this jumping flea. When does this maximum
force occur? (c) Use the graph to find the flea’s maximum speed.

5.76 .. CP A 25,000-kg rocket blasts off vertically from the
earth’s surface with a constant acceleration. During the motion
considered in the problem, assume that g remains constant (see
Chapter 13). Inside the rocket, a 15.0-N instrument hangs from a
wire that can support a maximum tension of 45.0 N. (a) Find the
minimum time for this rocket to reach the sound barrier 
without breaking the inside wire and the maximum vertical thrust
of the rocket engines under these conditions. (b) How far is the
rocket above the earth’s surface when it breaks the sound barrier?
5.77 ... CP CALC You are standing on a bathroom scale in an ele-
vator in a tall building. Your mass is 64 kg. The elevator starts from
rest and travels upward with a speed that varies with time according
to When what is
the reading of the bathroom scale?
5.78 ... CP Elevator Design. You are designing an elevator for
a hospital. The force exerted on a passenger by the floor of the ele-
vator is not to exceed 1.60 times the passenger’s weight. The eleva-
tor accelerates upward with constant acceleration for a distance
of 3.0 m and then starts to slow down. What is the maximum speed
of the elevator?
5.79 .. CP You are working for a shipping company. Your job is to
stand at the bottom of a 8.0-m-long ramp that is inclined at 
above the horizontal. You grab packages off a conveyor belt and pro-
pel them up the ramp. The coefficient of kinetic friction between the
packages and the ramp is (a) What speed do you need to
give a package at the bottom of the ramp so that it has zero speed at
the top of the ramp? (b) Your coworker is supposed to grab the pack-
ages as they arrive at the top of the ramp, but she misses one and it
slides back down. What is its speed when it returns to you?
5.80 .. A hammer is hanging by a light rope from the ceiling of a
bus. The ceiling of the bus is parallel to the roadway. The bus is
traveling in a straight line on a horizontal street. You observe that
the hammer hangs at rest with respect to the bus when the angle
between the rope and the ceiling of the bus is What is the
acceleration of the bus?
5.81 ... A steel washer is suspended inside an empty shipping crate
from a light string attached to the top of the crate. The crate slides
down a long ramp that is inclined at an angle of above the hori-
zontal. The crate has mass 180 kg. You are sitting inside the crate
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(with a flashlight); your mass is 55 kg. As the crate is sliding down
the ramp, you find the washer is at rest with respect to the crate when
the string makes an angle of with the top of the crate. What is the
coefficient of kinetic friction between the ramp and the crate?
5.82 . CP Lunch Time! You are riding your motorcycle one
day down a wet street that slopes downward at an angle of 
below the horizontal. As you start to ride down the hill, you notice
a construction crew has dug a deep hole in the street at the bottom
of the hill. A Siberian tiger, escaped from the City Zoo, has taken
up residence in the hole. You apply the brakes and lock your
wheels at the top of the hill, where you are moving with a speed of

The inclined street in front of you is 40 m long. (a) Will
you plunge into the hole and become the tiger’s lunch, or do you
skid to a stop before you reach the hole? (The coefficients of fric-
tion between your motorcycle tires and the wet pavement are

and ) (b) What must your initial speed be if
you are to stop just before reaching the hole?
5.83 ... In the system shown in Fig. P5.34, block A has mass 
block B has mass and the rope connecting them has a nonzero
mass The rope has a total length L, and the pulley has a very
small radius. You can ignore any sag in the horizontal part of the
rope. (a) If there is no friction between block A and the tabletop, find
the acceleration of the blocks at an instant when a length d of rope
hangs vertically between the pulley and block B. As block B falls,
will the magnitude of the acceleration of the system increase,
decrease, or remain constant? Explain. (b) Let 

and If there is
friction between block A and the tabletop, with and

find the minimum value of the distance d such that the
blocks will start to move if they are initially at rest. (c) Repeat part
(b) for the case Will the blocks move in this case?
5.84 ... If the coefficient of static friction between a table and a
uniform massive rope is what fraction of the rope can hang
over the edge of the table without the rope sliding?
5.85 .. A 40.0-kg packing case is initially at rest on the floor of a
1500-kg pickup truck. The coefficient of static friction between the
case and the truck floor is 0.30, and the coefficient of kinetic fric-
tion is 0.20. Before each acceleration given below, the truck is
traveling due north at constant speed. Find the magnitude and
direction of the friction force acting on the case (a) when the truck
accelerates at northward and (b) when it accelerates at

southward.
5.86 . CP Traffic Court. You are called as an expert witness in
the trial of a traffic violation. The facts are these: A driver slammed
on his brakes and came to a stop with constant acceleration. Mea-
surements of his tires and the skid marks on the pavement indicate
that he locked his car’s wheels, the car
traveled 192 ft before stopping, and the
coefficient of kinetic friction between the
road and his tires was 0.750. The charge is
that he was speeding in a zone.
He pleads innocent. What is your conclu-
sion, guilty or innocent? How fast was he
going when he hit his brakes?
5.87 ... Two identical 15.0-kg balls, each
25.0 cm in diameter, are suspended by two
35.0-cm wires as shown in Fig. P5.87. The
entire apparatus is supported by a single
18.0-cm wire, and the surfaces of the balls
are perfectly smooth. (a) Find the tension
in each of the three wires. (b) How hard
does each ball push on the other one?
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5.88 .. CP Losing Cargo. A 12.0-kg box rests on the flat floor
of a truck. The coefficients of friction between the box and floor
are and The truck stops at a stop sign and
then starts to move with an acceleration of If the box is
1.80 m from the rear of the truck when the truck starts, how much
time elapses before the box falls off the truck? How far does the
truck travel in this time?
5.89 ... Block A in Fig.
P5.89 weighs 1.90 N, and
block B weighs 4.20 N. The
coefficient of kinetic friction
between all surfaces is 0.30.
Find the magnitude of the
horizontal force necessary
to drag block B to the left at
constant speed if A and B
are connected by a light,
flexible cord passing around a fixed, frictionless pulley.
5.90 ... CP You are part of a design team for future exploration
of the planet Mars, where An explorer is to step out
of a survey vehicle traveling horizontally at when it is
1200 m above the surface and then fall freely for 20 s. At that time,
a portable advanced propulsion system (PAPS) is to exert a con-
stant force that will decrease the explorer’s speed to zero at the
instant she touches the surface. The total mass (explorer, suit,
equipment, and PAPS) is 150 kg. Assume the change in mass of
the PAPS to be negligible. Find the horizontal and vertical compo-
nents of the force the PAPS must exert, and for what interval of
time the PAPS must exert it. You can ignore air resistance.
5.91 .. Block A in Fig. P5.91 has a mass of 4.00 kg, and block B
has mass 12.0 kg. The coefficient of kinetic friction between block B
and the horizontal surface is 0.25. (a) What is the mass of block C
if block B is moving to the right and speeding up with an accelera-
tion of (b) What is the tension in each cord when block
B has this acceleration?

5.92 .. Two blocks connected by a cord passing over a small,
frictionless pulley rest on frictionless planes (Fig. P5.92). (a) Which
way will the system move when the blocks are released from rest?
(b) What is the acceleration of the blocks? (c) What is the tension
in the cord?

2.00 m>s2?

33 m>s
g = 3.7 m>s2.

F
S

2.20 m>s2.
mk = 0.15.ms = 0.19

5.93 .. In terms of 
and g, find the accel-

eration of each block in
Fig. P5.93. There is no
friction anywhere in the
system.
5.94 ... Block B, with
mass 5.00 kg, rests on
block A, with mass 
8.00 kg, which in turn is
on a horizontal tabletop
(Fig. P5.94). There is no
friction between block A and the tabletop, but the coefficient of
static friction between block A and block B is 0.750. A light string
attached to block A passes over a frictionless, massless pulley, and
block C is suspended from the other end of the string. What is the
largest mass that block C can have so that blocks A and B still slide
together when the system is released from rest?

5.95 ... Two objects with masses 5.00 kg and 2.00 kg hang
0.600 m above the floor from the ends of a cord 6.00 m long pass-
ing over a frictionless pulley. Both objects start from rest. Find the
maximum height reached by the 2.00-kg object.
5.96 .. Friction in an Elevator. You are riding in an elevator
on the way to the 18th floor of your dormitory. The elevator is
accelerating upward with Beside you is the box
containing your new computer; the box and its contents have a
total mass of 28.0 kg. While the elevator is accelerating upward,
you push horizontally on the box to slide it at constant speed
toward the elevator door. If the coefficient of kinetic friction
between the box and the elevator floor is what magni-
tude of force must you apply?
5.97 . A block is placed
against the vertical front
of a cart as shown in
Fig. P5.97. What accel-
eration must the cart
have so that block A
does not fall? The coef-
ficient of static friction
between the block and
the cart is How
would an observer on
the cart describe the
behavior of the block?
5.98 ... Two blocks
with masses 4.00 kg and
8.00 kg are connected
by a string and slide
down a inclined
plane (Fig. P5.98). The
coefficient of kinetic
friction between the

30.0°
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4.00-kg block and the plane is 0.25; that between the 8.00-kg
block and the plane is 0.35. (a) Calculate the acceleration of each
block. (b) Calculate the tension in the string. (c) What happens if the
positions of the blocks are reversed, so the 4.00-kg block is above
the 8.00-kg block?
5.99 ... Block A, with weight
3w, slides down an inclined
plane S of slope angle at a
constant speed while plank B,
with weight w, rests on top of
A. The plank is attached by a
cord to the wall (Fig. P5.99). (a)
Draw a diagram of all the forces
acting on block A. (b) If the
coefficient of kinetic friction is
the same between A and B and
between S and A, determine its
value.
5.100 .. Accelerometer. The system shown in Fig. P5.100 can
be used to measure the acceleration of the system. An observer rid-
ing on the platform measures the angle that the thread supporting
the light ball makes with the vertical. There is no friction any-
where. (a) How is related to the acceleration of the system? (b) If

and what is (c) If you can vary
and what is the largest angle you could achieve? Explain

how you need to adjust and to do this.

5.101 ... Banked Curve I. A curve with a 120-m radius on a
level road is banked at the correct angle for a speed of If
an automobile rounds this curve at what is the minimum
coefficient of static friction needed between tires and road to pre-
vent skidding?
5.102 .. Banked Curve II. Consider a wet roadway banked as
in Example 5.22 (Section 5.4), where there is a coefficient of static
friction of 0.30 and a coefficient of kinetic friction of 0.25 between
the tires and the roadway. The radius of the curve is 
(a) If the banking angle is what is the maximum speed
the automobile can have before sliding up the banking? (b) What is
the minimum speed the automobile can have before sliding down the
banking?
5.103 ... Blocks A, B, and C are placed as in Fig. P5.103 and
connected by ropes of negligible mass. Both A and B weigh 25.0 N
each, and the coefficient of kinetic friction between each block
and the surface is 0.35. Block C descends with constant velocity. 
(a) Draw two separate free-body diagrams showing the forces
acting on A and on B. (b) Find the tension in the rope connecting
blocks A and B. (c) What is the weight of block C? (d) If the rope
connecting A and B were cut, what would be the acceleration 
of C?

b = 25°,
R = 50 m.

30 m>s,
20 m>s.

m2m1

um2,m1
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u

u

36.9°

5.104 .. You are riding in a school bus. As the bus rounds a flat
curve at constant speed, a lunch box with mass 0.500 kg, sus-
pended from the ceiling of the bus by a string 1.80 m long, is found
to hang at rest relative to the bus when the string makes an angle of

with the vertical. In this position the lunch box is 50.0 m
from the center of curvature of the curve. What is the speed of
the bus?
5.105 . The Monkey and Bananas
Problem. A 20-kg monkey has a
firm hold on a light rope that passes
over a frictionless pulley and is
attached to a 20-kg bunch of bananas
(Fig. P5.105). The monkey looks up,
sees the bananas, and starts to climb
the rope to get them. (a) As the monkey
climbs, do the bananas move up, down,
or remain at rest? (b) As the monkey
climbs, does the distance between the
monkey and the bananas decrease,
increase, or remain constant? (c) The
monkey releases her hold on the rope.
What happens to the distance between
the monkey and the bananas while she
is falling? (d) Before reaching the
ground, the monkey grabs the rope to stop her fall. What do the
bananas do?
5.106 .. CALC You throw a rock downward into water with a
speed of where k is the coefficient in Eq. (5.7). Assume that
the relationship between fluid resistance and speed is as given in
Eq. (5.7), and calculate the speed of the rock as a function of time.
5.107 .. A rock with mass falls from rest in a vis-
cous medium. The rock is acted on by a net constant downward
force of 18.0 N (a combination of gravity and the buoyant force
exerted by the medium) and by a fluid resistance force 
where is the speed in and (see Section 5.3).
(a) Find the initial acceleration (b) Find the acceleration when
the speed is (c) Find the speed when the acceleration
equals (d) Find the terminal speed (e) Find the coordi-
nate, speed, and acceleration 2.00 s after the start of the motion. (f )
Find the time required to reach a speed of 
5.108 .. CALC A rock with mass m slides with initial velocity 
on a horizontal surface. A retarding force that the surface exerts
on the rock is proportional to the square root of the instantaneous
velocity of the rock (a) Find expressions for the
velocity and position of the rock as a function of time. (b) In terms
of m, k, and at what time will the rock come to rest? (c) In
terms of m, k, and what is the distance of the rock from its start-
ing point when it comes to rest?
5.109 ... You observe a 1350-kg sports car rolling along flat
pavement in a straight line. The only horizontal forces acting on it
are a constant rolling friction and air resistance (proportional to the
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square of its speed). You take the following data during a time
interval of 25 s: When its speed is the car slows down at a
rate of and when its speed is decreased to it
slows down at (a) Find the coefficient of rolling fric-
tion and the air drag constant D. (b) At what constant speed will
this car move down an incline that makes a angle with the
horizontal? (c) How is the constant speed for an incline of angle 
related to the terminal speed of this sports car if the car drops off a
high cliff? Assume that in both cases the air resistance force is pro-
portional to the square of the speed, and the air drag constant is the
same.
5.110 ... The 4.00-kg block in
Fig. P5.110 is attached to a verti-
cal rod by means of two strings.
When the system rotates about
the axis of the rod, the strings are
extended as shown in the dia-
gram and the tension in the
upper string is 80.0 N. (a) What
is the tension in the lower cord? 
(b) How many revolutions per
minute does the system make?
(c) Find the number of revolu-
tions per minute at which the
lower cord just goes slack. 
(d) Explain what happens if the
number of revolutions per minute is less than in part (c).
5.111 ... CALC Equation (5.10) applies to the case where the ini-
tial velocity is zero. (a) Derive the corresponding equation for

when the falling object has an initial downward velocity with
magnitude (b) For the case where sketch a graph of 
as a function of t and label on your graph. (c) Repeat part (b) for
the case where (d) Discuss what your result says about

when
5.112 ... CALC A small rock moves in water, and the force
exerted on it by the water is given by Eq. (5.7). The terminal speed
of the rock is measured and found to be The rock is pro-
jected upward at an initial speed of You can ignore the
buoyancy force on the rock. (a) In the absence of fluid resistance,
how high will the rock rise and how long will it take to reach this
maximum height? (b) When the effects of fluid resistance are
included, what are the answers to the questions in part (a)?
5.113 .. Merry-Go-Round. One December identical twins
Jena and Jackie are playing on a large merry-go-round (a disk
mounted parallel to the ground, on a vertical axle through its cen-
ter) in their school playground in northern Minnesota. Each twin
has mass 30.0 kg. The icy coating on the merry-go-round surface
makes it frictionless. The merry-go-round revolves at a constant
rate as the twins ride on it. Jena, sitting 1.80 m from the center of
the merry-go-round, must hold on to one of the metal posts
attached to the merry-go-round with a horizontal force of 60.0 N to
keep from sliding off. Jackie is sitting at the edge, 3.60 m from the
center. (a) With what horizontal force must Jackie hold on to keep
from falling off? (b) If Jackie falls off, what will be her horizontal
velocity when she becomes airborne?
5.114 .. A 70-kg person rides in a 30-kg cart moving at at
the top of a hill that is in the shape of an arc of a circle with a
radius of 40 m. (a) What is the apparent weight of the person as the
cart passes over the top of the hill? (b) Determine the maximum
speed that the cart may travel at the top of the hill without losing
contact with the surface. Does your answer depend on the mass of
the cart or the mass of the person? Explain.
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5.115 .. On the ride “Spindletop” at the amusement park Six
Flags Over Texas, people stood against the inner wall of a hollow
vertical cylinder with radius 2.5 m. The cylinder started to rotate,
and when it reached a constant rotation rate of the
floor on which people were standing dropped about 0.5 m. The
people remained pinned against the wall. (a) Draw a force dia-
gram for a person on this ride, after the floor has dropped. 
(b) What minimum coefficient of static friction is required if the
person on the ride is not to slide downward to the new position of
the floor? (c) Does your answer in part (b) depend on the mass of
the passenger? (Note: When the ride is over, the cylinder is
slowly brought to rest. As it slows down, people slide down the
walls to the floor.)
5.116 .. A passenger with mass 85 kg rides in a Ferris wheel like
that in Example 5.23 (Section 5.4). The seats travel in a circle of
radius 35 m. The Ferris wheel rotates at constant speed and makes
one complete revolution every 25 s. Calculate the magnitude and
direction of the net force exerted on the passenger by the seat when
she is (a) one-quarter revolution past her lowest point and (b) one-
quarter revolution past her highest point.
5.117 . Ulterior Motives. You are driving a classic 1954 Nash
Ambassador with a friend who is sitting to your right on the pas-
senger side of the front seat. The Ambassador has flat bench seats.
You would like to be closer to your friend and decide to use
physics to achieve your romantic goal by making a quick turn. 
(a) Which way (to the left or to the right) should you turn the car to
get your friend to slide closer to you? (b) If the coefficient of static
friction between your friend and the car seat is 0.35, and you keep
driving at a constant speed of what is the maximum radius
you could make your turn and still have your friend slide your
way?
5.118 .. A physics major is working to pay his college tuition by
performing in a traveling carnival. He rides a motorcycle inside a
hollow, transparent plastic sphere. After gaining sufficient speed,
he travels in a vertical circle with a radius of 13.0 m. The physics
major has mass 70.0 kg, and his motorcycle has mass 40.0 kg. 
(a) What minimum speed must he have at the top of the circle if
the tires of the motorcycle are not to lose contact with the sphere?
(b) At the bottom of the circle, his speed is twice the value calcu-
lated in part (a). What is the magnitude of the normal force exerted
on the motorcycle by the sphere at this point?
5.119 .. A small bead can
slide without friction on a cir-
cular hoop that is in a vertical
plane and has a radius of
0.100 m. The hoop rotates at
a constant rate of 
about a vertical diameter (Fig.
P5.119). (a) Find the angle at
which the bead is in vertical
equilibrium. (Of course, it has
a radial acceleration toward
the axis.) (b) Is it possible for
the bead to “ride” at the same
elevation as the center of the
hoop? (c) What will happen if
the hoop rotates at 
5.120 .. A small remote-
controlled car with mass 1.60 kg moves at a constant speed of

in a vertical circle inside a hollow metal cylinder
that has a radius of 5.00 m (Fig. P5.120). What is the magnitude of
the normal force exerted on the car by the walls of the cylinder at 

v = 12.0 m>s
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CHALLENGE PROBLEMS
5.121 ... CALC Angle for Minimum Force. A box with weight
w is pulled at constant speed along a level floor by a force that is
at an angle above the horizontal. The coefficient of kinetic fric-
tion between the floor and box is (a) In terms of and w,
calculate F. (b) For and calculate F for
ranging from to in increments of Graph F versus
(c) From the general expression in part (a), calculate the value of 
for which the value of F, required to maintain constant speed, is a
minimum. (Hint: At a point where a function is minimum, what
are the first and second derivatives of the function? Here F is a
function of ) For the special case of and 
evaluate this optimal and compare your result to the graph you
constructed in part (b).
5.122 ... Moving Wedge. A wedge with mass M rests on a fric-
tionless, horizontal tabletop. A block with mass m is placed on the
wedge (Fig. P5.122a). There is no friction between the block and
the wedge. The system is released from rest. (a) Calculate the accel-
eration of the wedge and the horizontal and vertical components of
the acceleration of the block. (b) Do your answers to part (a) reduce
to the correct results when M is very large? (c) As seen by a station-
ary observer, what is the shape of the trajectory of the block?

5.123 ... A wedge with mass M rests on a frictionless horizontal
tabletop. A block with mass m is placed on the wedge and a hori-
zontal force is applied to the wedge (Fig. P5.122b). What must
the magnitude of be if the block is to remain at a constant height
above the tabletop?
5.124 ... CALC Falling Baseball. You drop a baseball from the
roof of a tall building. As the ball falls, the air exerts a drag force
proportional to the square of the ball’s speed (a) In a
diagram, show the direction of motion and indicate, with the aid of
vectors, all the forces acting on the ball. (b) Apply Newton’s sec-
ond law and infer from the resulting equation the general proper-
ties of the motion. (c) Show that the ball acquires a terminal speed
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that is as given in Eq. (5.13). (d) Derive the equation for the speed
at any time. (Note:

where

defines the hyperbolic tangent.)
5.125 ... Double Atwood’s
Machine. In Fig. P5.125
masses and are con-
nected by a light string A over
a light, frictionless pulley B.
The axle of pulley B is con-
nected by a second light string
C over a second light, fric-
tionless pulley D to a mass

Pulley D is suspended
from the ceiling by an attach-
ment to its axle. The system is
released from rest. In terms of

and g, what are
(a) the acceleration of block

(b) the acceleration of pul-
ley B; (c) the acceleration of
block (d) the acceleration of block (e) the tension in string
A; (f) the tension in string C? (g) What do your expressions give for
the special case of and Is this sensible?
5.126 ... The masses of
blocks A and B in Fig. P5.126
are 20.0 kg and 10.0 kg,
respectively. The blocks are
initially at rest on the floor and
are connected by a massless
string passing over a massless
and frictionless pulley. An
upward force is applied to
the pulley. Find the accelera-
tions of block A and of
block B when F is (a) 124 N;
(b) 294 N; (c) 424 N.
5.127 ... A ball is held at
rest at position A in Fig. P5.127
by two light strings. The hori-
zontal string is cut and the ball starts swinging as a pendulum.
Point B is the farthest to the right the ball goes as it swings back
and forth. What is the ratio of the tension in the supporting string at
position B to its value at A before the horizontal string was cut?
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Chapter Opening Question ?
Neither; the upward force of the air has the same magnitude as the
force of gravity. Although the skydiver and parachute are descending,
their vertical velocity is constant and so their vertical acceleration is
zero. Hence the net vertical force on the skydiver and parachute must
also be zero, and the individual vertical forces must balance.

Test Your Understanding Questions
5.1 Answer: (ii) The two cables are arranged symmetrically, so
the tension in either cable has the same magnitude T. The vertical
component of the tension from each cable is (or, equiva-
lently, so Newton’s first law applied to the vertical forces
tells us that Hence 

Each cable supports half of the weight of the traf-
fic light, but the tension is greater than because only the verti-
cal component of the tension counteracts the weight.
5.2 Answer: (ii) No matter what the instantaneous velocity of
the glider, its acceleration is constant and has the value found in
Example 5.12. In the same way, the acceleration of a body in free
fall is the same whether it is ascending, descending, or at the high
point of its motion (see Section 2.5).

w>2
w>12 = 0.71w.

T = w>12sin45°2 =2T sin45° - w = 0.
Tcos45°),

T sin45°

5.3 Answers to (a): (i), (iii); answers to (b): (ii), (iv); answer to
(c): (v) In situations (i) and (iii) the box is not accelerating (so
the net force on it must be zero) and there is no other force acting
parallel to the horizontal surface; hence no friction force is needed
to prevent sliding. In situations (ii) and (iv) the box would start to
slide over the surface if no friction were present, so a static friction
force must act to prevent this. In situation (v) the box is sliding
over a rough surface, so a kinetic friction force acts on it.
5.4 Answer: (iii) A satellite of mass m orbiting the earth at
speed in an orbit of radius r has an acceleration of magnitude

so the net force acting on it from the earth’s gravity has mag-
nitude The farther the satellite is from earth, the
greater the value of r, the smaller the value of and hence the
smaller the values of and of F. In other words, the earth’s
gravitational force decreases with increasing distance.

Bridging Problem

Answers: (a)

(b) Tmin = 2p
B

h1cos b - ms sin b2

g tan b1sin b + ms cos b2

Tmax = 2p
B

h1cos b + ms sin b2

g tan b1sin b - ms cos b2
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