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3
LEARNING GOALS

By studying this chapter, you will

learn:

• How to represent the position of a

body in two or three dimensions

using vectors.

• How to determine the vector velocity

of a body from a knowledge of its

path.

• How to find the vector acceleration

of a body, and why a body can have

an acceleration even if its speed is

constant.

• How to interpret the components of

a body’s acceleration parallel to and

perpendicular to its path.

• How to describe the curved path

followed by a projectile.

• The key ideas behind motion in a

circular path, with either constant

speed or varying speed.

• How to relate the velocity of a mov-

ing body as seen from two different

frames of reference.

MOTION IN TWO OR
THREE DIMENSIONS

What determines where a batted baseball lands? How do you describe
the motion of a roller coaster car along a curved track or the flight of
a circling hawk? Which hits the ground first: a baseball that you sim-

ply drop or one that you throw horizontally?
We can’t answer these kinds of questions using the techniques of Chapter 2,

in which particles moved only along a straight line. Instead, we need to extend
our descriptions of motion to two- and three-dimensional situations. We’ll still
use the vector quantities displacement, velocity, and acceleration, but now
these quantities will no longer lie along a single line. We’ll find that several
important kinds of motion take place in two dimensions only—that is, in a
plane. We can describe these motions with two components of position, velocity,
and acceleration.

We also need to consider how the motion of a particle is described by different
observers who are moving relative to each other. The concept of relative velocity
will play an important role later in the book when we study collisions, when we
explore electromagnetic phenomena, and when we introduce Einstein’s special
theory of relativity.

This chapter merges the vector mathematics of Chapter 1 with the kinematic
language of Chapter 2. As before, we are concerned with describing motion,
not with analyzing its causes. But the language you learn here will be an essen-
tial tool in later chapters when we study the relationship between force and
motion.

? If a cyclist is going around a curve at constant speed, is he accelerating? If so,
in which direction is he accelerating?



3.1 Position and Velocity Vectors
To describe the motion of a particle in space, we must first be able to describe the
particle’s position. Consider a particle that is at a point P at a certain instant. The
position vector of the particle at this instant is a vector that goes from the ori-
gin of the coordinate system to the point P (Fig. 3.1). The Cartesian coordinates
x, y, and z of point P are the x-, y-, and z-components of vector Using the unit
vectors we introduced in Section 1.9, we can write

(position vector) (3.1)

During a time interval the particle moves from where its position vector
is to where its position vector is The change in position (the displace-
ment) during this interval is ¢ rS � rS2 � rS1 � 1x2 - x12ıN � 1y2 - y12≥n �

rS2.P2,rS1,
P1,¢t

rS � xın � y≥n � zkN

rS.

rS
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Position vector of point P
has components x, y, z:
r 5 x i 1 y j 1 zk.

Position P of a particle
at a given time has
coordinates x, y, z.
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3.1 The position vector from the origin
to point P has components x, y, and z. The
path that the particle follows through space
is in general a curve (Fig. 3.2).
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The instantaneous
velocity vector v is
tangent to the path
at each point.
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3.3 The vectors and are the instan-
taneous velocities at the points and 
shown in Fig. 3.2.
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3.2 The average velocity between
points and has the same direction as
the displacement ¢ rS.

P2P1

vSav

. We define the average velocity during this interval in the same
way we did in Chapter 2 for straight-line motion, as the displacement divided by
the time interval:

(average velocity vector) (3.2)

Dividing a vector by a scalar is really a special case of multiplying a vector by a
scalar, described in Section 1.7; the average velocity is equal to the displace-
ment vector multiplied by the reciprocal of the time interval. Note that
the x-component of Eq. (3.2) is This is
just Eq. (2.2), the expression for average x-velocity that we found in Section 2.1
for one-dimensional motion.

We now define instantaneous velocity just as we did in Chapter 2: It is the
limit of the average velocity as the time interval approaches zero, and it equals
the instantaneous rate of change of position with time. The key difference is that
position and instantaneous velocity are now both vectors:

(instantaneous velocity vector) (3.3)

The magnitude of the vector at any instant is the speed of the particle at that
instant. The direction of at any instant is the same as the direction in which the
particle is moving at that instant.

Note that as points and in Fig. 3.2 move closer and closer
together. In this limit, the vector becomes tangent to the path. The direction
of in this limit is also the direction of the instantaneous velocity This leads
to an important conclusion: At every point along the path, the instantaneous
velocity vector is tangent to the path at that point (Fig. 3.3).

It’s often easiest to calculate the instantaneous velocity vector using compo-
nents. During any displacement the changes and in the three
coordinates of the particle are the components of It follows that the compo-
nents and of the instantaneous velocity are simply the time deriva-
tives of the coordinates x, y, and z. That is,

(components of 
instantaneous velocity)

(3.4)

The x-component of is which is the same as Eq. (2.3)—the
expression for instantaneous velocity for straight-line motion that we obtained in
Section 2.2. Hence Eq. (3.4) is a direct extension of the idea of instantaneous
velocity to motion in three dimensions.

vx = dx/dt,vS
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dz

dt

vSvzvy,vx,
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We can also get Eq. (3.4) by taking the derivative of Eq. (3.1). The unit vec-
tors and are constant in magnitude and direction, so their derivatives are
zero, and we find

(3.5)

This shows again that the components of are and 
The magnitude of the instantaneous velocity vector —that is, the speed—is

given in terms of the components and by the Pythagorean relation:

(3.6)

Figure 3.4 shows the situation when the particle moves in the xy-plane. In this
case, z and are zero. Then the speed (the magnitude of is

and the direction of the instantaneous velocity is given by the angle (the
Greek letter alpha) in the figure. We see that

(3.7)

(We always use Greek letters for angles. We use for the direction of the instan-
taneous velocity vector to avoid confusion with the direction of the position
vector of the particle.)

The instantaneous velocity vector is usually more interesting and useful than the
average velocity vector. From now on, when we use the word “velocity,” we will
always mean the instantaneous velocity vector (rather than the average velocity
vector). Usually, we won’t even bother to call a vector; it’s up to you to remem-
ber that velocity is a vector quantity with both magnitude and direction.
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vx and vy are the x- and y-
components of v.

3.4 The two velocity components for
motion in the xy-plane.

Example 3.1 Calculating average and instantaneous velocity

A robotic vehicle, or rover, is exploring the surface of Mars. The
stationary Mars lander is the origin of coordinates, and the sur-
rounding Martian surface lies in the xy-plane. The rover, which we
represent as a point, has x- and y-coordinates that vary with time:

(a) Find the rover’s coordinates and distance from the lander at
(b) Find the rover’s displacement and average velocity

vectors for the interval to (c) Find a general
expression for the rover’s instantaneous velocity vector . Express

at in component form and in terms of magnitude and
direction.

SOLUTION

IDENTIFY and SET UP: This problem involves motion in two
dimensions, so we must use the vector equations obtained in this
section. Figure 3.5 shows the rover’s path (dashed line). We’ll use
Eq. (3.1) for position the expression for displace-
ment, Eq. (3.2) for average velocity, and Eqs. (3.5), (3.6), and (3.7)

¢ rS � rS2 � rS1rS,

t = 2.0 svS
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t = 2.0 s.
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3.5 At the rover has position vector and instanta-
neous velocity vector Likewise, and are the vectors at

and are the vectors at t = 2.0 s.vS2rS2t = 1.0 s;
vS1rS1vS0.

rS0t = 0.0 s

Continued



3.2 The Acceleration Vector
Now let’s consider the acceleration of a particle moving in space. Just as for
motion in a straight line, acceleration describes how the velocity of the particle
changes. But since we now treat velocity as a vector, acceleration will describe
changes in the velocity magnitude (that is, the speed) and changes in the direc-
tion of velocity (that is, the direction in which the particle is moving).

In Fig. 3.6a, a car (treated as a particle) is moving along a curved road. The vec-
tors and represent the car’s instantaneous velocities at time when the cart1,vS2vS1
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for instantaneous velocity and its magnitude and direction. The tar-
get variables are stated in the problem.

EXECUTE: (a) At the rover’s coordinates are

The rover’s distance from the origin at this time is

(b) To find the displacement and average velocity over the
given time interval, we first express the position vector as a func-
tion of time t. From Eq. (3.1) this is

At the position vector is

From part (a), the position vector at is

The displacement from s to is therefore

During this interval the rover moves 1.0 m in the negative 
x-direction and 2.2 m in the positive y-direction. From Eq. (3.2),
the average velocity over this interval is the displacement divided
by the elapsed time:

The components of this average velocity are
and .vav-y = 1.1 m>s

vav-x = -0.50 m>s

� 1-0.50 m>s2ın � 11.1 m>s2≥n

vSav �
¢ rS

¢t
�
1-1.0 m2ın � 12.2 m2≥n

2.0 s - 0.0 s

� 1-1.0 m2ın � 12.2 m2≥n

¢ rS � rS2 � rS0 � (1.0 m)ın � (2.2 m)≥n � (2.0 m)ın

t = 2.0 st = 0.0

r
S

2 � 11.0 m2ın � 12.2 m2≥n

t = 2.0 srS2

rS0 � 12.0 m2ın � 10.0 m2≥n

rS0t = 0.0 s

� 311.0 m>s2t + 10.025 m>s32t34 ≥n

� 32.0 m - 10.25 m>s22t24ıN

rS � xın � y≥n

rS

r = 2x2 + y2 = 211.0 m22 + 12.2 m22 = 2.4 m

y = 11.0 m>s212.0 s2 + 10.025 m>s3212.0 s23 = 2.2 m

x = 2.0 m - 10.25 m>s2212.0 s22 = 1.0 m

t = 2.0 s

(c) From Eq. (3.4) the components of instantaneous velocity
are the time derivatives of the coordinates:

Hence the instantaneous velocity vector is

At the velocity vector has components

The magnitude of the instantaneous velocity (that is, the speed) at
is

Figure 3.5 shows the direction of the velocity vector , which is at
an angle between and with respect to the positive 
x-axis. From Eq. (3.7) we have

This is off by ; the correct value of the angle is 
, or west of north.

EVALUATE: Compare the components of average velocity that we
found in part (b) for the interval from to 

with the components of
instantaneous velocity at that we found in part (c)

The comparison shows that,
just as in one dimension, the average velocity vector over an
interval is in general not equal to the instantaneous velocity at
the end of the interval (see Example 2.1).

Figure 3.5 shows the position vectors and instantaneous
velocity vectors at 1.0 s, and 2.0 s. (You should calcu-
late these quantities for and ) Notice that is
tangent to the path at every point. The magnitude of increases as
the rover moves, which means that its speed is increasing.

vS
vSt = 1.0 s.t = 0.0 s

t = 0.0 s,vS
rS

vS
vSav
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arctan
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v2y = 1.0 m>s + 10.075 m>s3212.0 s22 = 1.3 m>s

v2x = 1-0.50 m>s2212.0 s2 = -1.0 m>s

vS2t = 2.0 s

� 31.0 m>s + 10.075 m>s32t24 ≥n

vS � vxın � vy ≥n � 1-0.50 m>s22tın

vy =
dy

dt
= 1.0 m>s + 10.025 m>s3213t 22

vx =
dx

dt
= 1-0.25 m>s2212t2

Test Your Understanding of Section 3.1 In which of these situations
would the average velocity vector over an interval be equal to the instanta-
neous velocity at the end of the interval? (i) a body moving along a curved path
at constant speed; (ii) a body moving along a curved path and speeding up; (iii) a body
moving along a straight line at constant speed; (iv) a body moving along a straight line
and speeding up. ❙

vS
vSav
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is at point and at time when the car is at point The two velocities may
differ in both magnitude and direction. During the time interval from to the
vector change in velocity is , so (Fig. 3.6b). We
define the average acceleration of the car during this time interval as the
velocity change divided by the time interval 

(average acceleration vector) (3.8)

Average acceleration is a vector quantity in the same direction as the vector 
(Fig. 3.6c). The x-component of Eq. (3.8) is

which is just Eq. (2.4) for the average acceleration in straight-line
motion.

As in Chapter 2, we define the instantaneous acceleration (a vector quan-
tity) at point as the limit of the average acceleration vector when point 
approaches point , so and both approach zero (Fig. 3.7). The instanta-
neous acceleration is also equal to the instantaneous rate of change of velocity
with time:

(instantaneous acceleration vector) (3.9)

The velocity vector as we have seen, is tangent to the path of the particle.
The instantaneous acceleration vector , however, does not have to be tangent to
the path. Figure 3.7a shows that if the path is curved, points toward the concave
side of the path—that is, toward the inside of any turn that the particle is making.
The acceleration is tangent to the path only if the particle moves in a straight line
(Fig. 3.7b).

CAUTION Any particle following a curved path is accelerating When a particle is moving
in a curved path, it always has nonzero acceleration, even when it moves with constant
speed. This conclusion may seem contrary to your intuition, but it’s really just contrary to
the everyday use of the word “acceleration” to mean that speed is increasing. The more pre-
cise definition given in Eq. (3.9) shows that there is a nonzero acceleration whenever the
velocity vector changes in any way, whether there is a change of speed, direction, or both. ❙

To convince yourself that a particle has a nonzero acceleration when mov-
ing on a curved path with constant speed, think of your sensations when you
ride in a car. When the car accelerates, you tend to move inside the car in a
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3.6 (a) A car moving along a curved road from to (b) How to obtain the change in velocity by vector subtrac-
tion. (c) The vector represents the average acceleration between and P2.P1aSav � ¢vS/¢t
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3.7 (a) Instantaneous acceleration at
point in Fig. 3.6. (b) Instantaneous
acceleration for motion along a straight
line.
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direction opposite to the car’s acceleration. (We’ll discover the reason for this
behavior in Chapter 4.) Thus you tend to slide toward the back of the car when it
accelerates forward (speeds up) and toward the front of the car when it acceler-
ates backward (slows down). If the car makes a turn on a level road, you tend to
slide toward the outside of the turn; hence the car has an acceleration toward the
inside of the turn.

We will usually be interested in the instantaneous acceleration, not the average
acceleration. From now on, we will use the term “acceleration” to mean the instan-
taneous acceleration vector 

Each component of the acceleration vector is the derivative of the correspon-
ding component of velocity:

(components of 
instantaneous acceleration)

(3.10)

In terms of unit vectors,

(3.11)

The x-component of Eqs. (3.10) and (3.11), is the expression
from Section 2.3 for instantaneous acceleration in one dimension, Eq. (2.5).
Figure 3.8 shows an example of an acceleration vector that has both x- and 
y-components.

Since each component of velocity is the derivative of the corresponding coordi-
nate, we can express the components and of the acceleration vector as

(3.12)

The acceleration vector itself is

(3.13)aS �
d2x

dt2 ıN �
d2y

dt2 ≥N �
d2z

dt2 kN

aS

ax =
d2x

dt2   ay =
d2y

dt2  az =
d2z

dt2

aSazay,ax,

ax = dvx>dt,

aS �
dvx

dt
ıN �

dvy

dt
≥N �

dvz

dt
kN

ax =
dvx

dt
  ay =

dvy

dt
  az =

dvz

dt

aS.
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ax

ay
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3.8 When the arrow is released, its
acceleration vector has both a horizontal
component and a vertical 
component (ay).

(ax)

Example 3.2 Calculating average and instantaneous acceleration

Let’s return to the motions of the Mars rover in Example 3.1.
(a) Find the components of the average acceleration for the inter-
val to (b) Find the instantaneous acceleration
at

SOLUTION

IDENTIFY and SET UP: In Example 3.1 we found the components
of the rover’s instantaneous velocity at any time t:

We’ll use the vector relationships among velocity, average acceler-
ation, and instantaneous acceleration. In part (a) we determine the
values of and at the beginning and end of the interval andvyvx

= 1.0 m>s + 10.075 m>s32t 2

vy =
dy

dt
= 1.0 m>s + 10.025 m>s3213t 22

vx =
dx

dt
= 1-0.25 m>s2212t2 = 1-0.50 m>s22t

t = 2.0 s.
t = 2.0 s.t = 0.0 s

then use Eq. (3.8) to calculate the components of the average
acceleration. In part (b) we obtain expressions for the instanta-
neous acceleration components at any time t by taking the time
derivatives of the velocity components as in Eqs. (3.10).

EXECUTE: (a) In Example 3.1 we found that at t � 0.0 s the veloc-
ity components are

and that at t � 2.00 s the components are

Thus the components of average acceleration in the interval
to are

aav-y =
¢vy

¢t
=

1.3 m>s - 1.0 m>s

2.0 s - 0.0 s
= 0.15 m>s2

aav-x =
¢vx

¢t
=

-1.0 m>s - 0.0 m>s

2.0 s - 0.0 s
= -0.50 m>s2

t = 2.0 st = 0.0 s

vx = -1.0 m>s  vy = 1.3 m>s

vx = 0.0 m>s  vy = 1.0 m>s

Application Horses on a Curved
Path
By leaning to the side and hitting the ground
with their hooves at an angle, these horses
give themselves the sideways acceleration
necessary to make a sharp change in direction.
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Parallel and Perpendicular Components of Acceleration
Equations (3.10) tell us about the components of a particle’s instantaneous accel-
eration vector along the x-, y-, and z-axes. Another useful way to think about 
is in terms of its component parallel to the particle’s path—that is, parallel to the
velocity—and its component perpendicular to the path—and hence perpendicu-
lar to the velocity (Fig. 3.10). That’s because the parallel component tells us
about changes in the particle’s speed, while the perpendicular component 
tells us about changes in the particle’s direction of motion. To see why the paral-
lel and perpendicular components of have these properties, let’s consider two
special cases.

In Fig. 3.11a the acceleration vector is in the same direction as the velocity 
so has only a parallel component (that is, The velocity change 
during a small time interval is in the same direction as and hence in the
same direction as The velocity at the end of is in the same direction as

but has greater magnitude. Hence during the time interval the particle in
Fig. 3.11a moved in a straight line with increasing speed (compare Fig. 3.7b).

In Fig. 3.11b the acceleration is perpendicular to the velocity, so has only a
perpendicular component (that is, In a small time interval the¢t,aŒ = 02.a�

aS

¢tvS1

¢tvS2vS1.
aS¢t

¢vSa� = 02.aŒaS
vS1,

aS

a�

aŒ

aSaS

(b) Using Eqs. (3.10), we find

Hence the instantaneous acceleration vector at time t is

At the components of acceleration and the acceleration
vector are

The magnitude of acceleration at this time is

A sketch of this vector (Fig. 3.9) shows that the direction angle 
of with respect to the positive x-axis is between and .
From Eq. (3.7) we have

Hence .

EVALUATE: Figure 3.9 shows the rover’s path and the velocity and
acceleration vectors at 1.0 s, and 2.0 s. (You should uset = 0.0 s,

b = 180° + 1-31°2 = 149°

arctan
ay

ax
= arctan

0.30 m>s2

-0.50 m>s2
= -31°

180°90°aS
b

= 21-0.50 m>s222 + 10.30 m>s222 = 0.58 m>s2

a = 2a 2
x + a 2

y

aS � 1-0.50 m>s22ın � 10.30 m>s22≥n

ax = -0.50 m>s2  ay = 10.15 m>s3212.0 s2 = 0.30 m>s2

t = 2.0 s

aS � axın � ay ≥n � 1-0.50 m>s22ın � 10.15 m>s32t≥n

aS

ax =
dvx

dt
= -0.50 m>s2  ay =

dvy

dt
= 10.075 m>s3212t2

the results of part (b) to calculate the instantaneous acceleration at
and for yourself.) Note that and are not in

the same direction at any of these times. The velocity vector is
tangent to the path at each point (as is always the case), and the
acceleration vector points toward the concave side of the path.aS

vS
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3.9 The path of the robotic rover, showing the velocity and
acceleration at and and and

and aS22.1vS2t = 2.0 s
aS12,1vS1t = 1.0 saS02,1vS0t = 0.0 s

P

a

a ||

aS

vS

S

Particle’s path

Component of a
perpendicular to the path

Normal to
path at P

Tangent to path at P

Component of
a parallel to
the path

S

3.10 The acceleration can be resolved
into a component parallel to the path
(that is, along the tangent to the path) and a
component perpendicular to the path
(that is, along the normal to the path).

a�

aŒ

v1
S

S

S

Changes only magnitude
of velocity: speed changes;
direction doesn’t.

(a) Acceleration parallel to velocity

a

Dv

S Sv2 5 v1 1 DvS

a

v1
DvS S

S

Changes only direction of
velocity: particle follows
curved path at constant
speed.

(b) Acceleration perpendicular to velocity

f

S Sv2 5 v1 1 DvS

3.11 The effect of acceleration directed (a) parallel to and (b) perpendicular to a parti-
cle’s velocity.



velocity change is very nearly perpendicular to , and so and have dif-
ferent directions. As the time interval approaches zero, the angle in the fig-
ure also approaches zero, becomes perpendicular to both and and 
and have the same magnitude. In other words, the speed of the particle stays
the same, but the direction of motion changes and the path of the particle curves.

In the most general case, the acceleration has components both parallel and
perpendicular to the velocity as in Fig. 3.10. Then the particle’s speed will
change (described by the parallel component ) and its direction of motion will
change (described by the perpendicular component so that it follows a
curved path.

Figure 3.12 shows a particle moving along a curved path for three different
situations: constant speed, increasing speed, and decreasing speed. If the speed is
constant, is perpendicular, or normal, to the path and to and points toward the
concave side of the path (Fig. 3.12a). If the speed is increasing, there is still a per-
pendicular component of but there is also a parallel component having the
same direction as (Fig. 3.12b). Then points ahead of the normal to the path.
(This was the case in Example 3.2.) If the speed is decreasing, the parallel com-
ponent has the direction opposite to and points behind the normal to the path
(Fig. 3.12c; compare Fig. 3.7a). We will use these ideas again in Section 3.4
when we study the special case of motion in a circle.

aSvS,

aSvS
aS,

vSaS

a�)
aŒ

vS,
aS

vS2

vS1vS2,vS1¢vS
f¢t
vS2vS1vS1¢vS
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... acceleration is
normal to the path.

(a) When speed is constant along a curved
path ...

P

Normal at P

aS

vS

... acceleration points
ahead of the normal.

(b) When speed is increasing along a curved
path ...

P

Normal at P

aS

vS

... acceleration points
behind the normal.

(c) When speed is decreasing along a curved
path ...

P

Normal at P
aS

vS

3.12 Velocity and acceleration vectors for a particle moving through a point P on a curved path with (a) constant speed, (b) increas-
ing speed, and (c) decreasing speed.

Example 3.3 Calculating parallel and perpendicular components of acceleration

For the rover of Examples 3.1 and 3.2, find the parallel and perpen-
dicular components of the acceleration at 

SOLUTION

IDENTIFY and SET UP: We want to find the components of the
acceleration vector that are parallel and perpendicular to the veloc-
ity vector We found the directions of and in Examples 3.1 and
3.2, respectively; Fig. 3.9 shows the results. From these directions
we can find the angle between the two vectors and the components
of with respect to the direction of .

EXECUTE: From Example 3.2, at the particle has an
acceleration of magnitude at an angle of with
respect to the positive x-axis. In Example 3.1 we found that at this
time the velocity vector is at an angle of with respect to the
positive x-axis. The angle between and is therefore

(Fig. 3.13). Hence the components of acceler-
ation parallel and perpendicular to are

a� = a sin 21° = 10.58 m>s22sin 21° = 0.21 m>s2

aŒ = a cos 21° = 10.58 m>s22cos 21° = 0.54 m>s2

vS
149° - 128° = 21°

vSaS
128°

149°0.58 m>s2
t = 2.0 s

vSaS

aSvSvS.
aS

t = 2.0 s.

EVALUATE: The parallel component is positive (in the same
direction as ), which means that the speed is increasing at this
instant. The value tells us that the speed is
increasing at this instant at a rate of per second. The per-
pendicular component is not zero, which means that at this
instant the rover is turning—that is, it is changing direction and
following a curved path.

a�

0.54 m>s
aŒ = +0.54 m>s2

vS
aŒ

Parallel component of acceleration

Perpendicular
component of acceleration

Position of rover at t 5 2.0 s

Path of rover

21° a ||

a

aS

vS

3.13 The parallel and perpendicular components of the acceler-
ation of the rover at t = 2.0 s.
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3.3 Projectile Motion
A projectile is any body that is given an initial velocity and then follows a path
determined entirely by the effects of gravitational acceleration and air resistance.
A batted baseball, a thrown football, a package dropped from an airplane, and a
bullet shot from a rifle are all projectiles. The path followed by a projectile is
called its trajectory.

To analyze this common type of motion, we’ll start with an idealized model,
representing the projectile as a particle with an acceleration (due to gravity) that
is constant in both magnitude and direction. We’ll neglect the effects of air resist-
ance and the curvature and rotation of the earth. Like all models, this one has lim-
itations. Curvature of the earth has to be considered in the flight of long-range
missiles, and air resistance is of crucial importance to a sky diver. Nevertheless,
we can learn a lot from analysis of this simple model. For the remainder of this
chapter the phrase “projectile motion” will imply that we’re ignoring air resist-
ance. In Chapter 5 we will see what happens when air resistance cannot be
ignored.

Projectile motion is always confined to a vertical plane determined by the
direction of the initial velocity (Fig. 3.15). This is because the acceleration due to

Conceptual Example 3.4 Acceleration of a skier

A skier moves along a ski-jump ramp (Fig. 3.14a). The ramp is
straight from point A to point C and curved from point C onward.
The skier speeds up as she moves downhill from point A to point E,
where her speed is maximum. She slows down after passing point
E. Draw the direction of the acceleration vector at each of the
points B, D, E, and F.

SOLUTION

Figure 3.14b shows our solution. At point B the skier is moving in
a straight line with increasing speed, so her acceleration points
downhill, in the same direction as her velocity. At points D, E, and
F the skier is moving along a curved path, so her acceleration has a
component perpendicular to the path (toward the concave side of
the path) at each of these points. At point D there is also an accel-
eration component in the direction of her motion because she is
speeding up. So the acceleration vector points ahead of the normal
to her path at point D, as Fig. 3.14b shows. At point E, the skier’s
speed is instantaneously not changing; her speed is maximum at
this point, so its derivative is zero. There is therefore no parallel
component of and the acceleration is perpendicular to her
motion. At point F there is an acceleration component opposite to
the direction of her motion because now she’s slowing down. The
acceleration vector therefore points behind the normal to her path.

In the next section we’ll consider the skier’s acceleration after
she flies off the ramp.

aS,

A

Direction
of motion

B

C

D
E

F

(a)

(b)

3.14 (a) The skier’s path. (b) Our solution.

Test Your Understanding of
Section 3.2 A sled travels over
the crest of a snow-covered hill. The
sled slows down as it climbs up one
side of the hill and gains speed as it
descends on the other side. Which of
the vectors (1 through 9) in the figure
correctly shows the direction of the
sled’s acceleration at the crest? (Choice 9 is that the acceleration is zero.) ❙

or 9: acceleration 5 0

Sled’s path
1 5

2 4

8 6

3

7

Trajectory

ax 5 0, ay 5 2g

a
v0
S

S

• A projectile moves in a vertical plane that
  contains the initial velocity vector v0.
• Its trajectory depends only on v0 and
  on the downward acceleration due to gravity.

S

S

y

O
x

3.15 The trajectory of an idealized
projectile.



gravity is purely vertical; gravity can’t accelerate the projectile sideways.
Thus projectile motion is two-dimensional. We will call the plane of motion the
xy-coordinate plane, with the x-axis horizontal and the y-axis vertically upward.

The key to analyzing projectile motion is that we can treat the x- and 
y-coordinates separately. The x-component of acceleration is zero, and the 
y-component is constant and equal to (By definition, g is always positive;
with our choice of coordinate directions, is negative.) So we can analyze pro-
jectile motion as a combination of horizontal motion with constant velocity and
vertical motion with constant acceleration. Figure 3.16 shows two projectiles with
different x-motion but identical y-motion; one is dropped from rest and the other is
projected horizontally, but both projectiles fall the same distance in the same time.

We can then express all the vector relationships for the projectile’s position,
velocity, and acceleration by separate equations for the horizontal and vertical
components. The components of are

(projectile motion, no air resistance) (3.14)

Since the x-acceleration and y-acceleration are both constant, we can use Eqs.
(2.8), (2.12), (2.13), and (2.14) directly. For example, suppose that at time 
our particle is at the point and that at this time its velocity components
have the initial values and The components of acceleration are 

Considering the x-motion first, we substitute 0 for in Eqs. (2.8) and
(2.12). We find

(3.15)

(3.16)

For the y-motion we substitute y for x, for for and for 

(3.17)

(3.18)

It’s usually simplest to take the initial position as the origin; then
This might be the position of a ball at the instant it leaves the

thrower’s hand or the position of a bullet at the instant it leaves the gun barrel.
Figure 3.17 shows the trajectory of a projectile that starts at (or passes

through) the origin at time , along with its position, velocity, and velocityt = 0

x0 = y0 = 0.
1at t = 02

y = y0 + v0yt - 1
2 gt2

vy = v0y - gt

ax:ay = -gv0x,v0yvx,vy

x = x0 + v0xt

vx = v0x

axay = -g.
ax = 0,v0y.v0x

(x0, y0)
t = 0

ax = 0  ay = -g

aS

ay

-g.
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3.16 The red ball is dropped from rest,
and the yellow ball is simultaneously pro-
jected horizontally; successive images in
this stroboscopic photograph are sepa-
rated by equal time intervals. At any given
time, both balls have the same y-position,
y-velocity, and y-acceleration, despite hav-
ing different x-positions and x-velocities.

a

a

a0

At the top of the trajectory, the projectile has zero vertical
velocity (vy 5 0), but its vertical acceleration is still 2g.

Vertically, the projectile
is in constant-acceleration
motion in response to the 
earth’s gravitational pull.
Thus its vertical velocity
changes by equal amounts
during equal time intervals.

Horizontally, the projectile is in constant-velocity motion: Its horizontal acceleration
is zero, so it moves equal x-distances in equal time intervals.

y

O
x

Sv1

Sv0

Sv2

Sv3

v2xv1xv0x

v0x

v3x

v1x

ay 5 2g

v1y v1y

v3yv3y

v3x

v0y v0y

3.17 If air resistance is negligible, the trajectory of a projectile is a combination of horizontal motion with constant velocity
and vertical motion with constant acceleration.

ActivPhysics 3.1: Solving Projectile Motion
Problems
ActivPhysics 3.2: Two Balls Falling
ActivPhysics 3.3: Changing the x-velocity
ActivPhysics 3.4: Projecting x-y-Accelerations
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components at equal time intervals. The x-component of acceleration is zero, so
is constant. The y-component of acceleration is constant and not zero, so 

changes by equal amounts in equal times, just the same as if the projectile were
launched vertically with the same initial y-velocity.

We can also represent the initial velocity by its magnitude (the initial
speed) and its angle with the positive x-axis (Fig. 3.18). In terms of these
quantities, the components and of the initial velocity are

(3.19)

If we substitute these relationships in Eqs. (3.15) through (3.18) and set
we find

(projectile motion) (3.20)

(projectile motion) (3.21)

(projectile motion) (3.22)

(projectile motion) (3.23)

These equations describe the position and velocity of the projectile in Fig. 3.17 at
any time t.

We can get a lot of information from Eqs. (3.20) through (3.23). For example,
at any time the distance r of the projectile from the origin the magnitude of the
position vector is given by

(3.24)

The projectile’s speed (the magnitude of its velocity) at any time is

(3.25)

The direction of the velocity, in terms of the angle it makes with the positive 
x-direction (see Fig. 3.17), is given by

(3.26)

The velocity vector is tangent to the trajectory at each point.
We can derive an equation for the trajectory’s shape in terms of x and y by

eliminating t. From Eqs. (3.20) and (3.21), which assume we find
and

(3.27)

Don’t worry about the details of this equation; the important point is its general
form. Since , , , and g are constants, Eq. (3.27) has the form

where b and c are constants. This is the equation of a parabola. In our simple
model of projectile motion, the trajectory is always a parabola (Fig. 3.19).

When air resistance isn’t always negligible and has to be included, calculating
the trajectory becomes a lot more complicated; the effects of air resistance
depend on velocity, so the acceleration is no longer constant. Figure 3.20 shows a

y = bx - cx2

 cos a0 tan a0v0

y = 1tana02x -
g

2v0
2cos2a0

x2

t = x>1v0 cosa02
x0 = y0 = 0,

vS

tana =
vy

vx

a

v = 2vx
2 + vy

2

r = 2x2 + y2

rS2
1

vy = v0 sina0 - gt

vx = v0 cosa0

y = 1v0 sina02t - 1
2 gt2

x = 1v0 cosa02t

x0 = y0 = 0,

v0x = v0 cosa0  v0y = v0 sina0

v0yv0x

a0

v0vS0

vyvx

y

O
x

v0
S

y

x

v0
S

v0y 5 v0 sin a0

v0x 5 v0 cos a0

a0

3.18 The initial velocity components 
and of a projectile (such as a kickedv0y

v0x

soccer ball) are related to the initial speed
and initial angle a0.v0

Successive images of ball are
separated by equal time intervals.

Successive peaks decrease
    in height because ball
       loses energy with
          each bounce.

Trajectories
are nearly
parabolic.

(a)

(b)

3.19 The nearly parabolic trajectories of
(a) a bouncing ball and (b) blobs of molten
rock ejected from a volcano.

PhET: Projectile Motion
ActivPhysics 3.5: Initial Velocity Components
ActivPhysics 3.6: Target Practice I
ActivPhysics 3.7: Target Practice II
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100

50

O

2100

250

x (m)
100 200 300

With air
resistance

Baseball’s initial velocity:
v0 5 50 m/s, a0 5 53.1°

No air
resistance

y (m)

3.20 Air resistance has a large cumula-
tive effect on the motion of a baseball. In
this simulation we allow the baseball to
fall below the height from which it was
thrown (for example, the baseball could
have been thrown from a cliff).

Conceptual Example 3.5 Acceleration of a skier, continued

Let’s consider again the skier in Conceptual Example 3.4. What is
her acceleration at each of the points G, H, and I in Fig. 3.21a after
she flies off the ramp? Neglect air resistance.

SOLUTION

Figure 3.21b shows our answer. The skier’s acceleration changed
from point to point while she was on the ramp. But as soon as she

3.21 (a) The skier’s path during the jump. (b) Our solution.

Problem-Solving Strategy 3.1 Projectile Motion

NOTE: The strategies we used in Sections 2.4 and 2.5 for straight-
line, constant-acceleration problems are also useful here.

IDENTIFY the relevant concepts: The key concept to remember is
that throughout projectile motion, the acceleration is downward
and has a constant magnitude g. Note that the projectile-motion
equations don’t apply to throwing a ball, because during the throw
the ball is acted on by both the thrower’s hand and gravity. These
equations apply only after the ball leaves the thrower’s hand.

SET UP the problem using the following steps:
1. Define your coordinate system and make a sketch showing

your axes. Usually it’s easiest to make the x-axis horizontal and
the y-axis upward, and to place the origin at the initial 
position where the body first becomes a projectile (such as
where a ball leaves the thrower’s hand). Then the components
of the (constant) acceleration are and the
initial position is 

2. List the unknown and known quantities, and decide which
unknowns are your target variables. For example, you might be
given the initial velocity (either the components or the magni-
tude and direction) and asked to find the coordinates and veloc-
ity components at some later time. In any case, you’ll be using

y 0 = 0.x0 = 0,
ay = -g,ax = 0,

(t = 0)

Eqs. (3.20) through (3.23). (Equations (3.24) through (3.27)
may be useful as well.) Make sure that you have as many equa-
tions as there are target variables to be found.

3. State the problem in words and then translate those words into
symbols. For example, when does the particle arrive at a certain
point? (That is, at what value of t?) Where is the particle when its
velocity has a certain value? (That is, what are the values of x and y
when or has the specified value?) Since at the highest
point in a trajectory, the question “When does the projectile reach
its highest point?” translates into “What is the value of t when

” Similarly, “When does the projectile return to its initial
elevation?” translates into “What is the value of t when ”

EXECUTE the solution: Find the target variables using the equa-
tions you chose. Resist the temptation to break the trajectory into
segments and analyze each segment separately. You don’t have to
start all over when the projectile reaches its highest point! It’s
almost always easier to use the same axes and time scale through-
out the problem. If you need numerical values, use 

EVALUATE your answer: As always, look at your results to see
whether they make sense and whether the numerical values seem
reasonable.

g = 9.80 m >  s2.

y = y 0?
vy = 0?

vy = 0vyvx

computer simulation of the trajectory of a baseball both without air resistance and
with air resistance proportional to the square of the baseball’s speed. We see that air
resistance has a very large effect; the maximum height and range both decrease,
and the trajectory is no longer a parabola. (If you look closely at Fig. 3.19b, you’ll
see that the trajectories of the volcanic blobs deviate in a similar way from a par-
abolic shape.)

leaves the ramp, she becomes a projectile. So at points G, H, and I,
and indeed at all points after she leaves the ramp, the skier’s accel-
eration points vertically downward and has magnitude g. No mat-
ter how complicated the acceleration of a particle before it
becomes a projectile, its acceleration as a projectile is given by

ay = -g.ax = 0,
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Example 3.6 A body projected horizontally

A motorcycle stunt rider rides off the edge of a cliff. Just at the
edge his velocity is horizontal, with magnitude Find the
motorcycle’s position, distance from the edge of the cliff, and
velocity 0.50 s after it leaves the edge of the cliff.

SOLUTION

IDENTIFY and SET UP: Figure 3.22 shows our sketch of the motor-
cycle’s trajectory. He is in projectile motion as soon as he leaves
the edge of the cliff, which we choose to be the origin of coordi-
nates so and His initial velocity at the edge of
the cliff is horizontal that is, , so its components are

and To find
the motorcycle’s position at we use Eqs. (3.20) and
(3.21); we then find the distance from the origin using Eq. (3.24).
Finally, we use Eqs. (3.22) and (3.23) to find the velocity compo-
nents at 

EXECUTE: From Eqs. (3.20) and (3.21), the motorcycle’s x- and
y-coordinates at t = 0.50 s are

The negative value of y shows that the motorcycle is below its
starting point.

From Eq. (3.24), the motorcycle’s distance from the origin at
t � 0.50 s is

From Eqs. (3.22) and (3.23), the velocity components at 
t � 0.50 s are

vy = -gt = 1-9.80 m>s2210.50 s2 = -4.9 m>s

vx = v0x = 9.0 m>s

r = 2x2 + y2 = 214.5 m22 + 1-1.2 m22 = 4.7 m

y = - 1
2 gt2 = - 1

2 19.80 m>s2210.50 s22 = -1.2 m

x = v0xt = 19.0 m>s210.50 s2 = 4.5 m

t = 0.50 s .

t = 0.50 s,
v0y = v0 sin a0 = 0.v0x = v0 cos a0 = 9.0 m>s
a0 = 021

vS0y0 = 0.x0 = 0

9.0 m>s.

The motorcycle has the same horizontal velocity as when it left
the cliff at but in addition there is a downward (negative)
vertical velocity The velocity vector at is

From Eq. (3.25), the speed (magnitude of the velocity) at t =
0.50 s is

From Eq. (3.26), the angle of the velocity vector is

The velocity is below the horizontal.

EVALUATE: Just as in Fig. 3.17, the motorcycle’s horizontal motion
is unchanged by gravity; the motorcycle continues to move hori-
zontally at covering 4.5 m in 0.50 s. The motorcycle ini-
tially has zero vertical velocity, so it falls vertically just like a body
released from rest and descends a distance in 0.50 s.1

2 gt 2 = 1.2 m

9.0 m>s,

29°

a = arctan
vy

vx
= arctan a

-4.9 m>s

9.0 m>s
b = -29°

a

= 219.0 m>s22 + 1-4.9 m>s22 = 10.2 m>s

v = 2v 2
x + v 2

y

vS � vxın � vy ≥n � 19.0 m>s2ın � 1-4.9 m>s2≥n

t = 0.50 svy.
t = 0,

vx

At this point, the bike and
rider become a projectile.

3.22 Our sketch for this problem.

Example 3.7 Height and range of a projectile I: A batted baseball

A batter hits a baseball so that it leaves the bat at speed
at an angle . (a) Find the position of the

ball and its velocity (magnitude and direction) at (b) Find
the time when the ball reaches the highest point of its flight, and its
height h at this time. (c) Find the horizontal range R—that is, the
horizontal distance from the starting point to where the ball hits the
ground.

SOLUTION

IDENTIFY and SET UP: As Fig. 3.20 shows, air resistance strongly
affects the motion of a baseball. For simplicity, however, we’ll
ignore air resistance here and use the projectile-motion equations
to describe the motion. The ball leaves the bat at a meter or
so above ground level, but we’ll neglect this distance and assume
that it starts at ground level Figure 3.23 shows our(y0 = 0).

t = 0

t = 2.00 s.
a0 = 53.1°v0 = 37.0 m>s

sketch of the ball’s trajectory. We’ll use the same coordinate
system as in Figs. 3.17 and 3.18, so we can use Eqs. (3.20) through

Continued

3.23 Our sketch for this problem.
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(3.23). Our target variables are (a) the position and velocity of the
ball 2.00 s after it leaves the bat, (b) the time t when the ball is at
its maximum height that is, when and the y-coordinate at
this time, and (c) the x-coordinate when the ball returns to ground
level .

EXECUTE: (a) We want to find x, y, and at The
initial velocity of the ball has components

From Eqs. (3.20) through (3.23),

The y-component of velocity is positive at t � 2.00 s, so the ball is
still moving upward (Fig. 3.23). From Eqs. (3.25) and (3.26), the
magnitude and direction of the velocity are

The direction of the velocity (the direction of the ball’s motion) is
above the horizontal.

(b) At the highest point, the vertical velocity is zero. Call the
time when this happens ; then

The height h at the highest point is the value of y at time :

= 44.7 m

= 129.6 m>s213.02 s2 - 1
2 19.80 m>s2213.02 s22

h = v0yt1 - 1
2 gt1

2

t1

t1 =
v0y

g
=

29.6 m>s

9.80 m>s2
= 3.02 s

vy = v0y - gt1 = 0

t1

vy

24.2°

a = arctan a
10.0 m>s

22.2 m>s
b = arctan 0.450 = 24.2°

= 24.4 m>s

v = 2v 2
x + v 2

y = 2122.2 m>s22 + 110.0 m>s22

= 10.0 m>s

vy = v0y - gt = 29.6 m>s - 19.80 m>s2212.00 s2

vx = v0x = 22.2 m>s

= 39.6 m

= 129.6 m>s212.00 s2 - 1
2 19.80 m>s2212.00 s22

y = v0yt - 1
2 gt2

x = v0xt = 122.2 m>s212.00 s2 = 44.4 m

v0y = v0 sin a0 = 137.0 m>s2sin53.1° = 29.6 m>s

v0x = v0 cos a0 = 137.0 m>s2cos53.1° = 22.2 m>s

t = 2.00 s.vyvx,

1y = 02

vy = 021

(c) We’ll find the horizontal range in two steps. First, we find the
time when (the ball is at ground level):

This is a quadratic equation for . It has two roots:

The ball is at at both times. The ball leaves the ground at
, and it hits the ground at .

The horizontal range R is the value of x when the ball returns to
the ground at 

The vertical component of velocity when the ball hits the
ground is

That is, has the same magnitude as the initial vertical velocity
but the opposite direction (down). Since is constant, the

angle (below the horizontal) at this point is the nega-
tive of the initial angle 

EVALUATE: It’s often useful to check results by getting them in a
different way. For example, we can also find the maximum height
in part (b) by applying the constant-acceleration formula Eq. (2.13)
to the y-motion:

At the highest point, and You should solve this
equation for h; you should get the same answer that we obtained in
part (b). (Do you?)

Note that the time to hit the ground, , is exactly
twice the time to reach the highest point, . Hence the
time of descent equals the time of ascent. This is always true if the
starting and end points are at the same elevation and if air resist-
ance can be neglected.

Note also that in part (b) is comparable to the 52.4-m
height above the playing field of the roof of the Hubert H.
Humphrey Metrodome in Minneapolis, and the horizontal range

in part (c) is greater than the 99.7-m distance from
home plate to the right-field fence at Safeco Field in Seattle. In
reality, due to air resistance (which we have neglected) a batted
ball with the initial speed and angle we’ve used here won’t go as
high or as far as we’ve calculated (see Fig. 3.20).

R = 134 m

h = 44.7 m

t1 = 3.02 s
t2 = 6.04 s

y = h.vy = 0

vy
2= v0y

2+ 2ay1y - y02 = v0y
2- 2g1y - y02

a0 = 53.1°.
a = -53.1°

vxv0y

vy

= -29.6 m>s

vy = v0y - gt2 = 29.6 m>s - 19.80 m>s2216.04 s2

R = v0xt2 = 122.2 m>s216.04 s2 = 134 m

t2 = 6.04 s :

t2 = 2v0y>g = 6.04 st2 = 0
y = 0

t2 = 0  and  t2 =
2v0y

g
=

2129.6 m>s2

9.80 m>s2
= 6.04 s

t2

y = 0 = v0yt2 - 1
2 gt2

2 = t2 Av0y - 1
2 gt2 B

y = 0t2

Example 3.8 Height and range of a projectile II: Maximum height, maximum range

Find the maximum height h and horizontal range R (see Fig. 3.23)
of a projectile launched with speed at an initial angle 
between and . For a given what value of gives maxi-
mum height? What value gives maximum horizontal range?

a0v0,90°0°
a0v0

SOLUTION

IDENTIFY and SET UP: This is almost the same as parts (b) and (c)
of Example 3.7, except that now we want general expressions for h
and R. We also want the values of that give the maximum valuesa0
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of h and R. In part (b) of Example 3.7 we found that the projectile
reaches the high point of its trajectory so that at time

, and in part (c) we found that the projectile returns to
its starting height so that at time 
We’ll use Eq. (3.21) to find the y-coordinate h at and 
Eq. (3.20) to find the x-coordinate R at time . We’ll express our
answers in terms of the launch speed and launch angle 
using Eqs. (3.19).

EXECUTE: From Eqs. (3.19), and 
Hence we can write the time when as

Equation (3.21) gives the height at this time:

For a given launch speed the maximum value of h occurs for
and —that is, when the projectile is launched

straight up. (If it is launched horizontally, as in Example 3.6,
and the maximum height is zero!)

The time when the projectile hits the ground is

The horizontal range R is the value of x at this time. From 
Eq. (3.20), this is

 =
v0

2 sin 2a0

g

R = 1v0 cos a02t2 = 1v0 cos a02
2v0 sin a0

g

t2 =
2v0y

g
=

2v0 sin a0

g

t2

a0 = 0

a0 = 90°sin a0 = 1
v0,

=
v0

2 sin 2a0

2g

h = 1v0 sin a02a
v0 sin a0

g
b - 1

2 ga
v0 sin a0

g
b

2

y = h

t1 =
v0y

g
=

v0 sin a0

g

vy = 0t1

v0y = v0 sin a0.v0x = v0 cos a0

a0v0

t2

t1

t2 = 2v0y>g = 2t1.y = y021
t1 = v0y>g

vy = 021
(We used the trigonometric identity ,
found in Appendix B.) The maximum value of is 1; this
occurs when or This angle gives the
maximum range for a given initial speed if air resistance can be
neglected.

EVALUATE: Figure 3.24 is based on a composite photograph of
three trajectories of a ball projected from a small spring gun at
angles of and The initial speed is approximately
the same in all three cases. The horizontal range is greatest for
the angle. The ranges are nearly the same for the and 
angles: Can you prove that for a given value of the range is
the same for both an initial angle and an initial angle

(This is not the case in Fig. 3.24 due to air resistance.)

CAUTION Height and range of a projectile We don’t recom-
mend memorizing the above expressions for h, R, and . They
are applicable only in the special circumstances we have
described. In particular, the expressions for the range R and maxi-
mum range can be used only when launch and landing
heights are equal. There are many end-of-chapter problems to
which these equations do not apply.

R max

R max

90° - a0?
a0

v0

60°30°45°

v060°.45°,30°,

a0 = 45°.2a0 = 90°
 sin 2a0

2 sin a0 cos a0 = sin 2a0

Launch
angle:
a0 5 30°
a0 5 45°
a0 5 60°

A 45° launch angle gives the greatest range;
other angles fall shorter.

3.24 A launch angle of gives the maximum horizontal
range. The range is shorter with launch angles of and 60°.30°

45°

Example 3.9 Different initial and final heights

You throw a ball from your window 8.0 m above the ground.
When the ball leaves your hand, it is moving at at an
angle of below the horizontal. How far horizontally from your
window will the ball hit the ground? Ignore air resistance.

SOLUTION

IDENTIFY and SET UP: As in Examples 3.7 and 3.8, we want to
find the horizontal coordinate of a projectile when it is at a given
y-value. The difference here is that this value of y is not the same 
as the initial value. We again choose the x-axis to be horizontal and
the y-axis to be upward, and place the origin of coordinates at 
the point where the ball leaves your hand (Fig. 3.25). We have

and (the angle is negative because the
initial velocity is below the horizontal). Our target variable is 
the value of x when the ball reaches the ground at .
We’ll use Eq. (3.21) to find the time t when this happens, then use 
Eq. (3.20) to find the value of x at this time.

y = -8.0 m

a0 = -20°v0 = 10.0 m>s

20°
10.0 m>s

3.25 Our sketch for this problem.

EXECUTE: To determine t, we rewrite Eq. (3.21) in the standard
form for a quadratic equation for t:

Continued

1
2 gt2 - 1v0 sin a02t + y = 0
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The roots of this equation are

= -1.7 s  or  0.98 s

=
B110.0 m>s2 sin1-20°2

�2110.0 m>s22 sin21-20°2 - 219.80 m>s221-8.0 m2
R

9.80 m>s2

=
v0 sin a0 � 2v 2

0 sin 2a0 - 2gy

g

t =
v0 sin a0 � 41-v0 sin a02

2 - 4 A12 g By

2 A12 g B

We discard the negative root, since it refers to a time before the
ball left your hand. The positive root tells us that the ball reaches
the ground at t � 0.98 s. From Eq. (3.20), the ball’s x-coordinate at
that time is

The ball hits the ground a horizontal distance of 9.2 m from your
window.

EVALUATE: The root is an example of a “fictional” solu-
tion to a quadratic equation. We discussed these in Example 2.8 in
Section 2.5; you should review that discussion.

t = -1.7 s

= 9.2 m

x = 1v0 cos a02t = 110.0 m>s23cos1-20°2410.98 s2

Example 3.10 The zookeeper and the monkey

A monkey escapes from the zoo and climbs a tree. After failing to
entice the monkey down, the zookeeper fires a tranquilizer dart
directly at the monkey (Fig. 3.26). The monkey lets go at the
instant the dart leaves the gun. Show that the dart will always hit
the monkey, provided that the dart reaches the monkey before he
hits the ground and runs away.

SOLUTION

IDENTIFY and SET UP: We have two bodies in projectile motion:
the dart and the monkey. They have different initial positions and
initial velocities, but they go into projectile motion at the same time
t � 0. We’ll first use Eq. (3.20) to find an expression for the time t
when the x-coordinates and are equal. Then we’ll use
that expression in Eq. (3.21) to see whether and are
also equal at this time; if they are, the dart hits the monkey. We

ydartymonkey

xdartxmonkey

make the usual choice for the x- and y-directions, and place the ori-
gin of coordinates at the muzzle of the tranquilizer gun (Fig. 3.26).

EXECUTE: The monkey drops straight down, so at all
times. From Eq. (3.20), We solve for the time
t when these x-coordinates are equal:

so

We must now show that at this time. The monkey is
in one-dimensional free fall; its position at any time is given by 
Eq. (2.12), with appropriate symbol changes. Figure 3.26 shows
that the monkey’s initial height above the dart-gun’s muzzle is

, so

ymonkey = d tan a0 - 1
2 gt2

ymonkey-0 = d tan a0

ymonkey = ydart

t =
d

v0 cos a0
d = 1v0 cos a02t

xdart = (v0 cos a0)t.
xmonkey = d

3.26 The tranquilizer dart hits the falling monkey.

d tan a0

y

xO

v0

a0

d

Trajectory of dart
with gravity

Trajectory of dart
without gravity

Monkey’s
fall

Dart’s
fall

Dart’s
fall

Dart’s fall

Without gravity
• The monkey remains in its initial position.
• The dart travels straight to the monkey.
• Therefore, the dart hits the monkey.

Dashed arrows show how far the dart and monkey have fallen at
specific times relative to where they would be without gravity.
At any time, they have fallen by the same amount.

With gravity
• The monkey falls straight down.
• At any time t, the dart has fallen by the same amount
  as the monkey relative to where either would be in the
  absence of gravity:  Dydart 5 Dymonkey 5 2 gt2.
• Therefore, the dart always hits the monkey.

1
2
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3.4 Motion in a Circle
When a particle moves along a curved path, the direction of its velocity changes.
As we saw in Section 3.2, this means that the particle must have a component of
acceleration perpendicular to the path, even if its speed is constant (see Fig. 3.11b).
In this section we’ll calculate the acceleration for the important special case of
motion in a circle.

Uniform Circular Motion
When a particle moves in a circle with constant speed, the motion is called
uniform circular motion. A car rounding a curve with constant radius at constant
speed, a satellite moving in a circular orbit, and an ice skater skating in a circle
with constant speed are all examples of uniform circular motion (Fig. 3.27c;
compare Fig. 3.12a). There is no component of acceleration parallel (tangent) to
the path; otherwise, the speed would change. The acceleration vector is perpendi-
cular (normal) to the path and hence directed inward (never outward!) toward the
center of the circular path. This causes the direction of the velocity to change
without changing the speed.

From Eq. (3.21),

Comparing these two equations, we see that we’ll have
(and a hit) if at the time

when the two x-coordinates are equal. To show that this happens,
we replace t with , the time when .
Sure enough, we find that

1v0 sin a02t = 1v0 sin a02
d

v0 cos a0
= d tan a0

xmonkey = xdartd>1v0 cos a02

d tan a0 = 1v0 sin a02tymonkey = ydart

ydart = 1v0 sin a02t - 1
2 gt2

EVALUATE: We’ve proved that the y-coordinates of the dart and
the monkey are equal at the same time that their x-coordinates
are equal; a dart aimed at the monkey always hits it, no matter
what is (provided the monkey doesn’t hit the ground first).
This result is independent of the value of g, the acceleration due
to gravity. With no gravity the monkey would remain
motionless, and the dart would travel in a straight line to hit him.
With gravity, both fall the same distance below their 
positions, and the dart still hits the monkey (Fig. 3.26).

t = 0gt 2>2

1g = 02,

v0

P B
C

A

3.27 A car moving along a circular path. If the car is in uniform circular motion as in (c), the speed is constant and the acceleration is
directed toward the center of the circular path (compare Fig. 3.12).

(a) Car speeding up along a circular path

Component of acceleration perpendicular to
velocity: Changes car’s direction

Component of acceleration parallel to velocity:
Changes car’s speed

aS

vS

(b) Car slowing down along a circular path

Component of acceleration parallel
to velocity: Changes car’s speed

Component of acceleration
perpendicular to velocity:
Changes car’s direction

aS

vS

(c) Uniform circular motion: Constant speed
along a circular path

To center of circle

Acceleration is exactly
perpendicular to velocity;
no parallel component

aS

vS

Test Your Understanding of Section 3.3
In Example 3.10, suppose the tranquilizer dart 
has a relatively low muzzle velocity so that 
the dart reaches a maximum height at a 
point P before striking the monkey, 
as shown in the figure. When the 
dart is at point P, will the monkey 
be (i) at point A (higher than P),
(ii) at point B (at the same height 
as P), or (iii) at point C (lower
than P)? Ignore air resistance. ❙



We can find a simple expression for the magnitude of the acceleration in uni-
form circular motion. We begin with Fig. 3.28a, which shows a particle moving
with constant speed in a circular path of radius R with center at O. The particle
moves from to in a time The vector change in velocity during this
time is shown in Fig. 3.28b.

The angles labeled in Figs. 3.28a and 3.28b are the same because is
perpendicular to the line and is perpendicular to the line Hence the
triangles in Figs. 3.28a and 3.28b are similar. The ratios of corresponding sides of
similar triangles are equal, so

The magnitude of the average acceleration during is therefore

The magnitude a of the instantaneous acceleration at point is the limit of this
expression as we take point closer and closer to point :

If the time interval is short, is the distance the particle moves along its
curved path. So the limit of is the speed at point Also, can be any
point on the path, so we can drop the subscript and let represent the speed at
any point. Then

(uniform circular motion) (3.28)

We have added the subscript “rad” as a reminder that the direction of the instan-
taneous acceleration at each point is always along a radius of the circle (toward
the center of the circle; see Figs. 3.27c and 3.28c). So we have found that in uni-
form circular motion, the magnitude of the instantaneous acceleration is
equal to the square of the speed divided by the radius R of the circle. Its direc-
tion is perpendicular to and inward along the radius.

Because the acceleration in uniform circular motion is always directed toward
the center of the circle, it is sometimes called centripetal acceleration. The word
“centripetal” is derived from two Greek words meaning “seeking the center.”
Figure 3.29a shows the directions of the velocity and acceleration vectors at sev-
eral points for a particle moving with uniform circular motion.

vS
v

arad

arad =
v2

R

v
P1P1.v1¢s>¢t

¢s¢t

a = lim
¢tS0

v1

R

¢s

¢t
=

v1

R
 lim
¢tS0

¢s

¢t

P1P2

P1aS

aav =
ƒ ¢vS ƒ
¢t

=
v1

R

¢s

¢t

¢taav

ƒ ¢vS ƒ
v1

=
¢s

R
  or  ƒ ¢vS ƒ =

v1

R
¢s

OP2.vS2OP1

vS1¢f

¢vS¢t.P2P1
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These two triangles
are similar.

The instantaneous acceleration
   in uniform circular motion
        always points toward the
            center of the circle.

R

P2

P1

R

O

(a) A particle moves a distance Ds at
constant speed along a circular path.

v1
S

v2
S

Df

Ds

O

(b) The corresponding change in velocity and
average acceleration

v1
S

v2
SDf

DvS

(c) The instantaneous acceleration

R

O

vS

arad
S

3.28 Finding the velocity change 
average acceleration and instanta-
neous acceleration for a particle mov-
ing in a circle with constant speed.

aSrad

aSav,
¢vS,

Acceleration has
constant magni-
tude but varying
direction.

Velocity and
acceleration
are always
perpendicular.

(a) Uniform circular motion

vS

vS

vS
vS

vS arad
S

arad
S

arad
S

arad
S

arad
Sarad

S

vS

vr

vr vr

vr

vr
ar

ar ar
ar

ar

Acceleration is
constant in magnitude

and direction.

Velocity and acceleration are perpendicular
only at the peak of the trajectory.

(b) Projectile motion

3.29 Acceleration and velocity (a) for a particle in uniform circular motion and (b) for
a projectile with no air resistance.
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CAUTION Uniform circular motion vs. projectile motion The acceleration in uniform cir-
cular motion (Fig. 3.29a) has some similarities to the acceleration in projectile motion
without air resistance (Fig. 3.29b), but there are also some important differences. In both
kinds of motion the magnitude of acceleration is the same at all times. However, in uni-
form circular motion the direction of changes continuously so that it always points
toward the center of the circle. (At the top of the circle the acceleration points down; at the
bottom of the circle the acceleration points up.) In projectile motion, by contrast, the direc-
tion of remains the same at all times. ❙

We can also express the magnitude of the acceleration in uniform circular
motion in terms of the period T of the motion, the time for one revolution (one
complete trip around the circle). In a time T the particle travels a distance equal to
the circumference of the circle, so its speed is

(3.29)

When we substitute this into Eq. (3.28), we obtain the alternative expression

(uniform circular motion) (3.30)arad =
4p2R

T2

v =
2pR

T

2pR

aS

aS

Example 3.11 Centripetal acceleration on a curved road

An Aston Martin V8 Vantage sports car has a “lateral acceleration”
of 0.96g � This is the maximum
centripetal acceleration the car can sustain without skidding out of
a curved path. If the car is traveling at a constant (about

or ) on level ground, what is the radius R of the
tightest unbanked curve it can negotiate?

SOLUTION

IDENTIFY, SET UP, and EXECUTE: The car is in uniform circular
motion because it’s moving at a constant speed along a curve that
is a segment of a circle. Hence we can use Eq. (3.28) to solve for
the target variable R in terms of the given centripetal acceleration

144 km>h89 mi>h,
40 m>s

10.96219.8 m>s22 = 9.4 m>s2.
and speed 

(about 560 ft)

This is the minimum radius because is the maximum cen-
tripetal acceleration.

EVALUATE: The minimum turning radius R is proportional to the
square of the speed, so even a small reduction in speed can make R
substantially smaller. For example, reducing by 20% (from 
to ) would decrease R by 36% (from 170 m to 109 m).

Another way to make the minimum turning radius smaller is to
bank the curve. We’ll investigate this option in Chapter 5.

32 m>s
40 m>sv

arad

R =
v2

arad
=
140 m>s22

9.4 m>s2
= 170 m

v:arad

Example 3.12 Centripetal acceleration on a carnival ride

Passengers on a carnival ride move at constant speed in a horizon-
tal circle of radius 5.0 m, making a complete circle in 4.0 s. What
is their acceleration?

SOLUTION

IDENTIFY and SET UP: The speed is constant, so this is uniform
circular motion. We are given the radius and the period

so we can use Eq. (3.30) to calculate the acceleration
directly, or we can calculate the speed using Eq. (3.29) and then
find the acceleration using Eq. (3.28).

EXECUTE: From Eq. (3.30),

arad =
4p215.0 m2

14.0 s22
= 12 m>s2 = 1.3g

v
T = 4.0 s,

R = 5.0 m

We can check this answer by using the second, roundabout
approach. From Eq. (3.29), the speed is

The centripetal acceleration is then

EVALUATE: As in Example 3.11, the direction of is always
toward the center of the circle. The magnitude of is relatively
mild as carnival rides go; some roller coasters subject their passen-
gers to accelerations as great as 4g.

aS
aS

arad =
v2

R
=
17.9 m>s22

5.0 m
= 12 m>s2

v =
2pR

T
=

2p15.0 m2

4.0 s
= 7.9 m>s

PhET: Ladybug Revolution
PhET: Motion in 2D



Nonuniform Circular Motion
We have assumed throughout this section that the particle’s speed is constant as it
goes around the circle. If the speed varies, we call the motion nonuniform circu-
lar motion. In nonuniform circular motion, Eq. (3.28) still gives the radial com-
ponent of acceleration which is always perpendicular to the
instantaneous velocity and directed toward the center of the circle. But since the
speed has different values at different points in the motion, the value of is
not constant. The radial (centripetal) acceleration is greatest at the point in the
circle where the speed is greatest.

In nonuniform circular motion there is also a component of acceleration that is
parallel to the instantaneous velocity (see Figs. 3.27a and 3.27b). This is the com-
ponent that we discussed in Section 3.2; here we call this component to
emphasize that it is tangent to the circle. The tangential component of accelera-
tion is equal to the rate of change of speed. Thus

(nonuniform circular motion) (3.31)

The tangential component is in the same direction as the velocity if the particle
is speeding up, and in the opposite direction if the particle is slowing down
(Fig. 3.30). If the particle’s speed is constant, .

CAUTION Uniform vs. nonuniform circular motion Note that the two quantities

are not the same. The first, equal to the tangential acceleration, is the rate of change of
speed; it is zero whenever a particle moves with constant speed, even when its direction of
motion changes (such as in uniform circular motion). The second is the magnitude of the
vector acceleration; it is zero only when the particle’s acceleration vector is zero—that is,
when the particle moves in a straight line with constant speed. In uniform circular motion

in nonuniform circular motion there is also a tangential componentƒdv
S
>dt ƒ = arad = v2>r;

d ƒvS ƒ
dt

  and  ` dv
S

dt
`

atan = 0

arad =
v2

R
  and  atan =

d ƒvS ƒ
dt

atan

atanaŒ

aradv

arad = v2>R,
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Application Watch Out: Tight 
Curves Ahead!
These roller coaster cars are in nonuniform
circular motion: They slow down and speed up
as they move around a vertical loop. The large
accelerations involved in traveling at high
speed around a tight loop mean extra stress
on the passengers’ circulatory systems, which
is why people with cardiac conditions are cau-
tioned against going on such rides.

3.30 A particle moving in a vertical loop
with a varying speed, like a roller coaster
car.

arad
atan

Speed slowest, arad minimum, atan zero

Speed fastest, arad maximum, atan zero

vS

Slowing down;
atan opposite to vS

Speeding up; atan in
same direction as vS

aS �a� 5 arad
S

of acceleration, so ❙ƒdv
S

/dt ƒ = 2arad
2 + atan

2 .

Test Your Understanding of Section 3.4 Suppose that the particle in
Fig. 3.30 experiences four times the acceleration at the bottom of the loop as it
does at the top of the loop. Compared to its speed at the top of the loop, is its
speed at the bottom of the loop (i) times as great; (ii) 2 times as great; (iii) 
times as great; (iv) 4 times as great; or (v) 16 times as great? ❙

21212

3.5 Relative Velocity
You’ve no doubt observed how a car that is moving slowly forward appears to
be moving backward when you pass it. In general, when two observers meas-
ure the velocity of a moving body, they get different results if one observer is
moving relative to the other. The velocity seen by a particular observer is
called the velocity relative to that observer, or simply relative velocity. Figure
3.31 shows a situation in which understanding relative velocity is extremely
important.

We’ll first consider relative velocity along a straight line, then generalize to
relative velocity in a plane.

Relative Velocity in One Dimension
A passenger walks with a velocity of along the aisle of a train that is
moving with a velocity of (Fig. 3.32a). What is the passenger’s velocity?3.0 m>s

1.0 m>s

FPO
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It’s a simple enough question, but it has no single answer. As seen by a second
passenger sitting in the train, she is moving at A person on a bicycle
standing beside the train sees the walking passenger moving at 

An observer in another train going in the opposite direction
would give still another answer. We have to specify which observer we mean,
and we speak of the velocity relative to a particular observer. The walking pas-
senger’s velocity relative to the train is her velocity relative to the
cyclist is and so on. Each observer, equipped in principle with a meter
stick and a stopwatch, forms what we call a frame of reference. Thus a frame of
reference is a coordinate system plus a time scale.

Let’s use the symbol A for the cyclist’s frame of reference (at rest with respect
to the ground) and the symbol B for the frame of reference of the moving train. In
straight-line motion the position of a point P relative to frame A is given by 
(the position of P with respect to A), and the position of P relative to frame B is
given by (Fig. 3.32b). The position of the origin of B with respect to the ori-
gin of A is Figure 3.32b shows that

(3.32)

In words, the coordinate of P relative to A equals the coordinate of P relative to B
plus the coordinate of B relative to A.

The x-velocity of P relative to frame A, denoted by is the derivative
of with respect to time. The other velocities are similarly obtained. So the
time derivative of Eq. (3.32) gives us a relationship among the various
velocities:

(relative velocity along a line) (3.33)

Getting back to the passenger on the train in Fig. 3.32, we see that A is the
cyclist’s frame of reference, B is the frame of reference of the train, and point P
represents the passenger. Using the above notation, we have

From Eq. (3.33) the passenger’s velocity relative to the cyclist is

as we already knew.
In this example, both velocities are toward the right, and we have taken this as

the positive x-direction. If the passenger walks toward the left relative to the
train, then and her x-velocity relative to the cyclist isvP>B-x = -1.0 m>s,

vP>A-x = +1.0 m>s + 3.0 m>s = +4.0 m>s

vP>A

vP>B-x = +1.0 m>s  vB>A-x = +3.0 m>s

vP>A-x = vP>B-x + vB>A-x

dxP>A

dt
=

dxP>B

dt
+

dxB>A

dt
  or

xP>A

vP>A-x,

xP>A = xP>B + xB>A

xB>A.
xP>B

xP>A

4.0 m>s,
1.0 m>s,

3.0 m>s = 4.0 m>s.
1.0 m>s +

1.0 m>s.
3.31 Airshow pilots face a complicated
problem involving relative velocities. They
must keep track of their motion relative to
the air (to maintain enough airflow over the
wings to sustain lift), relative to each other
(to keep a tight formation without collid-
ing), and relative to their audience (to
remain in sight of the spectators).

3.32 (a) A passenger walking in a
train. (b) The position of the passen-
ger relative to the cyclist’s frame of refer-
ence and the train’s frame of reference.

Cyclist's 
frame

Train’s
frame

Velocity of train
relative to cyclist

Position of passenger
in both frames

(a)

A (cyclist)

B

P (passenger) B (train)

yA yB

P

OBOA

xB,
xA

xP/A

xP/BxB/A

vB/A

(b)

The sum in Eq. (3.33) is always an
algebraic sum, and any or all of the x-velocities may be negative.

When the passenger looks out the window, the stationary cyclist on the ground
appears to her to be moving backward; we can call the cyclist’s velocity relative
to her Clearly, this is just the negative of the passenger’s velocity relative
to the cyclist, In general, if A and B are any two points or frames of
reference,

(3.34)vA>B-x = -vB>A-x

vP>A-x.
vA>P-x.

vP>A-x = -1.0 m>s + 3.0 m>s = +2.0 m>s.



Relative Velocity in Two or Three Dimensions
We can extend the concept of relative velocity to include motion in a plane or in
space by using vector addition to combine velocities. Suppose that the passenger
in Fig. 3.32a is walking not down the aisle of the railroad car but from one side
of the car to the other, with a speed of (Fig. 3.34a). We can again
describe the passenger’s position P in two different frames of reference: A for

1.0 m>s
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Problem-Solving Strategy 3.2 Relative Velocity

IDENTIFY the relevant concepts: Whenever you see the phrase
“velocity relative to” or “velocity with respect to,” it’s likely that
the concepts of relative velocity will be helpful.

SET UP the problem: Sketch and label each frame of reference in
the problem. Each moving body has its own frame of reference; in
addition, you’ll almost always have to include the frame of refer-
ence of the earth’s surface. (Statements such as “The car is travel-
ing north at ” implicitly refer to the car’s velocity relative
to the surface of the earth.) Use the labels to help identify the target
variable. For example, if you want to find the x-velocity of a car

with respect to a bus your target variable is 

EXECUTE the solution: Solve for the target variable using Eq. (3.33).
(If the velocities aren’t along the same direction, you’ll need to use
the vector form of this equation, derived later in this section.) It’s

vC >B-x.1B2,1C2

90 km >  h

important to note the order of the double subscripts in Eq. (3.33):
means “x-velocity of B relative to A.” These subscripts obey

a kind of algebra, as Eq. (3.33) shows. If we regard each one as a
fraction, then the fraction on the left side is the product of the frac-
tions on the right side: You can apply this
rule to any number of frames of reference. For example, if there
are three different frames of reference A, B, and C, Eq. (3.33)
becomes

EVALUATE your answer: Be on the lookout for stray minus signs in
your answer. If the target variable is the x-velocity of a car relative
to a bus make sure that you haven’t accidentally calcu-
lated the x-velocity of the bus relative to the car If you’ve
made this mistake, you can recover using Eq. (3.34).

1vB>  C-x2.
1vC >  B-x2,

vP>  A-x = vP>  C-x + vC>  B-x + vB>  A-x

P>  A = 1P>  B21B>  A2.

vB >A-x

Example 3.13 Relative velocity on a straight road

You drive north on a straight two-lane road at a constant 
A truck in the other lane approaches you at a constant 
(Fig. 3.33). Find (a) the truck’s velocity relative to you and (b)
your velocity relative to the truck. (c) How do the relative veloci-
ties change after you and the truck pass each other? Treat this as a
one-dimensional problem.

SOLUTION

IDENTIFY and SET UP: In this problem about relative velocities
along a line, there are three reference frames: you (Y), the truck (T),
and the earth’s surface (E). Let the positive x-direction be north
(Fig. 3.33). Then your x-velocity relative to the earth is

The truck is initially approaching you, so it
is moving south and its x-velocity with respect to the earth is

The target variables in parts (a) and (b) are
and respectively. We’ll use Eq. (3.33) to find the first

target variable and Eq. (3.34) to find the second.

EXECUTE: (a) To find we write Eq. (3.33) for the known
and rearrange:

The truck is moving at in the negative x-direction
(south) relative to you.

(b) From Eq. (3.34),

vY >  T-x = -vT >  Y-x = -1-192 km>  h2 = +192 km>  h

192 km>  h

= -104 km>  h - 88 km>  h = -192 km>  h

vT >  Y-x = vT >  E-x - vY >  E-x

vT >  E-x = vT >  Y-x + vY >  E-x

vT >  E-x

vT >  Y-x,

vY>  T-x,vT >  Y-x

vT >  E-x = -104 km>  h.

vY>  E-x = +88 km >  h.

104 km >  h
88 km >  h.

You are moving at in the positive x-direction (north) rel-
ative to the truck.

(c) The relative velocities do not change after you and the truck
pass each other. The relative positions of the bodies don’t matter.
After it passes you the truck is still moving at toward the
south relative to you, even though it is now moving away from you
instead of toward you.

EVALUATE: To check your answer in part (b), use Eq. (3.33)
directly in the form The x-velocity of
the earth with respect to the truck is the opposite of the x-velocity
of the truck with respect to the earth: Do you
get the same result?

vE >  T-x = -vT >  E-x.2

1vY >  T-x = vY >  E-x + vE >  T-x.

192 km >  h

192 km >  h

N

EW

S

x

Earth (E)

Truck (T)

You (Y)

vY/E
S

vT/E
S

3.33 Reference frames for you and the truck.
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the stationary ground observer and B for the moving train. But instead of coordi-
nates x, we use position vectors because the problem is now two-dimensional.
Then, as Fig. 3.34b shows,

(3.35)

Just as we did before, we take the time derivative of this equation to get a rela-
tionship among the various velocities; the velocity of P relative to A is

and so on for the other velocities. We get

(relative velocity in space) (3.36)

Equation (3.36) is known as the Galilean velocity transformation. It relates
the velocity of a body P with respect to frame A and its velocity with respect to
frame B and respectively) to the velocity of frame B with respect tovSP>B,1vSP>A

vSP>A � vSP>B � vSB>A

d r
S

P>A>dt
vSP>A �

rSP>A � rSP>B � rSB>A

rS

frame A If all three of these velocities lie along the same line, then Eq.
(3.36) reduces to Eq. (3.33) for the components of the velocities along that line.

1vSB>A2.

(b)

yA

zA

xAOA

yB

zB

xBOB

P

vB/A
S

rP/B
SrP/A

S

rB/A
S

Velocity of train
relative to cyclist

Position of passenger
in both frames

f 5 18°

v
P

/A
5

3.2 m/ s

vP/B 5 1.0 m/s

v
B

/A
5

3.0 m/ s

(a) (c) Relative velocities
(seen from above)

1.0 m/s

B (train)

B

A (cyclist)

P (passenger)

Train’s
frame

Cyclist’s
frame

3.0 m/s

3.34 (a) A passenger walking across a railroad car. (b) Position of the passenger relative to the cyclist’s frame and the train’s frame.
(c) Vector diagram for the velocity of the passenger relative to the ground (the cyclist’s frame), vSP>A.

If the train is moving at relative to the ground and the passen-
ger is moving at relative to the train, then the passenger’s veloc-
ity vector relative to the ground is as shown in Fig. 3.34c. The Pythagorean
theorem then gives us

Figure 3.34c also shows that the direction of the passenger’s velocity vector rel-
ative to the ground makes an angle with the train’s velocity vector where

As in the case of motion along a straight line, we have the general rule that if
A and B are any two points or frames of reference,

(3.37)

The velocity of the passenger relative to the train is the negative of the velocity
of the train relative to the passenger, and so on.

In the early 20th century Albert Einstein showed in his special theory of rela-
tivity that the velocity-addition relationship given in Eq. (3.36) has to be modi-
fied when speeds approach the speed of light, denoted by c. It turns out that if the
passenger in Fig. 3.32a could walk down the aisle at 0.30c and the train could
move at 0.90c, then her speed relative to the ground would be not 1.20c but
0.94c; nothing can travel faster than light! We’ll return to the special theory of
relativity in Chapter 37.

vSA>B � �vSB>A

tanf =
vP>B

vB>A
=

1.0 m>s

3.0 m>s
  and  f = 18°

vSB>A,f

vP>A = 213.0 m>s22 + 11.0 m>s22 = 210 m2>s2 = 3.2 m>s

vSP>A

vP>B = 1.0 m>s
vB>A = 3.0 m>s
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Example 3.14 Flying in a crosswind

An airplane’s compass indicates that it is headed due north, and its
airspeed indicator shows that it is moving through the air at

If there is a 100-km h wind from west to east, what is
the velocity of the airplane relative to the earth?

SOLUTION

IDENTIFY and SET UP: This problem involves velocities in two
dimensions (northward and eastward), so it is a relative velocity
problem using vectors. We are given the magnitude and direction
of the velocity of the plane (P) relative to the air (A). We are also
given the magnitude and direction of the wind velocity, which is
the velocity of the air A with respect to the earth (E):

We’ll use Eq. (3.36) to find our target variables: the magnitude
and direction of the velocity of the plane relative to the
earth.

EXECUTE: From Eq. (3.36) we have

Figure 3.35 shows that the three relative velocities constitute a
right-triangle vector addition; the unknowns are the speed and
the angle We find

a = arctana
100 km>h

240 km>h
b = 23° E of N

vP>E = 21240 km>h22 + 1100 km>h22 = 260 km>h

a.
vP>E

vSP>E � vSP>A � vSA>E

vSP>E

vSA>E = 100 km>h  due east

vSP>A = 240 km>h  due north

>240 km>h.

EVALUATE: You can check the results by taking measurements on
the scale drawing in Fig. 3.35. The crosswind increases the speed
of the airplane relative to the earth, but pushes the airplane off
course.

240 km/h,
north

east

N

EW

S

a

vP/E
SvP/A 5

S

vA/E 5 100 km/h,S

3.35 The plane is pointed north, but the wind blows east,
giving the resultant velocity relative to the earth.vSP>E

Example 3.15 Correcting for a crosswind

With wind and airspeed as in Example 3.14, in what direction
should the pilot head to travel due north? What will be her velocity
relative to the earth?

SOLUTION

IDENTIFY and SET UP: Like Example 3.14, this is a relative
velocity problem with vectors. Figure 3.36 is a scale drawing of
the situation. Again the vectors add in accordance with Eq. (3.36)
and form a right triangle:

As Fig. 3.36 shows, the pilot points the nose of the airplane at an
angle into the wind to compensate for the crosswind. This
angle, which tells us the direction of the vector (the velocity
of the airplane relative to the air), is one of our target variables.
The other target variable is the speed of the airplane over the
ground, which is the magnitude of the vector (the velocity
of the airplane relative to the earth). The known and unknown
quantities are

due eastvSA>E � 100 km>h

direction unknownvSP>A � 240 km>h

due northvSP>E � magnitude unknown

vSP>E

vSP>A

b

vSP>E � vSP>A � vSA>E 240 km/h,
at angle b

east

N

EW

S

vA/E 5 100 km/h,S

vP/A 5
S

vP/E,
north

S

b

3.36 The pilot must point the plane in the direction of the
vector to travel due north relative to the earth.vSP>A

We’ll solve for the target variables using Fig. 3.36 and
trigonometry.
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EXECUTE: From Fig. 3.36 the speed and the angle are

The pilot should point the airplane west of north, and her
ground speed is then 218 km>h.

25°

b = arcsina
100 km>h

240 km>h
b = 25°

vP>E = 21240 km>h22 - 1100 km>h22 = 218 km>h

bvP>E EVALUATE: There were two target variables—the magnitude of a
vector and the direction of a vector—in both this example and
Example 3.14. In Example 3.14 the magnitude and direction
referred to the same vector here they refer to different vec-1vSP>E2;

Test Your Understanding of Section 3.5 Suppose the nose of an
airplane is pointed due east and the airplane has an airspeed of Due to
the wind, the airplane is moving due north relative to the ground and its speed rel-
ative to the ground is What is the velocity of the air relative to the earth? 
(i) from east to west; (ii) from south to north; (iii) from
southeast to northwest; (iv) from east to west; (v) from south to
north; (vi) from southeast to northwest; (vii) there is no possible wind velocity
that could cause this. ❙

212 km>h
212 km>h212 km>h

150 km>h150 km>h150 km>h
150 km>h.

150 km>h.

tors and 
While we expect a headwind to reduce an airplane’s speed rela-

tive to the ground, this example shows that a crosswind does, too.
That’s an unfortunate fact of aeronautical life.

vSP>A2.1vSP>E
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Position, velocity, and acceleration vectors: The position
vector of a point P in space is the vector from the
origin to P. Its components are the coordinates x, y, and z.

The average velocity vector during the time
interval is the displacement (the change in the
position vector divided by The instantaneous
velocity vector is the time derivative of and its
components are the time derivatives of x, y, and z. The
instantaneous speed is the magnitude of The velocity

of a particle is always tangent to the particle’s path.
(See Example 3.1.)

The average acceleration vector during the time
interval equals (the change in the velocity vector

divided by The instantaneous acceleration vector
is the time derivative of and its components are the

time derivatives of and (See Example 3.2.)
The component of acceleration parallel to the

direction of the instantaneous velocity affects the speed,
while the component of perpendicular to affects the
direction of motion. (See Examples 3.3 and 3.4.)

vSaS

vz .vy ,vx ,
vS,aS

¢t.vS2
¢vS¢t

aSav

vS
vS.

rS,vS
¢t.rS)
¢ rS¢t
vSav

rS
(3.1)

(3.2)

(3.3)

(3.4)

(3.8)

(3.9)

(3.10)

az =
dvz

dt

ay =
dvy

dt

ax =
dvx

dt

aS � lim
¢tS0

 
¢vS

¢t
�

dv
S

dt

aSav �
vS2 � vS1

t2 - t1
�

¢vS

¢t

vx =
dx

dt
 vy =

dy

dt
 vz =

dz

dt

vS � lim
¢tS0

 
¢ rS

¢t
�

d r
S

dt

vSav �
rS2 � rS1

t2 - t1
�

¢ rS

¢t

rS � x ıN � y ≥N � z kN

Projectile motion: In projectile motion with no air
resistance, and The coordinates and
velocity components are simple functions of time, and
the shape of the path is always a parabola. We usually
choose the origin to be at the initial position of the
projectile. (See Examples 3.5–3.10.)

ay = -g.ax = 0
(3.20)

(3.21)

(3.22)

(3.23)vy = v0 sin a0 - gt

vx = v0 cos a0

y = 1v0 sin a02t - 1
2 gt2

x = 1v0 cos a02t

Uniform and nonuniform circular motion: When a particle
moves in a circular path of radius R with constant speed 
(uniform circular motion), its acceleration is directed
toward the center of the circle and perpendicular to 
The magnitude of the acceleration can be expressed
in terms of and R or in terms of R and the period T
(the time for one revolution), where (See
Examples 3.11 and 3.12.)

If the speed is not constant in circular motion
(nonuniform circular motion), there is still a radial
component of given by Eq. (3.28) or (3.30), but there
is also a component of parallel (tangential) to the
path. This tangential component is equal to the rate of
change of speed, dv/dt.

aS
aS

v = 2pR/T.
v

arad

vS.
aS

v (3.28)

(3.30)arad =
4p2R

T2

arad =
v2

R

Relative velocity: When a body P moves relative to a
body (or reference frame) B, and B moves relative to A, (relative velocity along a line)

(3.33)

(relative velocity in space)
(3.36)

vSP>A � vSP>B � vSB>A

vP/A-x = vP/B-x + vB/A-x

Dx

Dy

y1
Sr1

S
Dr

DvS

Sr2

v2
S

v2
S

v1
S

v1
S

x1 x2

y2

y

O
x

y

O
x

S

aav 5 
S Dv

D t

S

vav 5 
S Dr

D t

y

O
x

Sv
Sv

Sv
Sv

vx

vx

ay 5 2g
vy

vy

vx
vy

vS

vS

vS
vS

vS arad
S

arad
S

arad
S

arad
S

arad
Sarad

S

vS

A (ground
observer)

B (moving air)

P (plane)

SvP/B
SvP/A

SvB/A
vP/A 5 vP/B 1 vB /A
S S S

we denote the velocity of P relative to B by the
velocity of P relative to A by and the velocity of B
relative to A by If these velocities are all along the 
same line, their components along that line are related
by Eq. (3.33). More generally, these velocities are
related by Eq. (3.36). (See Examples 3.13–3.15.)

vSB>A .
vSP>A ,

vSP>B ,
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You fire a ball with an initial speed at an angle above the sur-
face of an incline, which is itself inclined at an angle above the
horizontal (Fig. 3.37). (a) Find the distance, measured along the
incline, from the launch point to the point when the ball strikes the
incline. (b) What angle gives the maximum range, measured
along the incline? Ignore air resistance.

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. Since there’s no air resistance, this is a problem in projectile

motion. The goal is to find the point where the ball’s parabolic
trajectory intersects the incline.

2. Choose the x- and y-axes and the position of the origin. When
in doubt, use the suggestions given in Problem-Solving Strat-
egy 3.1 in Section 3.3.

3. In the projectile equations from Section 3.3, the launch angle
is measured from the horizontal. What is this angle in terms

of and ? What are the initial x- and y-components of the
ball’s initial velocity?

4. You’ll need to write an equation that relates x and y for points
along the incline. What is this equation? (This takes just geom-
etry and trigonometry, not physics.)

fu

a0

f

u

fv0 3.37 Launching a ball from an inclined ramp.

BRIDGING PROBLEM Launching Up an Incline

EXECUTE
5. Write the equations for the x-coordinate and y-coordinate of the

ball as functions of time t.
6. When the ball hits the incline, x and y are related by the equa-

tion that you found in step 4. Based on this, at what time t does
the ball hit the incline?

7. Based on your answer from step 6, at what coordinates x and y
does the ball land on the incline? How far is this point from the
launch point?

8. What value of gives the maximum distance from the launch
point to the landing point? (Use your knowledge of calculus.)

EVALUATE
9. Check your answers for the case � 0, which corresponds to

the incline being horizontal rather than tilted. (You already know
the answers for this case. Do you know why?)

u

f

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q3.1 A simple pendulum (a mass swinging at the end of a string)
swings back and forth in a circular arc. What is the direction of the
acceleration of the mass when it is at the ends of the swing? At the
midpoint? In each case, explain how you obtain your answer.
Q3.2 Redraw Fig. 3.11a if is antiparallel to Does the particle
move in a straight line? What happens to its speed?
Q3.3 A projectile moves in a parabolic path without air resistance.
Is there any point at which is parallel to Perpendicular to 
Explain.
Q3.4 When a rifle is fired at a distant target, the barrel is not lined
up exactly on the target. Why not? Does the angle of correction
depend on the distance to the target?
Q3.5 At the same instant that you fire a bullet horizontally from a
rifle, you drop a bullet from the height of the barrel. If there is no
air resistance, which bullet hits the ground first? Explain.
Q3.6 A package falls out of an airplane that is flying in a straight
line at a constant altitude and speed. If you could ignore air resist-
ance, what would be the path of the package as observed by the
pilot? As observed by a person on the ground?
Q3.7 Sketch the six graphs of the x- and y-components of position,
velocity, and acceleration versus time for projectile motion with

and 0 6 a0 6 90°.x0 = y0 = 0

vS?vS?aS

vS1.aS

Q3.8 If a jumping frog can give itself the same initial speed regard-
less of the direction in which it jumps (forward or straight up), how
is the maximum vertical height to which it can jump related to its
maximum horizontal range 
Q3.9 A projectile is fired upward at an angle above the horizon-
tal with an initial speed At its maximum height, what are its
velocity vector, its speed, and its acceleration vector?
Q3.10 In uniform circular motion, what are the average velocity
and average acceleration for one revolution? Explain.
Q3.11 In uniform circular motion, how does the acceleration
change when the speed is increased by a factor of 3? When the
radius is decreased by a factor of 2?
Q3.12 In uniform circular motion, the acceleration is perpendicu-
lar to the velocity at every instant. Is this still true when the motion
is not uniform—that is, when the speed is not constant?
Q3.13 Raindrops hitting the side windows of a car in motion often
leave diagonal streaks even if there is no wind. Why? Is the
explanation the same or different for diagonal streaks on the
windshield?
Q3.14 In a rainstorm with a strong wind, what determines the best
position in which to hold an umbrella?
Q3.15 You are on the west bank of a river that is flowing north
with a speed of Your swimming speed relative to the1.2 m>s.

v0.
u

R max = v 2
0 >g?

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.

v0

f

u

www.masteringphysics.com


3.11 . Two crickets, Chirpy and
Milada, jump from the top of a vertical cliff. Chirpy just drops and
reaches the ground in 3.50 s, while Milada jumps horizontally with
an initial speed of How far from the base of the cliff
will Milada hit the ground?
3.12 . A rookie quarterback throws a football with an initial
upward velocity component of and a horizontal velocity
component of Ignore air resistance. (a) How much time
is required for the football to reach the highest point of the trajec-
tory? (b) How high is this point? (c) How much time (after it is
thrown) is required for the football to return to its original level?
How does this compare with the time calculated in part (a)? 
(d) How far has the football traveled horizontally during this time?
(e) Draw x-t, y-t, and graphs for the motion.

3.13 .. Leaping the River I. A car traveling on a level horizontal
road comes to a bridge during a storm and finds the bridge washed
out. The driver must get to the other side, so he decides to try leap-
ing it with his car. The side of the road the car is on is 21.3 m
above the river, while the opposite side is a mere 1.8 m above the
river. The river itself is a raging torrent 61.0 m wide. (a) How fast
should the car be traveling at the time it leaves the road in order just
to clear the river and land safely on the opposite side? (b) What is
the speed of the car just before it lands on the other side?
3.14 . BIO The Champion Jumper of the Insect World. The
froghopper, Philaenus spumarius, holds the world record for

vy-tvx-t,

20.0 m>s.
12.0 m>s

95.0 cm>s.

and (a) Sketch the path of the bird between 
and (b) Calculate the velocity and acceleration vectors
of the bird as functions of time. (c) Calculate the magnitude and
direction of the bird’s velocity and acceleration at 
(d) Sketch the velocity and acceleration vectors at At
this instant, is the bird speeding up, is it slowing down, or is its
speed instantaneously not changing? Is the bird turning? If so, in
what direction?

Section 3.3 Projectile Motion
3.8 . CALC A remote-controlled car is moving in a vacant parking
lot. The velocity of the car as a function of time is given by 

(a) What are and , the x- and y-components of the veloc-
ity of the car as functions of time? (b) What are the magnitude and
direction of the velocity of the car at ? (b) What are the
magnitude and direction of the acceleration of the car at ?
3.9 . A physics book slides off a horizontal tabletop with a speed
of It strikes the floor in 0.350 s. Ignore air resistance.
Find (a) the height of the tabletop above the floor; (b) the horizon-
tal distance from the edge of the table to the point where the book
strikes the floor; (c) the horizontal and vertical components of the
book’s velocity, and the magnitude and direction of its velocity,
just before the book reaches the floor. (d) Draw x-t, y-t, and

graphs for the motion.

3.10 .. A daring 510-N swim-
mer dives off a cliff with a run-
ning horizontal leap, as shown in
Fig. E3.10. What must her mini-
mum speed be just as she leaves
the top of the cliff so that she will
miss the ledge at the bottom,
which is 1.75 m wide and 9.00 m
below the top of the cliff?

vy-t
vx-t,

1.10 m>s.

t = 8.00 s
t = 8.00 s

ay(t)ax(t)
35.00 m>s - 10.0180 m>s32t24ın � 32.00 m>s + 10.550 m>s22t4 ≥n.

vS �

t = 2.0 s.
t = 2.0 s.

t = 2.0 s.
t = 0b = 1.2 m>s2.

v0

Ledge

1.75 m
9.00 m
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water is and the river is 60 m wide. What is your path rel-
ative to the earth that allows you to cross the river in the shortest
time? Explain your reasoning.
Q3.16 A stone is thrown into the air at an angle above the horizon-
tal and feels negligible air resistance. Which graph in Fig. Q3.16
best depicts the stone’s speed as a function of time t while it is in
the air?

v

1.5 m>s, 3.7 .. CALC The coordinates of a bird flying in the xy-plane are
given by and where a = 2.4 m>sy1t2 = 3.0 m - bt 2,x1t2 = at

(a)

t

v

(b)

t

v

(c)

t

v

(e)

t

v

(d)

t

v

Figure Q3.16

Figure E3.10

EXERCISES
Section 3.1 Position and Velocity Vectors
3.1 . A squirrel has x- and y-coordinates at time

and coordinates at time For
this time interval, find (a) the components of the average velocity,
and (b) the magnitude and direction of the average velocity.
3.2 . A rhinoceros is at the origin of coordinates at time 
For the time interval from to the rhino’s aver-
age velocity has x-component and y-component

At time (a) what are the x- and y-coordinates
of the rhino? (b) How far is the rhino from the origin?
3.3 .. CALC A web page designer creates an animation in which a
dot on a computer screen has a position of 

(a) Find the magnitude and
direction of the dot’s average velocity between and

(b) Find the magnitude and direction of the instanta-
neous velocity at and (c) Sketch the
dot’s trajectory from to and show the velocities
calculated in part (b).
3.4 . CALC The position of a squirrel running in a park is given 
by .
(a) What are and , the x- and y-components of the
velocity of the squirrel, as functions of time? (b) At ,
how far is the squirrel from its initial position? (c) At 
what are the magnitude and direction of the squirrel’s 
velocity?

Section 3.2 The Acceleration Vector
3.5 . A jet plane is flying at a constant altitude. At time it
has components of velocity At time

the components are 
(a) Sketch the velocity vectors at and How do these two vec-
tors differ? For this time interval calculate (b) the components of
the average acceleration, and (c) the magnitude and direction of
the average acceleration.
3.6 .. A dog running in an open field has components of veloc-
ity and at For the time
interval from to the average acceleration
of the dog has magnitude and direction meas-
ured from the toward the At 
(a) what are the x- and y-components of the dog’s velocity? 
(b) What are the magnitude and direction of the dog’s velocity?
(c) Sketch the velocity vectors at and How do these two
vectors differ?

t2.t1

t2 = 20.0 s,+y-axis.+x-axis
31.0°0.45 m>s2

t2 = 20.0 s,t1 = 10.0 s
t1 = 10.0 s.vy = -1.8 m>svx = 2.6 m>s

t2.t1

vy = 40 m>s.vx = -170 m>s,t2 = 30.0 s
vy = 110 m>s.vx = 90 m>s,

t1 = 0

t = 5.00 s,
t = 5.00 s

vy1t2vx1t2
r
S

� 310.280 m>s2t + 10.0360 m>s22t24ın � 10.0190 m>s32t3≥n

t = 2.0 s,t = 0
t = 2.0 s.t = 1.0 s,t = 0,

t = 2.0 s.
t = 0

12.5 cm>s22t24ın � 15.0 cm>s2t≥n.
rS � 34.0 cm +

t2 = 12.0 s,4.9 m>s.
-3.8 m>s
t2 = 12.0 s,t1 = 0

t1 = 0.

t2 = 3.0 s.15.3 m, -0.5 m2t1 = 0
11.1 m, 3.4 m2



insect jumps. When leaping at an angle of 58.0° above the hori-
zontal, some of the tiny critters have reached a maximum height
of 58.7 cm above the level ground. (See Nature, Vol. 424, 
July 31, 2003, p. 509.) (a) What was the takeoff speed for such a
leap? (b) What horizontal distance did the froghopper cover for
this world-record leap?
3.15 .. Inside a starship at rest on the earth, a ball rolls off the
top of a horizontal table and lands a distance D from the foot of
the table. This starship now lands on the unexplored Planet X. The
commander, Captain Curious, rolls the same ball off the same
table with the same initial speed as on earth and finds that it lands
a distance 2.76D from the foot of the table. What is the accelera-
tion due to gravity on Planet X?
3.16 . On level ground a shell is fired with an initial velocity of

at 60.0° above the horizontal and feels no appreciable air
resistance. (a) Find the horizontal and vertical components of the
shell’s initial velocity. (b) How long does it take the shell to reach
its highest point? (c) Find its maximum height above the ground.
(d) How far from its firing point does the shell land? (e) At its
highest point, find the horizontal and vertical components of its
acceleration and velocity.
3.17 . A major leaguer hits a baseball so that it leaves the bat at a
speed of and at an angle of above the horizontal.
You can ignore air resistance. (a) At what two times is the baseball
at a height of 10.0 m above the point at which it left the bat? (b)
Calculate the horizontal and vertical components of the baseball’s
velocity at each of the two times calculated in part (a). (c) What
are the magnitude and direction of the baseball’s velocity when it
returns to the level at which it left the bat?
3.18 . A shot putter releases the shot some distance above the
level ground with a velocity of above the horizon-
tal. The shot hits the ground 2.08 s later. You can ignore air resist-
ance. (a) What are the components of the shot’s acceleration while
in flight? (b) What are the components of the shot’s velocity at the
beginning and at the end of its trajectory? (c) How far did she
throw the shot horizontally? (d) Why does the expression for R in
Example 3.8 not give the correct answer for part (c)? (e) How high
was the shot above the ground when she released it? (f) Draw x-t,
y-t, and graphs for the motion.

3.19 .. Win the Prize. In a carnival booth, you win a stuffed
giraffe if you toss a quarter into a small dish. The dish is on a shelf
above the point where the quarter leaves your hand and is a hori-
zontal distance of 2.1 m from this point (Fig. E3.19). If you toss
the coin with a velocity of at an angle of above the
horizontal, the coin lands in the dish. You can ignore air resist-
ance. (a) What is the height of the shelf above the point where the

60°6.4 m>s

vy-tvx-t,

51.0°12.0 m>s,

36.9°30.0 m>s

50.0 m>s
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quarter leaves your hand? (b) What is the vertical component of
the velocity of the quarter just before it lands in the dish?

v 5 6.4 m/s

60°

2.1 m

?

Figure E3.19

3.20 .. Suppose the departure angle in Fig. 3.26 is and
the distance d is 3.00 m. Where will the dart and monkey meet if
the initial speed of the dart is (a) (b) (c) What
will happen if the initial speed of the dart is Sketch the
trajectory in each case.
3.21 .. A man stands on the roof of a 15.0-m-tall building and
throws a rock with a velocity of magnitude at an angle of

above the horizontal. You can ignore air resistance. Calculate
(a) the maximum height above the roof reached by the rock; (b) the
magnitude of the velocity of the rock just before it strikes the
ground; and (c) the horizontal range from the base of the building
to the point where the rock strikes the ground. (d) Draw x-t, y-t,

and graphs for the motion.

3.22 . Firemen are shooting a stream of water at a burning build-
ing using a high-pressure hose that shoots out the water with a
speed of as it leaves the end of the hose. Once it leaves
the hose, the water moves in projectile motion. The firemen adjust
the angle of elevation of the hose until the water takes 3.00 s to
reach a building 45.0 m away. You can ignore air resistance;
assume that the end of the hose is at ground level. (a) Find the
angle of elevation (b) Find the speed and acceleration of the water
at the highest point in its trajectory. (c) How high above the ground
does the water strike the building, and how fast is it moving just
before it hits the building?
3.23 .. A 124-kg balloon carrying a 22-kg basket is descending
with a constant downward velocity of A 1.0-kg stone is
thrown from the basket with an initial velocity of perpen-
dicular to the path of the descending balloon, as measured relative
to a person at rest in the basket. The person in the basket sees the
stone hit the ground 6.00 s after being thrown. Assume that the bal-
loon continues its downward descent with the same constant speed
of (a) How high was the balloon when the rock was
thrown out? (b) How high is the balloon when the rock hits the
ground? (c) At the instant the rock hits the ground, how far is it
from the basket? (d) Just before the rock hits the ground, find its
horizontal and vertical velocity components as measured by an
observer (i) at rest in the basket and (ii) at rest on the ground.

Section 3.4 Motion in a Circle
3.24 .. BIO Dizziness. Our balance is maintained, at least in
part, by the endolymph fluid in the inner ear. Spinning displaces
this fluid, causing dizziness. Suppose a dancer (or skater) is spin-
ning at a very fast 3.0 revolutions per second about a vertical axis
through the center of his head. Although the distance varies from
person to person, the inner ear is approximately 7.0 cm from the
axis of spin. What is the radial acceleration (in and in g’s) of
the endolymph fluid?
3.25 .. The earth has a radius of 6380 km and turns around once
on its axis in 24 h. (a) What is the radial acceleration of an object at
the earth’s equator? Give your answer in and as a fraction of g.
(b) If at the equator is greater than g, objects will fly off the
earth’s surface and into space. (We will see the reason for this in
Chapter 5.) What would the period of the earth’s rotation have to
be for this to occur?
3.26 .. A model of a helicopter rotor has four blades, each 3.40 m
long from the central shaft to the blade tip. The model is rotated in
a wind tunnel at (a) What is the linear speed of the
blade tip, in (b) What is the radial acceleration of the blade
tip expressed as a multiple of the acceleration of gravity, g?

m>s?
550 rev>min.

arad

m>s2

m>s2

20.0 m>s.

15.0 m>s
20.0 m>s.

a.

a

25.0 m>s

vy-tvx-t,

33.0°
30.0 m>s

4.0 m>s?
8.0 m>s?12.0 m>s?

42.0°a0



3.29 . A Ferris wheel with
radius 14.0 m is turning about a
horizontal axis through its cen-
ter (Fig. E3.29). The linear
speed of a passenger on the rim
is constant and equal to

What are the magni-
tude and direction of the passen-
ger’s acceleration as she passes
through (a) the lowest point in
her circular motion? (b) The
highest point in her circular
motion? (c) How much time
does it take the Ferris wheel to
make one revolution?
3.30 .. BIO Hypergravity. At its Ames Research Center,
NASA uses its large “20-G” centrifuge to test the effects of very
large accelerations (“hypergravity”) on test pilots and astronauts. In
this device, an arm 8.84 m long rotates about one end in a horizontal
plane, and the astronaut is strapped in at the other end. Suppose that
he is aligned along the arm with his head at the outermost end. The
maximum sustained acceleration to which humans are subjected in
this machine is typically 12.5g. (a) How fast must the astronaut’s
head be moving to experience this maximum acceleration? (b) What
is the difference between the acceleration of his head and feet if the
astronaut is 2.00 m tall? (c) How fast in rpm is the arm
turning to produce the maximum sustained acceleration?

Section 3.5 Relative Velocity
3.31 . A “moving sidewalk” in an airport terminal building
moves at and is 35.0 m long. If a woman steps on at one
end and walks at relative to the moving sidewalk, how
much time does she require to reach the opposite end if she walks
(a) in the same direction the sidewalk is moving? (b) In the oppo-
site direction?
3.32 . A railroad flatcar is traveling to the right at a speed of

relative to an observer standing on the ground. Someone
is riding a motor scooter on the flatcar (Fig. E3.32). What is the
velocity (magnitude and direction) of the motor scooter relative to
the flatcar if its velocity relative to the observer on the ground is
(a) to the right? (b) to the left? (c) zero?3.0 m >  s18.0 m >  s

13.0 m >  s

1.5 m >  s
1.0 m >  s

1rev >  min2

7.00 m >  s.

3.27 . BIO Pilot Blackout in
a Power Dive. A jet plane
comes in for a downward dive
as shown in Fig. E3.27. The
bottom part of the path is a
quarter circle with a radius of
curvature of 350 m. According
to medical tests, pilots lose
consciousness at an accelera-
tion of 5.5g. At what speed (in

and in mph) will the pilot
black out for this dive?
m>s
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3.33 .. A canoe has a velocity of southeast relative to
the earth. The canoe is on a river that is flowing east rela-
tive to the earth. Find the velocity (magnitude and direction) of the
canoe relative to the river.
3.34 . Two piers, A and B, are located on a river: B is 1500 m
downstream from A (Fig. E3.34). Two friends must make round
trips from pier A to pier B and return. One rows a boat at a constant
speed of relative to the water; the other walks on the
shore at a constant speed of The velocity of the river is

in the direction from A to B. How much time does it
take each person to make the round trip?
2.80 km >  h

4.00 km >  h.
4.00 km >  h

0.50 m >  s
0.40 m >  s

14.0 m

Figure E3.29

v 5 13.0 m/s

Figure E3.32Figure E3.27

1500 m

vcurrent

BA

Figure E3.34

3.28 . The radius of the earth’s orbit around the sun (assumed to
be circular) is and the earth travels around this
orbit in 365 days. (a) What is the magnitude of the orbital velocity
of the earth, in (b) What is the radial acceleration of the earth
toward the sun, in (c) Repeat parts (a) and (b) for the
motion of the planet Mercury 
orbital period = 88.0 days2.

1orbit radius = 5.79 * 107 km,
m >  s2

 ?
m >  s?

1.50 * 108 km,

3.35 . Crossing the River I. A river flows due south with a
speed of A man steers a motorboat across the river; his
velocity relative to the water is due east. The river is 800 m
wide. (a) What is his velocity (magnitude and direction) relative to
the earth? (b) How much time is required to cross the river? 
(c) How far south of his starting point will he reach the opposite
bank?
3.36 . Crossing the River II. (a) In which direction should the
motorboat in Exercise 3.35 head in order to reach a point on the
opposite bank directly east from the starting point? (The boat’s
speed relative to the water remains ) (b) What is the veloc-
ity of the boat relative to the earth? (c) How much time is required
to cross the river?
3.37 .. The nose of an ultralight plane is pointed south, and its
airspeed indicator shows The plane is in a wind
blowing toward the southwest relative to the earth. (a) In a vector-
addition diagram, show the relationship of (the velocity of the
plane relative to the earth) to the two given vectors. (b) Letting x
be east and y be north, find the components of (c) Find the
magnitude and direction of 

3.38 .. An airplane pilot wishes to fly due west. A wind of
(about ) is blowing toward the south. (a) If the

airspeed of the plane (its speed in still air) is (about
), in which direction should the pilot head? (b) What is

the speed of the plane over the ground? Illustrate with a vector
diagram.
3.39 .. BIO Bird Migration. Canadian geese migrate essen-
tially along a north–south direction for well over a thousand kilo-
meters in some cases, traveling at speeds up to about If
one such bird is flying at relative to the air, but there is a100 km>  h

100 km>  h .

200 mi>  h
320.0 km>  h

50 mi >  h80.0 km>  h

vSP >  E.
vSP >  E.

vSP >  E

10-m>s35 m >  s.

4.2 m>s.

4.2 m >  s
2.0 m >  s.



value of t is the velocity of the plane perpendicular to its
acceleration?
3.46 .. CALC A bird flies in the xy-plane with a velocity vector given
by with and

The positive y-direction is vertically upward. At
the bird is at the origin. (a) Calculate the position and accel-

eration vectors of the bird as functions of time. (b) What is the
bird’s altitude (y-coordinate) as it flies over for the first time
after
3.47 ... CP A test rocket is
launched by accelerating it
along a 200.0-m incline at

starting from rest at
point A (Fig. P3.47). The
incline rises at 35.0° above
the horizontal, and at the
instant the rocket leaves it, its
engines turn off and it is sub-
ject only to gravity (air resistance can be ignored). Find (a) the
maximum height above the ground that the rocket reaches, and (b)
the greatest horizontal range of the rocket beyond point A.

1.25 m>s2

t = 0?
x = 0

t = 0
g = 4.0 m>s2.

b = 1.6 m>s3,a = 2.4 m>s,vS � 1a - bt22ın � gt≥n,
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wind blowing from west to east, (a) at what angle relative
to the north–south direction should this bird head so that it will be
traveling directly southward relative to the ground? (b) How long
will it take the bird to cover a ground distance of 500 km from
north to south? (Note: Even on cloudy nights, many birds can
navigate using the earth’s magnetic field to fix the north–south
direction.)

PROBLEMS
3.40 .. An athlete starts at
point A and runs at a constant
speed of around a circu-
lar track 100 m in diameter, as
shown in Fig. P3.40. Find the x-
and y-components of this run-
ner’s average velocity and aver-
age acceleration between points
(a) A and B, (b) A and C, (c) C
and D, and (d) A and A (a full
lap). (e) Calculate the magnitude
of the runner’s average velocity
between A and B. Is his average speed equal to the magnitude of
his average velocity? Why or why not? (f) How can his velocity be
changing if he is running at constant speed?

6.0 m>s

40 km>h

3.41 . CALC A rocket is fired at an angle from the top of a tower
of height Because of the design of the engines, its
position coordinates are of the form and

where A, B, C, and D are constants. Further-
more, the acceleration of the rocket 1.00 s after firing is

Take the origin of coordinates to be at
the base of the tower. (a) Find the constants A, B, C, and D, includ-
ing their SI units. (b) At the instant after the rocket is fired, what
are its acceleration vector and its velocity? (c) What are the x- and
y-components of the rocket’s velocity 10.0 s after it is fired, and
how fast is it moving? (d) What is the position vector of the rocket
10.0 s after it is fired?
3.42 ... CALC A faulty model rocket moves in the xy-plane (the
positive y-direction is vertically upward). The rocket’s accelera-
tion has components and where

and At the
rocket is at the origin and has velocity with

and (a) Calculate the velocity
and position vectors as functions of time. (b) What is the maxi-
mum height reached by the rocket? (c) Sketch the path of the
rocket. (d) What is the horizontal displacement of the rocket when
it returns to 
3.43 .. CALC If where b and c are positive con-
stants, when does the velocity vector make an angle of with
the x- and y-axes?
3.44 .. CALC The position of a dragonfly that is flying 
parallel to the ground is given as a function of time by

. (a) At
what value of t does the velocity vector of the insect make an angle
of clockwise from the +x-axis? (b) At the time calculated in
part (a), what are the magnitude and direction of the acceleration
vector of the insect?
3.45 .. CP CALC A small toy airplane is flying in the xy-plane
parallel to the ground. In the time interval to , 
its velocity as a function of time is given by

. At whatvS � 11.20 m>s22t ın � 312.0 m>s - 12.00 m>s22t4 ≥n

t = 1.00 st = 0

30.0o

r
S

� 32.90 m + 10.0900 m>s22t24ın � 10.0150 m>s32t3≥n

45.0°
rS � bt2ın � ct3≥n,

y = 0?

v0y = 7.00 m>s.v0x = 1.00 m>s
vS0 � v0xın � v0y ≥n

t = 0g = 1.40 m>s3.b = 9.00 m>s2,a = 2.50 m>s4,

ay1t2 = b - gt,ax1t2 = at 2

aS � 14.00ın � 3.00≥n2 m>s2.

y(t) = C + Dt3,
x1t2 = A + Bt 2

h0 = 50.0 m.

y

A

C

B

D

x

Figure P3.40

3.48 . Martian Athletics. In the long jump, an athlete launches
herself at an angle above the ground and lands at the same height,
trying to travel the greatest horizontal distance. Suppose that on
earth she is in the air for time T, reaches a maximum height h, and
achieves a horizontal distance D. If she jumped in exactly the same
way during a competition on Mars, where is 0.379 of its
earth value, find her time in the air, maximum height, and horizon-
tal distance. Express each of these three quantities in terms of its
earth value. Air resistance can be neglected on both planets.
3.49 .. Dynamite! A demolition crew uses dynamite to blow an
old building apart. Debris from the explosion flies off in all direc-
tions and is later found at distances as far as 50 m from the explo-
sion. Estimate the maximum speed at which debris was blown
outward by the explosion. Describe any assumptions that you
make.
3.50 ... BIO Spiraling Up. It is common to see birds of prey
rising upward on thermals. The paths they take may be spiral-like.
You can model the spiral motion as uniform circular motion com-
bined with a constant upward velocity. Assume a bird completes a
circle of radius 6.00 m every 5.00 s and rises vertically at a con-
stant rate of Determine: (a) the speed of the bird relative
to the ground; (b) the bird’s acceleration (magnitude and direc-
tion); and (c) the angle between the bird’s velocity vector and the
horizontal.
3.51 .. A jungle veterinarian with a blow-gun loaded with a tran-
quilizer dart and a sly 1.5-kg monkey are each 25 m above the
ground in trees 70 m apart. Just as the hunter shoots horizontally at
the monkey, the monkey drops from the tree in a vain attempt to
escape being hit. What must the minimum muzzle velocity of the
dart have been for the hunter to have hit the monkey before it
reached the ground?
3.52 ... A movie stuntwoman drops from a helicopter that is 
30.0 m above the ground and moving with a constant velocity
whose components are upward and horizontal
and toward the south. You can ignore air resistance. (a) Where on
the ground (relative to the position of the helicopter when she
drops) should the stuntwoman have placed the foam mats that
break her fall? (b) Draw x-t, y-t, and graphs of her motion.
3.53 .. In fighting forest fires, airplanes work in support of
ground crews by dropping water on the fires. A pilot is practicing

vy-tvx-t,

15.0 m>s10.0 m>s

3.00 m>s.

gMars

35.0°

A

200.0 m

Figure P3.47



3.64 .. A World Record. In
the shot put, a standard track-
and-field event, a 7.3-kg
object (the shot) is thrown by
releasing it at approximately
40° over a straight left leg.
The world record for distance,
set by Randy Barnes in 1990, is 23.11 m. Assuming that Barnes
released the shot put at 40.0° from a height of 2.00 m above the
ground, with what speed, in and in mph, did he release it?m>s
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by dropping a canister of red dye, hoping to hit a target on the
ground below. If the plane is flying in a horizontal path 90.0 m
above the ground and with a speed of at
what horizontal distance from the target should the pilot release the
canister? Ignore air resistance.
3.54 .. A cannon, located 60.0 m from the base of a vertical 
25.0-m-tall cliff, shoots a 15-kg shell at above the horizontal
toward the cliff. (a) What must the minimum muzzle velocity be
for the shell to clear the top of the cliff? (b) The ground at the top
of the cliff is level, with a constant elevation of 25.0 m above the
cannon. Under the conditions of part (a), how far does the shell
land past the edge of the cliff?
3.55 .. An airplane is flying with a velocity of at an
angle of above the horizontal. When the plane is 114 m
directly above a dog that is standing on level ground, a suitcase
drops out of the luggage compartment. How far from the dog will
the suitcase land? You can ignore air resistance.
3.56 ... As a ship is approaching the dock at an impor-
tant piece of landing equipment needs to be thrown to it before it can
dock. This equipment is thrown at at 60.0° above the hori-
zontal from the top of a tower at the edge of the water, 8.75 m above
the ship’s deck (Fig. P3.56). For this equipment to land at the front
of the ship, at what distance D from the dock should the ship be
when the equipment is thrown? Air resistance can be neglected.

15.0 m>s

45.0 cm>s,

23.0°
90.0 m>s

43.0°

(143 mi>h),64.0 m>s

would the ball be above a fence 3.0 m (10 ft) high if the fence
was 116 m (380 ft) from home plate?
3.60 ... A water hose is used to fill a large cylindrical storage
tank of diameter D and height 2D. The hose shoots the water at 45°
above the horizontal from the same level as the base of the tank
and is a distance 6D away (Fig. P3.60). For what range of launch
speeds will the water enter the tank? Ignore air resistance, and
express your answer in terms of D and g.

1v02

3.57 . CP CALC A toy rocket is launched with an initial velocity of
12.0 m s in the horizontal direction from the roof of a 30.0-m-tall
building. The rocket’s engine produces a horizontal acceleration of

, in the same direction as the initial velocity, but in the
vertical direction the acceleration is g, downward. Air resistance
can be neglected. What horizontal distance does the rocket travel
before reaching the ground?
3.58 .. An Errand of Mercy. An airplane is dropping bales of
hay to cattle stranded in a blizzard on the Great Plains. The pilot
releases the bales at 150 m above the level ground when the plane
is flying at in a direction 55° above the horizontal. How far
in front of the cattle should the pilot release the hay so that the
bales land at the point where the cattle are stranded?
3.59 ... The Longest Home Run. According to the Guinness
Book of World Records, the longest home run ever measured was
hit by Roy “Dizzy” Carlyle in a minor league game. The ball
traveled 188 m (618 ft) before landing on the ground outside the
ballpark. (a) Assuming the ball’s initial velocity was in a
direction above the horizontal and ignoring air resistance,
what did the initial speed of the ball need to be to produce such a
home run if the ball was hit at a point 0.9 m (3.0 ft) above ground
level? Assume that the ground was perfectly flat. (b) How far

45°

75 m>s

11.60 m>s32t

>

45.0 cm/s

15.0 m/s

60.0°

8.75 m

D

Figure P3.56

3.63 .. A grasshopper leaps
into the air from the edge of a
vertical cliff, as shown in Fig.
P3.63. Use information from
the figure to find (a) the initial
speed of the grasshopper and
(b) the height of the cliff.
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Figure P3.63

3.61 .. A projectile is being launched from ground level with no
air resistance. You want to avoid having it enter a temperature inver-
sion layer in the atmosphere a height h above the ground. (a) What is
the maximum launch speed you could give this projectile if you shot
it straight up? Express your answer in terms of h and g. (b) Suppose
the launcher available shoots projectiles at twice the maximum
launch speed you found in part (a). At what maximum angle above
the horizontal should you launch the projectile? (c) How far (in
terms of h) from the launcher does the projectile in part (b) land?
3.62 .. Kicking a Field Goal. In U.S. football, after a touch-
down the team has the opportunity to earn one more point by kick-
ing the ball over the bar between the goal posts. The bar is 10.0 ft
above the ground, and the ball is kicked from ground level, 36.0 ft
horizontally from the bar (Fig. P3.62). Football regulations are
stated in English units, but convert them to SI units for this prob-
lem. (a) There is a minimum angle above the ground such that if
the ball is launched below this angle, it can never clear the bar, no
matter how fast it is kicked. What is this angle? (b) If the ball is
kicked at 45.0° above the horizontal, what must its initial speed be
if it is to just clear the bar? Express your answer in and in km>h.m>s
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3.66 ... On the Flying Trapeze.
A new circus act is called the
Texas Tumblers. Lovely Mary
Belle swings from a trapeze, proj-
ects herself at an angle of and
is supposed to be caught by Joe
Bob, whose hands are 6.1 m above
and 8.2 m horizontally from her
launch point (Fig. P3.66). You
can ignore air resistance. (a)
What initial speed must Mary
Belle have just to reach Joe Bob?
(b) For the initial speed calculated
in part (a), what are the magnitude
and direction of her velocity when Mary Belle reaches Joe Bob?
(c) Assuming that Mary Belle has the initial speed calculated in
part (a), draw x-t, y-t, and graphs showing the motion of
both tumblers. Your graphs should show the motion up until the point
where Mary Belle reaches Joe Bob. (d) The night of their debut per-
formance, Joe Bob misses her completely as she flies past. How far
horizontally does Mary Belle travel, from her initial launch point,
before landing in the safety net 8.6 m below her starting point?

vy-tvx-t,

v0

53°,

3.68 .. A rock is thrown from the roof of a building with a veloc-
ity at an angle of from the horizontal. The building has
height h. You can ignore air resistance. Calculate the magnitude of
the velocity of the rock just before it strikes the ground, and show
that this speed is independent of 
3.69 . A 5500-kg cart carrying a vertical rocket launcher moves
to the right at a constant speed of along a horizontal
track. It launches a 45.0-kg rocket vertically upward with an initial
speed of relative to the cart. (a) How high will the rocket
go? (b) Where, relative to the cart, will the rocket land? (c) How
far does the cart move while the rocket is in the air? (d) At what
angle, relative to the horizontal, is the rocket traveling just as it
leaves the cart, as measured by an observer at rest on the ground?
(e) Sketch the rocket’s trajectory as seen by an observer (i) station-
ary on the cart and (ii) stationary on the ground.
3.70 . A 2.7-kg ball is thrown upward with an initial speed of

from the edge of a 45.0-m-high cliff. At the instant the
ball is thrown, a woman starts running away from the base of the
cliff with a constant speed of The woman runs in a
straight line on level ground, and air resistance acting on the ball
can be ignored. (a) At what angle above the horizontal should the
ball be thrown so that the runner will catch it just before it hits
the ground, and how far does the woman run before she catches
the ball? (b) Carefully sketch the ball’s trajectory as viewed by 
(i) a person at rest on the ground and (ii) the runner.
3.71 . A 76.0-kg boulder is rolling horizontally at the top of a
vertical cliff that is 20 m above the surface of a lake, as shown in
Fig. P3.71. The top of the vertical face of a dam is located 100 m
from the foot of the cliff, with the top of the dam level with the sur-
face of the water in the lake. A level plain is 25 m below the top of
the dam. (a) What must be the minimum speed of the rock just as it
leaves the cliff so it will travel to the plain without striking the
dam? (b) How far from the foot of the dam does the rock hit the
plain?

6.00 m>s.

20.0 m>s

40.0 m>s
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3.65 ... Look Out! A snow-
ball rolls off a barn roof that
slopes downward at an angle of

(Fig. P3.65). The edge of the
roof is 14.0 m above the ground,
and the snowball has a speed of

as it rolls off the roof.
Ignore air resistance. (a) How far
from the edge of the barn does
the snowball strike the ground if
it doesn’t strike anything else
while falling? (b) Draw x-t, y-t,

and graphs for the
motion in part (a). (c) A man 1.9 m
tall is standing 4.0 m from the
edge of the barn. Will he be hit by the snowball?
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3.67 .. Leaping the River II. A physics professor did daredevil
stunts in his spare time. His last stunt was an attempt to jump
across a river on a motorcycle (Fig. P3.67). The takeoff ramp was
inclined at the river was 40.0 m wide, and the far bank was
15.0 m lower than the top of the ramp. The river itself was 100 m
below the ramp. You can ignore air resistance. (a) What should his
speed have been at the top of the ramp to have just made it to the
edge of the far bank? (b) If his speed was only half the value found
in part (a), where did he land?
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3.72 .. Tossing Your Lunch. Henrietta is going off to her
physics class, jogging down the sidewalk at Her hus-
band Bruce suddenly realizes that she left in such a hurry that she
forgot her lunch of bagels, so he runs to the window of their apart-
ment, which is 38.0 m above the street level and directly above the
sidewalk, to throw them to her. Bruce throws them horizontally
9.00 s after Henrietta has passed below the window, and she
catches them on the run. You can ignore air resistance. (a) With
what initial speed must Bruce throw the bagels so Henrietta can
catch them just before they hit the ground? (b) Where is Henrietta
when she catches the bagels?
3.73 ... Two tanks are engaged in a training exercise on level
ground. The first tank fires a paint-filled training round with a
muzzle speed of 250 m s at above the horizontal while
advancing toward the second tank with a speed of rela-
tive to the ground. The second tank is retreating at rela-
tive to the ground, but is hit by the shell. You can ignore air

35.0 m>s
15.0 m>s

10.0°>

3.05 m>s.
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resistance and assume the shell hits at the same height above
ground from which it was fired. Find the distance between the
tanks (a) when the round was first fired and (b) at the time of
impact.
3.74 ... CP Bang! A student sits atop a platform a distance h
above the ground. He throws a large firecracker horizontally with a
speed However, a wind blowing parallel to the ground gives the
firecracker a constant horizontal acceleration with magnitude a.
This results in the firecracker reaching the ground directly under
the student. Determine the height h in terms of a, and g. You can
ignore the effect of air resistance on the vertical motion.
3.75 .. In a Fourth of July celebration, a firework is launched
from ground level with an initial velocity of at 30.0°
from the vertical. At its maximum height it explodes in a starburst
into many fragments, two of which travel forward initially at

at with respect to the horizontal, both quantities
measured relative to the original firework just before it exploded.
With what angles with respect to the horizontal do the two frag-
ments initially move right after the explosion, as measured by a
spectator standing on the ground?
3.76 . When it is 145 m above the ground, a rocket traveling ver-
tically upward at a constant relative to the ground
launches a secondary rocket at a speed of at an angle of
53.0° above the horizontal, both quantities being measured by an
astronaut sitting in the rocket. After it is launched the secondary
rocket is in free-fall. (a) Just as the secondary rocket is launched,
what are the horizontal and vertical components of its velocity rel-
ative to (i) the astronaut sitting in the rocket and (ii) Mission Con-
trol on the ground? (b) Find the initial speed and launch angle of
the secondary rocket as measured by Mission Control. (c) What
maximum height above the ground does the secondary rocket
reach?
3.77 ... In an action-adventure film, the hero is supposed to
throw a grenade from his car, which is going to his
enemy’s car, which is going The enemy’s car is 15.8 m
in front of the hero’s when he lets go of the grenade. If the hero
throws the grenade so its initial velocity relative to him is at an
angle of above the horizontal, what should the magnitude of
the initial velocity be? The cars are both traveling in the same
direction on a level road. You can ignore air resistance. Find the
magnitude of the velocity both relative to the hero and relative to
the earth.
3.78 . A 400.0-m-wide river flows from west to east at

Your boat moves at relative to the water
no matter which direction you point it. To cross this river, you start
from a dock at point A on the south bank. There is a boat landing
directly opposite at point B on the north bank, and also one at point
C, 75.0 m downstream from B (Fig. P3.78). (a) Where on the north
shore will you land if you point your boat perpendicular to the
water current, and what distance will you have traveled? (b) If you
initially aim your boat directly toward point C and do not change
that bearing relative to the shore, where on the north shore will you
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land? (c) To reach point C: (i) at what bearing must you aim your
boat, (ii) how long will it take to cross the river, (iii) what distance
do you travel, and (iv) and what is the speed of your boat as meas-
ured by an observer standing on the river bank?

30.0 m/min400.0 m

B C

A

Figure P3.78

3.79 . CALC Cycloid. A particle moves in the xy-plane. Its coor-
dinates are given as functions of time by

where R and are constants. (a) Sketch the trajectory of the parti-
cle. (This is the trajectory of a point on the rim of a wheel that is
rolling at a constant speed on a horizontal surface. The curve
traced out by such a point as it moves through space is called a
cycloid.) (b) Determine the velocity components and the accelera-
tion components of the particle at any time t. (c) At which times is
the particle momentarily at rest? What are the coordinates of the
particle at these times? What are the magnitude and direction of
the acceleration at these times? (d) Does the magnitude of the
acceleration depend on time? Compare to uniform circular motion.
3.80 .. A projectile is fired from point A at an angle above the
horizontal. At its highest point, after having traveled a horizontal
distance D from its launch point, it suddenly explodes into two
identical fragments that travel horizontally with equal but opposite
velocities as measured relative to the projectile just before it
exploded. If one fragment lands back at point A, how far from A (in
terms of D) does the other fragment land?
3.81 .. An airplane pilot sets a compass course due west and
maintains an airspeed of After flying for 0.500 h, she
finds herself over a town 120 km west and 20 km south of her
starting point. (a) Find the wind velocity (magnitude and direc-
tion). (b) If the wind velocity is due south, in what direc-
tion should the pilot set her course to travel due west? Use the
same airspeed of 
3.82 .. Raindrops. When a train’s velocity is east-
ward, raindrops that are falling vertically with respect to the earth
make traces that are inclined to the vertical on the windows
of the train. (a) What is the horizontal component of a drop’s
velocity with respect to the earth? With respect to the train? 
(b) What is the magnitude of the velocity of the raindrop with
respect to the earth? With respect to the train?
3.83 ... In a World Cup soccer match, Juan is running due north
toward the goal with a speed of relative to the ground. A
teammate passes the ball to him. The ball has a speed of 
and is moving in a direction east of north, relative to the
ground. What are the magnitude and direction of the ball’s velocity
relative to Juan?
3.84 .. An elevator is moving upward at a constant speed of

A bolt in the elevator ceiling 3.00 m above the elevator
floor works loose and falls. (a) How long does it take for the bolt to
fall to the elevator floor? What is the speed of the bolt just as it hits
the elevator floor (b) according to an observer in the elevator? 
(c) According to an observer standing on one of the floor landings
of the building? (d) According to the observer in part (c), what dis-
tance did the bolt travel between the ceiling and the floor of the
elevator?
3.85 . CP Suppose the elevator in Problem 3.84 starts from rest
and maintains a constant upward acceleration of and
the bolt falls out the instant the elevator begins to move. (a) How
long does it take for the bolt to reach the floor of the elevator? (b)
Just as it reaches the floor, how fast is the bolt moving according to
an observer (i) in the elevator? (ii) Standing on the floor landings
of the building? (c) According to each observer in part (b), how far
has the bolt traveled between the ceiling and floor of the elevator?
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3.86 .. Two soccer players, Mia and Alice, are running as Alice
passes the ball to Mia. Mia is running due north with a speed of
6.00 m s. The velocity of the ball relative to Mia is 5.00 m/s in a
direction east of south. What are the magnitude and direction
of the velocity of the ball relative to the ground?
3.87 ... Projectile Motion on an Incline. Refer to the Bridging
Problem in Chapter 3. (a) An archer on ground that has a constant
upward slope of aims at a target 60.0 m farther up the
incline. The arrow in the bow and the bull’s-eye at the center of the
target are each 1.50 m above the ground. The initial velocity of the
arrow just after it leaves the bow has magnitude At what
angle above the horizontal should the archer aim to hit the bull’s-
eye? If there are two such angles, calculate the smaller of the two.
You might have to solve the equation for the angle by iteration—
that is, by trial and error. How does the angle compare to that
required when the ground is level, with 0 slope? (b) Repeat the
problem for ground that has a constant downward slope of 

CHALLENGE PROBLEMS
3.88 ... CALC A projectile is thrown from a point P. It moves in
such a way that its distance from P is always increasing. Find the
maximum angle above the horizontal with which the projectile
could have been thrown. You can ignore air resistance.
3.89 ... Two students are canoeing on a river. While heading
upstream, they accidentally drop an empty bottle overboard. They
then continue paddling for 60 minutes, reaching a point 2.0 km far-
ther upstream. At this point they realize that the bottle is missing

30.0°.

32.0 m>s.

30.0°

30.0o
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and, driven by ecological awareness, they turn around and head
downstream. They catch up with and retrieve the bottle (which has
been moving along with the current) 5.0 km downstream from the
turn-around point. (a) Assuming a constant paddling effort
throughout, how fast is the river flowing? (b) What would the
canoe speed in a still lake be for the same paddling effort?
3.90 ... CP A rocket designed to place small payloads into orbit
is carried to an altitude of 12.0 km above sea level by a converted
airliner. When the airliner is flying in a straight line at a constant
speed of the rocket is dropped. After the drop, the air-
liner maintains the same altitude and speed and continues to fly in
a straight line. The rocket falls for a brief time, after which its
rocket motor turns on. Once its rocket motor is on, the combined
effects of thrust and gravity give the rocket a constant acceleration
of magnitude 3.00g directed at an angle of above the hori-
zontal. For reasons of safety, the rocket should be at least 1.00 km
in front of the airliner when it climbs through the airliner’s alti-
tude. Your job is to determine the minimum time that the rocket
must fall before its engine starts. You can ignore air resistance.
Your answer should include (i) a diagram showing the flight paths
of both the rocket and the airliner, labeled at several points with
vectors for their velocities and accelerations; (ii) an x-t graph
showing the motions of both the rocket and the airliner; and (iii) a
y-t graph showing the motions of both the rocket and the airliner.
In the diagram and the graphs, indicate when the rocket is
dropped, when the rocket motor turns on, and when the rocket
climbs through the altitude of the airliner.

30.0°

850 km>h,

Chapter Opening Question ?
A cyclist going around a curve at constant speed has an accelera-
tion directed toward the inside of the curve (see Section 3.2, espe-
cially Fig. 3.12a).

Test Your Understanding Questions
3.1 Answer: (iii) If the instantaneous velocity is constant over
an interval, its value at any point (including the end of the interval)
is the same as the average velocity over the interval. In (i) and
(ii) the direction of at the end of the interval is tangent to the path
at that point, while the direction of points from the beginning
of the path to its end (in the direction of the net displacement). In
(iv) and are both directed along the straight line, but has a
greater magnitude because the speed has been increasing.
3.2 Answer: vector 7 At the high point of the sled’s path, the
speed is minimum. At that point the speed is neither increasing nor
decreasing, and the parallel component of the acceleration (that is,
the horizontal component) is zero. The acceleration has only a per-
pendicular component toward the inside of the sled’s curved path.
In other words, the acceleration is downward.
3.3 Answer: (i) If there were no gravity the monkey
would not fall and the dart would follow a straight-line path
(shown as a dashed line). The effect of gravity is to make the

(g = 0),

vSvSavvS

vSav

vS
vSav

vS

Answers

monkey and the dart both fall the same distance below their
positions. Point A is the same distance below the monkey’s

initial position as point P is below the dashed straight line, so point
A is where we would find the monkey at the time in question.
3.4 Answer: (ii) At both the top and bottom of the loop, the accel-
eration is purely radial and is given by Eq. (3.28). The radius R is
the same at both points, so the difference in acceleration is due
purely to differences in speed. Since is proportional to the
square of the speed must be twice as great at the bottom of the
loop as at the top.
3.5 Answer: (vi) The effect of the wind is to cancel the airplane’s
eastward motion and give it a northward motion. So the velocity of
the air relative to the ground (the wind velocity) must have one
150-km h component to the west and one 150-km h component to
the north. The combination of these is a vector of magnitude

that points to the
northwest.

Bridging Problem
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