HEAT EXCHANGER

(Alat Penukar Panas)

WHAT IS A HEAT EXCHANGER?

Alat yang secara khusus dirancang untuk memperoleh transfer panas yang efisien dari suatu fluida ke fluida lain melalui permukaan padat.

Penampang HE

DOUBLE PIPE HE

Principle of Heat Exchanger

• First Law of Thermodynamic: "Energy is conserved."

THERMAL

CLASSIFICATION OF HEAT EXCHANGERS

- Heat exchangers may be classified according to the following main criteria:
- Transfer processes : direct contact and indirect contact
- Geometry of constructions : tubes, plates and extended surfaces
- Phase change mechanisms : condensers, reboilers and evaporators
- Flow arrangements : parallel, counter and cross flow

1. Direct contact type heat exchangers:

<u>*Direct contact heat transfer</u> Heat transfer across interface between fluids

- Heat transfer between the cold and hot fluids through a direct contact between these fluids.
- *Examples:* Spray and tray condensers, cooling towers, air fin cooler

Direct Contact HE

2. Indirect contact type heat exchangers:

<u>Transmural Heat Transfer</u> Heat transfer through walls:fluids not in contact •Heat energy is exchanged between hot and cold fluids through a heat transfer surface.

•The fluids are not mixed

•Ex : DPHE, shell & tube HE, compact HE, PHE

1. PLATE HEAT EXCHANGERS

2. Compact HE

Figure 22.4 Compact heat-exchanger configurations.

3. TUBULAR HE

 are so <u>widely used</u> because the technology is well established for making precision metal tubes capable of containing <u>high pressures</u> in a variety of materials.

There is <u>no limit</u> to the range of <u>pressures</u> and <u>temperatures</u> that can be accommodated.

SHELL AND TUBE HEAT EXCHANGERS

SHELL AND TUBE HEAT EXCHANGERS

- are the most commonly used heat exchangers in oil refineries and other large chemical processes.
- are used when a process requires <u>large amounts of fluid</u> to be heated or cooled.
- provide transfer of <u>heat efficiently</u>.
- use baffles on the shell-side fluid to accomplished mixing or <u>turbulence</u>.

SHELL AND TUBE HEAT EXCHANGERS

• **tube** : strong, thermally conductive, corrosion

resistant, high quality

- outer shell : durable, highly strong
- inner tube : having effective combination of durability, corrosion resistant and thermally conductive

APPLICATIONS:

- Oil refining,
- Vapor recovery systems,
- Permanent engines,
- Industrial paint systems.

U - TUBE HEAT EXCHANGERS

heat exchanger systems consisting of straight length tubes bent into a U-shape surrounded by a

shell.

U-tube heat exchanger

U - TUBE HEAT EXCHANGERS

• Both initial and maintenance <u>costs are reduced</u> by reducing the number of joints.

 They have drawbacks like <u>inability to replace</u> <u>individual tubes</u> except in the outer row and <u>inability to</u> <u>clean around the bend.</u>

U - TUBE HEAT EXCHANGERS

- Examples : reboilers, evaporators and Kettle type.
- They have enlarged shell sections for vapor-liquid separation.

FIXED TUBE HEAT EXCHANGERS

have straight tubes that are secured at both ends to tube sheets welded to the shell.

FIXED TUBE HEAT EXCHANGERS

- They are the most economical type design.
- They have very popular version as the <u>heads can be</u> <u>removed</u> to clean the inside of the tubes.
- <u>Cleaning</u> the outside surface of the tubes is <u>impossible</u> as these are inside the fixed part.
- <u>Chemical cleaning</u> can be used.

FLOATING HEAD HEAT EXCHANGER

<u>one tube is free to float</u> within the shell and the <u>other is fixed</u> relative to the shell.

FLOATING HEAD HEAT EXCHANGERS

• A floating head is excellent for applications where the <u>difference in temperature between the</u> <u>hot and cold fluid causes unacceptable stresses</u> in the axial direction of the shell and tubes.

• The floating head can move, so it provides the

possibility to expand in the axial direction.

• Design <u>allows</u> for bundle to be removed for <u>inspection</u>, <u>cleaning or maintenance</u>.

DOUBLE-PIPE HEAT EXCHANGERS

• They consist of one pipe concentrically located inside a

second, larger one.

• Cold and hot liquid respectively

flows in the gap of inner pipe

and sleeve pipe.

• Structure is <u>simple and heat</u>

transmission is large.

DOUBLE-PIPE HEAT EXCHANGERS

utilize <u>true counter-current</u>
<u>flow</u> which maximizes the
temperature differences
between the shell side and
tube side fluids.

hairpin

FLOW ARRANGEMENTS

1. Paralel Flow Heat Exchangers:

• Two fluid streams enter together at one end, flow through in the same direction, and leave through at the other end

2. Counter Flow Heat Exchangers:

• Two fluid streams flow in opposite directions.

3. Cross Flow Heat Exchangers:

• The direction of fluids are perpendicular to each other.

• Cross-flow Heat Exchangers

- > For cross-flow over the tubes, fluid motion, and hence mixing, in the transverse direction (y) is prevented for the finned tubes, but occurs for the unfinned condi
- ➢ Heat exchanger performance is influenced by mixing.

BASIC CRITERIAS FOR THE SELECTION OF HEAT EXCHANGERS

- ✓ Process specifications
- ✓ Service conditions of the plant environment, resistance to corrosion by the process
- ✓ Maintenance, permission to cleaning and replacement of components
- ✓ Cost- Effectiveness
- ✓ Site requirements, lifting, servicing, capabilities