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1. INTRODUCTION 

This is an updated collation of magnetic parameters of 
rocks and minerals for geologists, geochemists, and geo- 
physicists. Since the publication of the previous edition of 
Handbook of Physical Constants [74], two other collations 
have appeared [16, 18]. In addition, selected magnetic 
parameters have also been assembled [19, 22, 38, 41, 88]. 
Rather than produce a fully comprehensive collection, we 
have aimed for high-precision data obtained from well- 
characterized samples. 

Both tables and figures have been used for presenting the 
data, and best-fit equations have been provided for some of 
the displayed data so that interpolations can be made easily. 
In an attempt to discourage the use of the outdated cgs 
system, all values are in the SI system (see Moskowitz, this 
volume). References have been cited for the sources used 
here. However, a more comprehensive bibliography has 
also been provided from which information can be extracted 
for samples which have not been included. 

The single-crystal constants and their variation with tem- 
perature and composition are for use by rock magnetists. 
Paleomagnetists and magnetic anomaly modelers have been 
provided with the magnetic properties of rocks and poly- 
crystalline mineral samples. Lastly, we have made an effort 
to address the needs of environmental magnetism, a new 
group of researchers who require the values of size- and 
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composition-dependent magnetic parameters of a variety of 
iron-bearing minerals. 

2. MAGNETIC SUSCEPTIBILITY 

Magnetic susceptibility is a measure of the magnetic 
response of a material to an external magnetic field. The 
volume susceptibility k, measured in dimensionless units, is 
defined as the ratio of the material magnetization J (per unit 
volume) to the weak external magnetic field H: 

J=kH. (1) 

Alternatively, the specific or mass susceptibility Z, mea- 
sured in units of rn3kg4, is defined as the ratio of the material 
magnetization J (per unit mass) to the weak external mag- 
netic field H: 

(2) 

All materials have magnetic susceptibility, which can be 
either positive (paramagnetic) or negative (diamagnetic). In 
materials which display hysteresis, the initial slope of the 
hysteresis loop is taken to be the initial or low-field suscep- 
tibility Zo. Magnetic susceptibility values are useful in 
geophysical exploration, and in models of both crustal 
magnetization and magnetic anomalies. Table 1 lists the 
(initial) susceptibility for common rocks and minerals. 

In ferro-, ferri-, or canted antiferromagnetic materials, 
hysteresis and the presence of magnetic domains cause the 
initial susceptibility to become grain-size dependent. This 
dependence for magnetite is plotted in Figure 1. 

Initial magnetic susceptibility is temperature dependent. 
The susceptibility of paramagnetic materials is inversely 
proportional to absolute temperature, but the susceptibility 
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TABLE 1. Magnetic Susceptibilities of Selected Rocks and Minerals 

Rock/Mineral Chemical Formula Density Volume k Mass Z 
(10 3 kg m -3) (10 4 SI) (10 4 m3kg -•) 

References 

Igneous Rocks 
andesite 
basalt 

diabase 
diorite 

gabbro 
granite 
peridotite 
porphyry 
pyroxenite 
rhyolite 
igneous rocks 
average acidic igneous rocks 
average basic igneous rocks 

Sedimentary Rocks 
clay 
coal 
dolomite 
limestone 
red sediments 
sandstone 
shale 

average sedimentary rocks 

Metamorphic Rocks 
amphibolite 
gneiss 
granulite 
phyllite 
quar•ite 
schist 

serpentine 
slate 

average metamorphic rocks 

Non-Iron-Bearing Minerals 
graphite C 
calcite CaCOa 
anhydrite CaSO4 
gypsum CaSO•.2H•O 
ice H•O 
orthoclase KA1Si30 s 
magnesite MgCO3 
forsterite Mg2SiO4 
serpentinite Mg3Si2Os(OH), • 
halite NaC1 

galena PbS 
quarlz SiO• 
cassiterite Sn02 
celestite SrSO• 
sphalerite ZnS 

2.61 170,000 6,500 
2.99 250-180,000 8.4-6,100 
2.91 1,000-160,000 35-5,600 
2.85 630-130,000 22-4,400 
3.03 1,000-90,000 26-3,000 
2.64 0-50,000 0-1,900 
3.15 96,000-200,000 3,000-6,200 
2.74 250-210,000 9.2-7,700 
3.17 130,000 4,200 
2.52 250-38,000 10-1,500 
2.69 2,700-270,000 100-10,000 
2.61 38-82,000 1.4-3,100 
2.79 550-120,000 20-4,400 

1.70 170-250 10-15 
1.35 25 1.9 
2.30 -10-940 -1-41 

2.11 2-25,000 0.1-1,200 
2.24 10-100 0.5-5 

2.24 0-20,900 0-931 
2.10 63-18,600 3-886 
2.19 0-50,000 0-2,000 

2.96 750 25 

2.80 0-25,000 0-900 
2.63 3,000-30,000 100-1,000 
2.74 1,600 60 
2.60 4,400 170 
2.64 26-3,000 1-110 
2.78 3,100-18,000 110-630 
2.79 0-38,000 0-1,400 
2.76 0-73,000 0-2,600 

2.16 -80--200 -3.7--9.3 
2.83 -7.5--39 -0.3--1.4 
2.98 -14--60 -0.5--2.0 
2.34 -13--29 -0.5--1.3 
0.92 -9 -1 
2.57 -13--17 -0.49--0.67 
3.21 - 15 -0.48 
3.20 -12 -0.39 

2.55 3,100-75,000 120-2,900 
2.17 - 10-- 16 -0.48--0.75 
7.50 -33 -0.44 
2.65 -13--17 -0.5--0.6 

6.99 1,100 16 
3.96 -16--18 -0.40--0.450 
4.00 -31-750 -0.77-19 

114 

95, 107, 114, 115 
114 

114, 115 
95, 107, 114, 115 
95, 107, 114, 115 
114 

114 

114 
114 
22 

114 
114 

114 
114 

95, 114 
22, 107, 114, 115 
22 

107, 114, 115 
114 
114 

114, 115 
107, 114, 115 
126 
114 

114 

114, 115 
114 

107, 114, 115 
114 

16, 95, 107, 114 
16, 18, 22, 114 
16, 18, 95 
16, 107, 114 
107 
16 
22 

16 
107 

16, 18, 107, 114 
16 

16, 18, 22, 73, 95 
114 
16 

16, 114 



TABLE 1. (continued) 

Iron-Bearing Minerals 
garnets A3B2(SiOn)3 3.90 2,700 
illite clay w/1.4% FeO, 4.7% Fe203 2.75 410 
montmorillonite clay w/2.8% FeO, 3.0% F%O3 2.50 330-350 
biotites K(Mg,Fe)3(A1Si3Oa0)(O•2 3.00 1,500-2,900 
siderite FeCO3 3.96 1,300-11,000 
chromite FeCqOn 4.80 3,000-120,000 
orthoferrosilite FeSiO3 4.00 3,700 
orthopyroxenes (Fe,Mg)SiO3 3.59 1,500-1,800 
fayalite FenSiOn 4.39 5,500 
olivines (Fe,Mg)•SiOn 4.32 1,600 
jacobsite MnFe2On 4.99 25,000 
fmnklinites (Zn,Fe,Mn)(Fe,Mn)•On 5.21 450,000 

Iron Sulfides 
chalcopyrite 
arsenopyrite 
troilite 

pyrrhotites 

CuFeS2 4.20 23-400 
FeAsS 6.05 3,000 
FeS 4.83 610-1,700 
Fe•_xS 4.62 460-1,400,000 

Fe•S•2 4.62 1,200 
Fe•0S• 4.62 1,700 
Fe9S•0 4.62 170,000 
Fe, Ss 4.62 3,200,000 
FeS2 5.02 35-5,000 

pyrrhotite 
pyrrhotite 
pyrrhotite 
pyrrhotite 
pyrite 

Iron-Titanium Oxides 

hematite o•-FenO3 5.26 500-40,000 

maghemite •/-FenO3 
ilmenite FeTiO3 

4.90 2,000,000-2,500,000 
4.72 2,200-3,800,000 

magnetite FeaOn 5.18 1,000,000-5,700,000 

titanomagnetite Fe3_xTi•On, x=0.60 
titanomaghemite Feo_•> •Ti,•Elm_•>O n, 

R=8/[8+z(l+x)] 
ulvOspinel FenTiOn 

4.98 130,000-620,000 
4.99 2,800,000 
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69 16 

15 18, 22 
13-14 18, 22 
52-98 16, 18, 22 
32-270 16, 18, 47, 73, 114 
63-2,500 114 
92 18 

43-50 16, 18, 22 
130 18 

36 16 
500 18 

8,700 114 

0.55-10 16, 114 
50 114 

13-36 16, 47, 73 
10-30,000 18, 20, 22, 29, 95, 

114, 115, 127 
25 16 
38 16 

3,800 16 
69,000 16 

1-100 16, 47, 95, 114 

10-760 16, 18, 22, 47, 70, 
73, 114, 115 

40,000-50,000 1, 115 
46-80,000 16, 18, 22, 47, 

106, 114, 115 
20,000-110,000 16, 18, 22, 55, 61, 

62, 75, 114, 115 
2,500-12,000 18, 44, 62 

57,000 22 

4.78 4,800 100 22 

Other Iron-Bearing Minerals 
iron Fe 7.87 3,900,000 50,000 22 
goethite o•-FeOOH 4.27 1,100-12,000 26-280 16, 32, 47, 115 
lepidocrocite ht-FeOOH 4.18 1,700-2,900 40-70 16, 47, 115 
limonite FeOOH.nH20 4.20 2,800-3,100 66-74 16, 115 

Notes: All susceptibilities were measured in weak fields at room temperature and at one atmosphere pressure. Literature 
values for susceptibilities were converted to $I units when necessary, and from volume to mass normalization using 
accepted values for material densities [22, 73, 114]. Susceptibility values have been rounded to the number of significant 
figures given in the original. Most values come from other tabulations, to which the reader should refer for more 
information. Values for the more important magnetic minerals (magnetite, titanomagnetite, hematite, pyrrhotite, and 
goethite) were collated from recent original sources. 
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Fig. 1. The grain-size dependence of initial magnetic sus- 
ceptibility (Zo) in magnetite. Experimental data from crushed 
grains (open symbols) and grown crystals (closed symbols 
and cross). Solid lines are power-law fits for grown (GR) 
and crushed (CR) samples. 

of diamagnetic materials has no temperature dependence. In 
magnetic materials, there is often a"Hopkinson peak" [e.g., 
88] where susceptibility increases just below the Curie 
temperature before dropping to relatively small values. 
Examples are shown in Figure 2. The peak occurs at high 
temperatures because both number and mobility of domain 
walls in MD grains increase, and thermal activation of SD 
moments increases, all leading to an increase in response to 
an external field. 

Hydrostatic pressure does not affect the magnitude of 
magnetic susceptibility in experiments of up to 2 kbar [e.g., 
76]. However, uniaxial stress will change the susceptibility 
both in amount and direction, dependent on the orientation 
of the applied stress relative to the magnetic field. When the 
applied stress is parallel to the magnetic field the susceptibil- 
ity decreases; when the stress and field are perpendicular, 
there is an increase in magnetic susceptibility [e.g., 82]. The 
amount of change is reversible, and is dependent both on 
composition and on magnetic grain size. Changes in suscep- 
tibility can be +40% at 2 kbar of differential stress [76, 82]. 
However, uniaxial stresses greater than 1-2 kbar are un- 
likely to be sustained in matehals residing at elevated 
temperatures in the lower crust. 

Initial susceptibility is dependent upon the frequency at 
which it is measured. This is because susceptibility depends 
on the magnetic domain state of a sample, which in turn 
depends on the length of time over which the sample is 
measured or observed. The parameter known as the "fre- 
quency dependence of susceptibility" Zfd is usually defined 
by 

Zfd = Z470,z - Z47oou x 100%, (3) 
•470Hz 

where ,•470Hz and ,•4700Hz are the susceptibility of a sample 
measured at 470 Hz and that measured at 4700 Hi, respec- 
tively. In magnetic materials, there is a small window of 
grain sizes (near 20 nm in magnetite) which will be magneti- 
cally unstable (superparamagnetic) at 470 Hi, but stable 
(single-domain) at 4700 Hi. Over relatively long"observa- 
tion times" at 470 Hi, such a grain will appear to be 
magnetically unstable, and will contribute significantly to 
the total susceptibility of the sample. But over shorter times 
at 4700 Hi, the same grain will appear to be stable, and will 
contribute little to the total susceptibility. A sample contain- 
ing a significant fraction of such grains will thus have a high 
value (up to about 12%) of Zfd- This parameter can be used 
only qualitatively to detect the presence of ultrafine grains of 
magnetic material such as magnetite or maghemite, which 
are often found in soils [e.g., 115]. 

The susceptibility of a sample can also vary with direction, 
depending on the fabric of the constituent minerals. Anisot- 
ropy of magnetic susceptibility (AMS) can be used to 
determine sedimentary flow directions, or metamorphic 
deformation parameters [e.g., 57]. 

3. GRAIN-SIZE DEPENDENCE 

Various magnetic properties show a strong grain-size 
dependence [e.g., 41, 111]. This dependence occurs not 
because of any intrinsic control of grain size on magnetiza- 
tion, but because these parameters are influenced by the 
magnetic domain state of the samples, which in turn is a 
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Fig. 2. Temperature dependence of initial magnetic suscep- 
tibility (Zo) for crustal rocks and synthetic fine-grained 
magnetite. Note the presence of only a very weak Hopkinson 
peak in the rock data. 



function of grain size. Domain states change from 
superparamagnetic (SPM), to single domain (SD), and fi- 
nally to multidomain (MD) with increasing grain size. 
Domain-transition grain sizes depend on composition, tem- 
perature, and microstructure. Magnetic granulometry is any 
magnetic method for determining either the physical or the 
magnetic grain size of a magnetic material. Magnetic grain 
size refers to the magnetic domain state and behavior in a 
magnetic particle, regardless of the physical dimensions of 
the particle. Here, we are interested in magnetic granulometry 
of natural magnetic grains, such as magnetite (Fe3On), hema- 
tite (c•-Fe203), maghemite (T-F%O•), and the various tita- 
nium-substituted compositions of these three minerals 
(titanomagnetite, titanohematite, and titanomaghemite). The 
composition of the various Fe-Ti oxides and their solid- 
solution series are shown in Figure 3. These minerals are 
found in soils, in ocean and lake sediments, and in sedimen- 
tary, igneous, and metamorphic rocks. 

Both hysteresis and remanence are strongly dependent on 
grain size. Magnetic hysteresis results when a magnetic 
mineral is cycled between large positive and negative mag- 
netic field values at room temperature. Remanence proper- 
ties are measured in a field-free space after a magnetic field 
has been applied to a sample. 

A second category of magnetic granulometry is based on 
measuring magnetic parameters as a function of tempera- 

TiO2 (i.e., Fe •*) 
ruffle, brookire 

« FeT 

«FeTiO3/ • 

«=tio /6.0 o.: 0.2-,,, 
ulv6spinel/•'",,• "• - • •-• x • •pseudobrookite 

x 

(i.e., Fe2*) magnetite (i.e., Fe 3*) 
hematite, 

maghemite 

Fig. 3. Ternary diagram of the iron-titanium oxides and their 
solid-solution series; x is the composition parameter (Ti 
content) in the titanomagnetite series, and z is the oxidation 
parameter for titanomaghemites. Figure redrawn from [41]. 
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TABLE 2. Reference Guide for Grain-Size 

Dependence of Magnetic Parameters 

Mineral References 

hematite 25, 30 
titanomagnetite 28, 87, 100 
titanohematite 125 

pyrrhotite 20, 29, 31, 35, 77, 127 
goethite 32, 33, 34 
maghemite 25 

ture, or equivalently, as a function of thermal activation 
energy/stability. Examples include the frequency depen- 
dence of susceptibility discussed above, and low-tempera- 
ture thermal demagnetization of remanence. In the latter 
case, remanence acquired at low temperature is lost upon 
warming, because of the thermal unblocking of magnetic 
grains, which is dependent on grain size. 

Magnetite has been one of the most extensively studied 
magnetic minerals, and the important grain-size-dependent 
hysteresis parameters for this mineral are presented here 
[e.g., 40]. References for grain-size dependent properties in 
other minerals systems are listed in Table 2. The grain-size 
dependence of coercive force (H•), remanence coercivity 
(H,•), and reduced saturation remanence (J•/J•) for magne- 
tite from various studies are plotted in Figures 4-6. The data, 
compiled from the literature, are from magnetites that have 
been synthesized by several different methods: (1) grown 
crystals (GR) produced either by hydrothermal recrystalli- 
zation at high temperatures, or by aqueous precipitation at 
low temperatures [e.g., 3, 40, 55, 75]; (2) crushed grains 
(CR) produced by crushing and sieving large crystals [e.g., 
25, 28, 50]; and (3) glass-ceramic samples (GL) produced by 
quenching iron-rich glasses from high temperature and then 
annealing at temperatures below 1000øC [ 128]. As shown 
in Figures 4-6, variations in a particular magnetic param- 
eter, such as H G, for the same nominal grain size are sensitive 
to the method of sample preparation [e.g., 40], and hence 
show the importance of microstructure and crystal defects 
on magnetic behavior. The unique stress-strain histories that 
different samples have experienced resultin different crystal 
defect populations. For example, hydrothermally recrystal- 
lized samples are thought to have low residual strains and a 
low defect density [55]. In contrast, crushed grains that have 
been milled have probably undergone extensive brittle/ 
plastic deformation at low temperatures, resulting both in a 
rapid increase in the number of defects and in a high defect 
density. The grain-size dependence and magnitude of coer- 
civity, remanence, and susceptibility are important, and are 
used extensively by environmental magnetists [e.g., 115]. 
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Fig. 4. Grain-size dependence of coercivity (H•) in magne- 
tite. Experimental data from crushed grains (open symbols), 
grown crystals (closed symbols and cross), and glass ceram- 
ics (hatched symbol). Solid lines are power-law fits for 
grown (GR), crushed (CR), and glass ceramic (GL) samples. 
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Fig. 6. Grain-size dependence of reduced saturation magne- 
tization (J•/J,) in magnetite. Experimental data from crushed 
grains (open symbols), grown crystals (closed symbols and 
cross), and glass ceramics (hatched symbol). Solid lines are 
power-law fits for grown, (GR), crushed (CR), and glass 
ceramic (GL) samples. 

4. INTRINSIC PARAMETERS 

4.1. Saturation Magnetization and Curie Temperature 
Curie temperatures (Tc) and saturation magnetization 

are intrinsic properties which depend on chemical composi- 
tion and crystal structure. Saturation magnetization is a 
function of temperature and disappears at the Curie tempera- 
ture. Rapid thermomagnetic measurement of T c aids in 
determining the composition of magnetic mineral phases. 
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Fig. 5. Grain-size dependence ofremanence coercivity 
in magnetite. Experimental data from crushed grains (open 
symbols) and grown crystals (closed symbols and cross). 
Solid lines are power-law fits for grown (GR) and crushed 
(CR) samples. 

The composition dependence both of J, (measured at room 
temperature) and of T c for titanomagnetites, titanomaghe- 
mites, and titanohematites is shown in Figures 7-9; Table 3 
lists T c and J, data for other minerals. The thermal depen- 
dence of J, for magnetite and for hematite is given in Table 
4 and in Figure 10, respectively. 

400 
60- 

4o 

2o 

o -200 
o.o 0.2 o.4 0.6 o.8 1.o 

F e• O, x-parameter We 2 TiO, 

Fig. 7. Variation of room-temperature saturation magneti- 
zation (J,) and Curie temperature (T c) with composition (x- 
parameter) in the titanomagnefite (Fe3_xTi•On) solid-solu- 
tion series. End members are magnetite (x= 0) and ulvOspinel 
(x = 1). Curie temperature data denoted by open circles, and 
J, data by solid squares. Solid lines are (1) linear fit to the J, 
data [2, 59, 85, 100, 124]; (2) best fit second-order polyno- 
mial to T c data [2, 85, 94, 100, 103,120]. Best-fit equations 
are given in the Figure. 
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Long-range magnetic ordering below the Curie tempera- 
ture is achieved by the mechanism of exchange or 
superexchange interactions, and is usually described by an 
exchange constant, A [e.g., 24], which is an important 
parameter in micromagnetic domain theory. From an analy- 
sis of a synthesis of published data on inelastic neutron 
scattering in magnetite [54], the best-fit fourth-order poly- 
nomial for the temperature dependence of A(T), useful for 
reproducing the experimental results, is given by 

A(T) = (-1.344 + 2.339 x 10 -2 T- 0.706 x 10 -n T 2 
+8.578x10-ST3-3.868x10-XXT)x10 -•x jm -x, 

where T is the absolute temperature. 

(4) 

4.2. Magnetocrystalline Anisotropy 
Magnetocrystalline anisotropy and magnetostriction arise 

from spin-orbit coupling of ionic magnetic moments, result- 
ing in crystallographically controlled easy and hard direc- 
tions of magnetization [e.g., 11,24]. The magnetocrystalline 
anisotmpy energy (E•) for a cubic crystal is given by 

where K• and K 2 are empirical anisotropy constants, and a' s 
are the direction cosines of magnetization with respect to the 
principal cubic axes. 

For a hexagonal crystal, anisotropy can be expressed in 
terms of a uniaxial constant that determines the anisotropy 
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between the c-axis and the (0001) plane, and a triaxial 
constant that determines the in-plane anisotropy perpen- 
dicular to the c-axis. 

The anisotropy constants depend on mineral composition, 
crystal structure, temperature, and pressure, but are indepen- 
dent of grain size. Room-temperature values of anisotropy 
constants for titanomagnetites, maghemite, hematite, and 
pyrrhotite are listed in Table 5. The values of the anisotropy 
constants listed in Table 5 were determined for single 
crystals either by high-field torque measurements [e.g., 45, 
46,113], orby analysis of magnetization curves [e.g., 5, 58]. 
The temperature dependence both of the basal plane anisot- 
ropy constant for hematite, as well as of K• for magnetite, are 
illustrated in Figures 10 and 11, respectively. 

4.3. Low-Temperature Magnetic Transitions 
Certain magnetic properties may change greatly as a 

function of temperature below 300 K. Such low-tempera- 
ture transitions may be diagnostic of mineral composition 
(see Table 5). In magnetite, there is a crystallographic 
Verwey phase transition near 118 K [e.g., 11]. Also associ- 
ated with this transition is a magnetic isotropic point 
the temperature where K• becomes zero as it changes sign, 
and the characteristic easy directions of magnetization change 
their orientation (see Figure 11). A remanence given either 

4O 
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andJ, • by solid sym•. Sold s•ight l•e is a line• fit 
to •e T c • [56,108, 120]. Best-fit equa•on is given in •e 
Fig•e. J, ••om [125, 69]. •e complex v••on of J, 
wi• com•si•on is due • a change in magnetic orde•ng 
from c•ted •tife•omagne•sm to fe•imagne•sm at 
y • 0.45. 



196 MAGNETIC PROPERTIES 

TABLE 3. Magnetic Properties of Selected Minerals 

Mineral Composition Magnetic Order Tc' (øC) j,b (Am2kg-•) 
Oxides 

cobalt ferrite CoFe204 ferrimagnetic 520 80 
copper ferrite CuFe204 ferrimagnetic 455 25 
hematite ct-Fe203 canted antiferromagnetic 675 0.4 
maghemite ht-Fe203 ferrimagnetic • 70-80 
ilmenite FeTiO3 antiferromagnetic -233 
magnetite FelOn ferrimagnetic 575-585 90-92 
ulv6spinel Fe2TiOn antiferromagnetic - 153 
magnesioferrite MgFeaOn ferrimagnetic 440 21 
jacobsite MnFeaOn ferrimagnetic -300 77 
trevorite NiFe2On ferdmagnetic 585 51 

Sulfides 
troilite FeS 

pyrrhotite FeqS8 
greigite Fe3Sn 

Oxyhydroxides 
goethite a-FeOOH 
femxyhyte •5-FeOOH 
lepidocrocite ht-FeOOH 

antiferromagnetic 305 
ferrimagnetic 320 
ferrimagnetic -333 

antiferromagnetic/weak ferromagnetic 
ferdmagnetic 
antiferromagnetic(?) 

20 
-25 

-120 <1 

-180 <10 
-196 

Metals and Alloys 
cobalt Co ferromagnetic 1131 161 
wairauite CoFe ferromagnetic 986 235 
iron Fe ferromagnetic 770 218 
nickel Ni ferrom agnetic 358 55 
awaruite Ni•Fe ferromagnetic 620 120 

'Tc = Curie temperature (ferromagnetic materials) or N6el temperature (ferdmagnetic and antiferromagnetic materials). 
b J, = Saturation magnetization at room temperature. 
References: [24, 78, 115]. 

above or below this transition will be reduced upon passing 
through T v. In hematite, the transition is called the Morin 
transition and occurs near 263 K in bulk samples, but is 
suppressed in fine grains less than 20 nm because of internal 
dilatational strain [84]. A newly discovered transition in 
pyrrhotite occurs near 34 K [35, 101], but its microscopic 
cause is unknown. All these transition temperatures are 
known to be sensitive to impurities, grain size, and non- 
stoichiometry; in some cases, the transition can be totally 
suppressed [e.g., 6, 11, 111]. Thus, low-temperature rema- 
nence transitions for mineral identification should be used 

with caution. Depending on the type of experiment, a 
distinction is made in Table 5 between isotropic points (Tv), 
where K• becomes zero, and remanence transitions (TR), 
where a change in remanence or susceptibility occurs. 

4.4. Magnetostriction 
Magnetostriction is the change in crystal dimensions that 

accompanies the process of magnetization, and can be 

defined as the strain dependence of magnetocrystalline 
anisotropy. The linear saturation magnetostriction constant 
•, is the fractional change in length ZXg/g of a material when 
it is magnetized from a demagnetized state to saturation. It 
can be positive (elongation) or negative (contraction), and it 
is usually anisotropic in single crystals. The microscopic 
origin of magnetostriction is the same spin-orbit coupling 
that produces magnetocrystalline anisotropy [e.g., 24]. 

In cubic crystals, the linear magnetostriction •, is de- 
scribed by the two-constant expression [e.g., 24], 

(6) 

where •, is the strain measured in the direction defined by 
direction cosines ]•i, and ai are the direction cosines of the 
magnetization. Both ]3• and a• (i = 1, 2, 3) are measured 
relative to the principal cubic axes. The magnetostriction 
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Fig. 10. Variation of saturation magnetization (J,) and basal 
plane anisotropy constant (K) with temperature for a natural 
crystal of hematite from Ascension. Note the effect of the 
Morin transition below-10øC. Figure modified after [ 11, 
45]. 

constants along the <100> and <111> crystal directions are 
&0o and •,•, respectively. A related parameter is the 
polycrystalline magnetostriction constant •,,, given by 

Like the magnetocrystalline anisotropy constants, magne- 
tostriction constants vary as a function of composition, 
crystal structure, temperature, and pressure. Room-tem- 
perature values of single-crystal and polycrystal magnetos- 
triction constants for titanomagnetites, maghemite, hema- 
tite, and pyrrhotite are listed in Table 5. The temperature 
dependence of the magnetostriction constants for magnetite 
is shown in Figure 12. 

4.5. Pressure Dependence 
Only a weak hydrostatic pressure dependence of mag- 

netocrystalline anisotropy, magnetostriction, and Curie tem- 
perature has been detected in magnetite. The results of one 
study [83] were that K• and K 2 decrease with pressure at the 
rate of -0.05%/MPa (-5%/kbar), whereas &0o and &n 
increase at the rate of +0.15 %/MPa (15 %/kbar). The results 
of another [ 105] were that the Curie temperature for magne- 
tite and for various titanomagnetites increases with pressure 
at approximately 0.02 K/MPa (2 K•bar). 

5. REMANENCES 

Remanent magnetization is the permanent magnetization 

HUNT ET AL. 197 

TABLE 4. Temperature Dependence of 
Saturation Magnetization in Magnetite 

Absolute Saturation 

Temperature Magnetization 
T (r) J,' (Am2kg -•) 
20.4 98.80 
77.1 98.37 

284.6 92.14 
325.2 90.36 
372.7 87.49 
415.9 84.82 
452.3 82.15 
498.9 78.40 
539.5 74.84 
586.1 69.99 
631.0 64.85 
678.4 58.82 
728.4 51.51 
761.5 45.18 
790.3 37.86 
830.1 22.54 

98.86 Am2kg 4 at absolute zero. Reference: [96]. 

of a sample in the absence of an external magnetic field, and 
thus occurs only in materials which exhibit hysteresis. A 
remanence can be a volume magnetization (magnetic mo- 
ment per volume, measured in units of Am-•), or a mass 
magnetization (magnetic moment per mass, measured in 
units of Am2kg-•). 

Thermal remanent magnetization (TRM) is the rema- 
nence acquired by a sample when it cools to room tempera- 
ture starting at or above its Curie/N6el point in the presence 
of an external magnetic field (usually 50-100 }•T). TRM is 
often used as a laboratory model for the acquisition of 

-16 

-12 

-8 

-4 

' I ß I ' I ' 

Magnetite ß Fletcher and O'Reilly (1974) 
ß Syono (1965) 
ß Kakol and Honig (1989) 

I • I , I • I • I • I , I • 

100 200 300 400 500 600 700 800 

Temperature (K) 

Fig. 11. Variation of first-order magnetocrystalline anisot- 
ropy constant (K•) of magnetite with absolute temperature. 
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TABLE 5. Room-Temperature Values of Magnetocrystalline and Magnetostriction Constants 

Mineral K• K2 • •00 •, Tv' TR" References 
(x104 Jm -3) (x104 Jm -3) (x10 4) (x10 -•) (x104) (K) (K) 

Titanoma gne tites 
Fe304 [TM0] -1.23 b 0.44 78 -20 39 120-130 118 5, 6, 47, 60, 113 
TM04 - 1.94 • -0.18 • 87 -6 50 112 113 
TM05 -1.5 0.2 95* 60 
TM10 -2.50 0.48 96 4 59.2 92 113 
TM18 -1.92 109 47 84.2 113 
TM19 -2.04 1.0 <50 60 
TM28 -1.92 -0.3 <50 60 
TM31 -1.81 104 67 89.2 113 
TM36 -1.6 0.3 68* 60 
TM40 148.2 146.5 147.5 68 
TM40 (PC) a 122.7 80 
TM41 -1.4 0.3 125 60 
TM52 133 117 
TM55 =0 1.4 60 
TM56 -0.70 228 113 
TM59 211 117 
TM60 79.3 137.9 102.7 68 
TM60 (PC) a 111.3 80 
TM60 243 117 
TM65 262 117 
TM68 0.18 --300 113 
TM70 9.3 65.4 31.7 68 

Other Minerals 

T-Fe304 -0.46 (SCF) d -(5-10) (PC) d None None 12 
•-Fe203 7-188x10 -5c •-8 263 45, 79 
Fe7Ss 11.8 f 32.2 f <10 g 35 14, 31, 110 

Notes: An asterisk indicates an extrapolated value. 
'Tv is temperature where K• = 0, TR is temperature where a change in remanence or susceptibility occurs. 
hAverage value from listed references. 
•Data from [60], which have the following error limits: K• +5%, K2 +20%. 
dpc = polycrystalline sample, SCF = single crystal thin film. 
tin-plane anisotropy constant. 
fK3 and K4 anisotropy constants. 
gBased on domain observations [110]. 

remanence by magnetic minerals in newly-formed igneous 
rocks which cool through their Curie temperatures in the 
Earth' s field. Experimental studies have been made on TRM 
as a function of grain size for magnetite (see Figure 13), and 
as a function of composition in titanomagnetites [e.g., 26, 
87, 93,100, 119], in titanomaghemites [e.g., 86, 89], and in 
titanohematites [e.g., 69, 120]. Reverse TRM has been 
found for certain compositions of titanohematite (see Figure 
14). 

Anhysteretic remanent magnetization (ARM) is a labora- 
tory remanence acquired by a sample at room temperature 
during treatment in an decaying, alternating magnetic field 

(peak field about 100 mT) with a superimposed steady field 
(usually 50-100 pT). ARM has been used as an analog for 
TRM, but avoids the possibility of altering the magn'ctic 
minerals at high temperature. It is also commonly used in 
environmental magnetism for magnetic granulometry [e.g., 
115]. The results of several studies of the grain-size depen- 
dence of ARM in magnetite are plotted in Figure 15. 

Isothermal remanent magnetization (IRM) is a laboratory 
remanence acquired by a sample at after exposure to a steady 
external magnetic field at a given temperature. If the 
external field is strong enough to saturate the magnetic 
minerals in the sample (typically 1 T), then the remanence is 
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Fig. 12. Variation of magnetostriction constants (•, 
and •,) for magnetite with absolute temperature. Single 
crystal data from [13,67, 68]; polycrystalline data from [80]. 
•, calculated from single crystal data or measured directly by 
[80]. 
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Fig. 14. Variation of weak-field TRM intensity with com- 
position (y-parameter) for titanohematites (Fez_yTiyOz). Note 
the reverse TRM acquired when titanium content is in the 
range 0.55 to 0.75. TRM data have been normalized to an 
induction field of to 0.1 mT (80 Am -•, or 10e). 

called a saturation isothermal remanent magnetization 
(SIRM). SIRM is essentially the same asJ, from a hysteresis 
loop. Variations in IRM and SIRM are related to the 
coercivity spectrum of a sample, and can thus be used for 
magfietic mineralogy determinations in environmental mag- 
netism studies [e.g., 65]. 

Natural remanent magnetization (NRM) is the remanence 
in a rock before any demagnetization treatment in the labo- 
ratory. Itis usually acquired parallel to the Earth's magnetic 

field at the time of formation or alteration. NRM is the most 

variable of magnetic parameters because it depends not only 
on mineralogy and grainsize, but also on the mode of 
remanence acquisition, and on thermal and magnetic his- 
tory. Nevertheless, NRM is a critical parameter in crustal 
magnetization studies that try to model the sources of marine 
and continental magnetic anomalies. A summary of several 
models of oceanic crust magnetization is shown in Figure 16 
[116]. 
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Fig. 13. Grain-size dependence of weak-field thermal rema- 
nent magnetization (TRM) intensity for magnetite. Data 
from crushed grains (> 1 pm), grown crystals (< 1 pm), and 
magnetite of other origins compiled by [41]. See original 
paper for references. Figure modified after [41]. 
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Fig. 15. Grain-size dependence of weak-field anhysteretic 
remanent magnetization (ARM) intensity for magnetite. 
Experimental data from crushed grains (open symbols) and 
grown crystals (closed symbols). ARM data have been 
normalized to an induction field of 0.1 mT (80 Am -•, or 
10e). 
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Fig. 16. Models of natural remanent magnetization (NRM) in the oceanic crust. Seismic layers are identified 
at fight. NRM values within layers are in Am -•. Values at the bottom of columns are the crustal total NRM in 
amperes, neglecting values from below the Moho. See original paper for references. Figure from [ 116]. 

TABLE 6. Koenigsberger Ratios for Selected Rocks 
Rocks 

TABLE 7. Reference Guide for Other Remanences 

Koenigsberger References Remanence References 

Ratio, Q, Chemical (CRM) 
Sedimentary Rocks Depositional (DRM) 
marine sediments 5 18 Viscous (VRM) 
red sediments 1.6-6 18 
siltstone 0.02-2 18 
silty shale 5 18 
avg sedimentary rocks 0.02-10 18, 107 

Igneous Rocks 
granite 0.1-28 18, 107 
granodiorite 0.1-0.2 18, 107 
dolerite 2-3.5 18, 107 
diabase 0.2-4 18, 107 
gabbro 1-9.5 18, 107 
oceanic gabbro 0.1-58.4 66 
intrusions 0.1-20 18, 107 
volcanics 30-50 18 
subaerial basalt 1-116 18, 98 
oceanic basalt 1-160 18, 107 
seamounts 8-57 107 

avg igneous rocks 1-40 18 

Metamorphic Rocks 
granulites 0.003-50 63, 116, 122 

Others 

magnetite ore 1-94 18, 107 
manganese ore 1-5 107 
lunar rocks 0.001-1 18 

17, 48, 64, 91, 92, 97, 112 
4,7,8,71 
10, 39, 43, 49 

The relative importance of NRM compared with induced 
magnetization is characterized by the Koenigsberger ratio 
Q•, a dimensionless quantity given by 

Q, = NRM / kHc, (8) 

where NRM is the magnitude of the natural remanent mag- 
netization (per unit volume), k is the volume susceptibility, 
and Hc is the magnitude of the Earth's magnetic field at the 
site under consideration (H, = 24-48 Am-•, B, =/h•, = 30- 
601aT). Values of Qa for several rock types are collected in 
Table 6. 

Other types of remanence--including chemical (CRM), 
depositional (DRM), viscous (VRM)--have also been the 
subject of extensive study, but are not included here. The 
interested reader can refer to the papers cited in Table 7 for 
further discussion. 
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