Websites

EPA Estimation Program Interface (EPI) Suite. Estimation for octanol—water partition coefficient log $K_{\rm ow}$, Henry's law constant, melting point, boiling point, vapor pressure, water solubility. Requires SMILES notation with help guide. http://www.epa.gov/oppt/exposure/docs/episuite.htm.

Exercises

- 1. Develop correlations for the van der Waals attraction term a and the volume term b, using the molecular weight as the predictor.
 - (a) Find the values of *a* and *b* for the following families of compounds: noble gases, period 1 to 6; normal paraffins, 1 to 20 carbon atoms; 1-chloro paraffins, 1 to 10 carbon atoms; 1-alcohols, 1 to 10 carbon atoms.
 - (b) Make graphs of van der Waals *a* (*y* axis) versus MW (*x* axis). How do these four families differ in their intercepts and slopes? Which chemical has the largest slope (most molecular weight dependent), and which chemical has the smallest slope?
 - (c) Make one-parameter linear correlations and compute their R^2 and SD values.
- 2. Make a correlation for the viscosity of R134a in μ Pa s, from -50 to +100 °C in 10 °C intervals. (Hint: a possible source of data is NIST Chembook.)
 - (a) Make a linear regression in the form $\mu = C_0 + C_1 T$. Obtain the coefficients C_0 and C_1 , as well as R^2 , $SD(\mu \mu')$, the maximum error, and the maximum percentage error.
 - (b) Make a more accurate quadratic regression in the form $\mu = C_0 + C_1T + C_2T^2$. Compare the improvements of the quadratic correlation on the values of R^2 , the standard error, the maximum error, and the maximum percentage error.
 - (c) Make an exponential regression in the form $\mu = C_0 \exp(C_1 T)$. How does it compare with the two previous correlations?
- 3. The correlations of liquid viscosities with structural and ambient parameters pose difficult problems. Yaws recommended the following equation for the viscosity at 25 °C for paraffins:

$$\log_{10}(\mu) = A + B/T + CT + DT^2$$
 T in kelvin

The recommended parameter values, and the temperature range of validity, are:

(a) Make plots of viscosity versus temperature in the range -50 °C (coldest winter in North America) to 250 °C (hot engine) for these six compounds.

(b)	If the DT^2	term	is	eliminated,	how	much	difference	would	it	make	to t	the
	results?											

	A	В	10 ² C	$10^{5}D$	Min. T	Max. T
$\overline{C_6}$	-5.0715	655.36	1.2349	-1.5042	178	507
C_8	-5.9245	888.09	1.2955	-1.3596	216	569
C_{10}	-6.0716	1017.7	1.2247	-1.1892	243	618
C_{12}	-7.0687	1253.0	1.3735	-1.2215	262	658
C_{14}	-7.8717	1446.7	1.4940	-1.2495	260	692
C_{16}	-8.1894	1557.0	1.5270	-1.2371	291	721

4. The Joule–Thompson coefficient measures the temperature change when a gas is expanded into a vacuum. For the refrigerant R134a, we have the following values:

Temperature, °C	Joule–Thomson coefficient \times 10 ⁵ , K/torr
-50	-4.19
-40	-3.92
-30	-3.61
-20	-3.24
-10	-2.79
0	-2.26
10	-1.60
20	-0.770
30	0.297
40	1.71
50	3.66
60	6.48
70	10.9
80	18.6
90	35.9
100	109.3

- (a) Make a plot of the Joule–Thompson coefficient versus temperature. What functional form would you suggest that would require the least number of coefficients to achieve the highest value of R^2 ?
- (b) Make the correlation; compute the values of R^2 , standard error, maximum error, and maximum percentage error.