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1. Introduction

In our discussion of the Schrodinger equation in three dimensions we will need to deal
with the kinetic energy in three dimensions, which has the form

p2

= “7-1)

for problems in which the effective mass of the particle is ge. Just as in classical
mechanics, there is a close connection between p? and the square of the angular
momentum L = r X p. We shall take over this expression for the angular momentum
into quantum mechanics, with the recognition that r and p are to be treated as operators.
We will also see (Supplement 7-A [www.wiley.com/college/gasiorowicz]) that when the
potential in a three-dimensional Schréodinger equation

2
Hy(r) = (—; T V(r))w(r) = Eyi(r) (7-2)
The conservation of angular momentum implies the operator equation
dl.
> 0 (7-9)
This, as seen in Chapter 6, is equivalent to
[(.L] = O (7-5)
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2. The Angular Momentum Commutation Ralations

We might be tempted to look for simultaneous eigenfunctions of H and all three compo-
nents of L. This, as we have seen in Chapter 5, is only possible if all four operators com-
mute with each other. To proceed we must check whether all of the operators L,, L, and
L. commute with each other, as well as with . In fact, different components of the angu-
lar momentum do not commute with each other. For example, paying particular attention
to the ordering of the operators, we get, using L = r X p,
[L.. L, = bp,. — zp,» 20, — xp,)
= Ylp., zlp, + xlz, p.lp, (7-6a)

h ”
=5 0P — ap,) = ihL,
Similarly we can show that

(L, L) = ihL, (7-6b)
and
L.L) =ihL, (7-6¢)
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The Angular Momentum Commutation Ralations...

It is true that each of the components of angular momentum commutes with L’. For ex-
ample,
L, L2+ L+ )=LIL. L)+ L, L), + LIL,L) + [L,LJ,
= —ihL L, — ihL L, + ihL L, + ihL L, = 0
We can see that as a consequence of these commutation relations, only one component of
L may be chosen with H and L” to form a simultaneously commuting set. To show this let

us assume that we have a set of eigenfunctions that are simultaneous eigenfunctions of all
three components of L. Let us assume that

Lx|u> - Il I“)

(7-7)

and
L|u) = 1,|u)
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The Angular Momentum Commutation Ralations...

which implies that L, L |u) = 1,L,|u) and L L |u) = L,1,|u). As a consequence of (7-6a) this
means that L |u) = 0. This, however implies that

bluy = Lu) = % L, L]|u) = -i-lﬁ Ll |uy =0

Similarly, we can show that /,|u) = 0. This means that only for L = 0 can we have simul-
taneous eigenfunction for all three components of the angular momentum.

There is nothing to keep us from picking just one component of L as part of the com-
muting set. Conventionally the choice is L,, but there is nothing special about this choice.
We thus will deal with simultaneous eigenfunctions of L? and L,. We will denote the
eigenkets by |/, m). Our starting point is thus the set of equations

L’|1, m) = #%I(1 + 1)|I, m)
L|l, m) = tum|l, m)
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2. Lowering Operators for Angular Momentum

Our starting point is (7-8), together with the angular momentum commutation relations
(7-6) and the orthonormality relation

(', m'|l, m) = 8,8, (7-9)
It will prove convenient to introduce the operators
L.=L,XilL, (7-10)
These obey the commutation relations

IL.,.L ]=I[L, + iLy' L, —il,] = (—2i)IL,, L,]
= 2hL, (7-11)

and

[L,L.] = [L,L,*iL) = ihL, ¥ i(ihL,) = *h(L, * iL))

+hl. (7-12)
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Lowering Operators for Angular Momentum...

It is also obvious that
L% L.]=0 (7-13)
Furthermore, we have

L L =CL +iLXL, —iL)=L+L2—iL.L)

=L2— 12+ &L, (7-14)
and similarly,
LL,=L2—12—#L, (7-15)
Thus
LL_ +L2—#hL, =L L, +L2+h&L,=L? (7-16)

We now note that {I, m|L?|l, m) = (L., m)|L.(I, m)) = O and by extension {I, m|L?|l, m)
= (. This implies that /(/ + 1) = 0. From this it follows that / = 0. (The alternative that

I = —1 we reject, since we would thencall/ + 1 = —1I" and get I’ = 0.) First, we note
that
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Lowering Operators for Angular Momentum...

We now note that {I, m|L?|1, m) = {L (1, m)|L. (I, m)) = 0 and by extension {I, m|L?|l, m)
= 0. This implies that /(I + 1) = 0. From this it follows that / = 0. (The alternative that
I = —1 we reject, since we would thencall/ + 1 = —I" and get I’ = 0.) First, we note
that

L2L_ I, m) = L.L?|1, m) = #%Il(1 + 1)L_.|I, m) (7-17)

This means that L, |/, m) is an eigenstate of L? with the eigenvalue characterized by /. On
the other hand,

LL.|l.m)=@L.L,+ #hL,)|l,m)=#(n + 1L,|I, m) (7-18)
and similarly
LL_|l, m)=#hGn — 1)L_|1, m) (7-19)

These equations imply that L |/, m) is an eigenstate of L, with the m value raised by unity,
and L |I, m) is an eigenstate of L, with m value lowered by unity. We therefore call L.
raising and lowering operators, respectively. We may write

L.|l.m)=C..m)|l.m + 1)

L_l,m)=C_({,m)|l,m— 1) (7-20)
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Lowering Operators for Angular Momentum...

The conjugate relation of the first of the above is

(L,m|L_ =, m+ 1|C*(, m) (7-21)
Multiplying this with the first of (7-20) yields
IC.,m)|t,m + LI, m + 1) =L, m|L_L,|l,m)= (I, m|L? — L2 — hL,|I, m)

= A1 + 1) — m’ — m) (7-22)
= R%[d — m)U + m + 1)]

Thus

C.d.m)=H8VU—m)l+m—+ 1) (7-23)
and, similarly
CUm=aVII+1)—mm — 1)=aVI+md—m+ 1) (7-24)

It follows from

(Lt(li m)lLt(l, m)) = 0
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Lowering Operators for Angular Momentum...

that
L., m)|L. .1, m)) =, m|L_L_|I, m)
= {1, m|L? — L2 = AL |l, m) (7-25)
=AU + 1) —m@Gm = 1] =0
This implies that both
I+ 1) =m@Gn + 1)
Id+ D=m(GGn — 1) (7-26)
are true. Since 7 = 0, it follows from the above that
—l=m=<1 (7-27)

Let us assume that the minimum value of m is m,, ... This means that we cannot lower the
m-value any further, and thus

L_|1, my;,) = O (7-28)
We can see, in a number of ways (by looking at C_(/, m) for example), that
Mein = —1 (7-29)
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Lowering Operators for Angular Momentum...

Similarly, the maximum value of m, denoted by m,,, is such that
Ly |l mye) =0 (7-30)

and
Mupax = ! (7'31)

Since the maximum value is to be reached from the minimum value by unit steps (re-
peated application of L), we find, as seen in Fig. 7-1, that there are (2/ + 1) steps. This
implies that (2/ + 1) is an integer, and m can take on the values

me =l =l+])l,=l+2...,01— 11 (7-32)

The possibility that / is half-integral, I = 1/2, 3/2, 5/2, . . ., will be discussed in Chapter
10, when we discuss spin. Until then, we restrict ourselves to integer values of 1.
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Lowering Operators for Angular Momentum...

Ih

(1—-1)n

(I—-2)h

e .

—(1—-2)h

~{l-1)h
Figure 7-1 Spectrum of the operator L, for a given value
~Ih of L.
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Exercises: (at paper),

1. Calculate (l, m,lell, m2> and (I, m.lL,ll, m;).

2. Calculate the commutators [x, L], [, L), [z, L], [x, L), [, L,), [z, L,). Do you detect a pattern that
will allow you to state the commutators of x, y, z with L,?

3. Express the spherical harmonics for I = 0, 1, 2 in terms of x, y, z.
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Thank you
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