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1. The Hamiltonian Operator

The Hamiltonian Operator
The time dependence of the wave function is given by

Y(x, 1)

iﬁa:

= Hyr(x, 1) (5-1)

On the right side of the equation the wave function is acted upon by an operator H, the
Hamiltonian, which, because it governs the time development of the system, plays a cen-
tral role in quantum mechanics. For a single particle moving in a potential V(x), it is an
operator version of the total energy

Pop
_ 2—m + WUx) (5-2)

where the momentum is represented by its operator version

Pop = —ih - (5-3)



The Hamiltonian Operator ...

If V(x) has no explicit time dependence, then (5-1) can be partially solved by writing

Y(x, 1) = ug(x)e (5-4)
The function ug(x) is a solution of the differential equation
Hu(x) = Eugx) (5-5)

Some properties of eigenvalues and eigenfunctions are familiar from our examples in
Chapter 3.

1. Eigenfunctions that correspond to different eigenvalues are orthogonal; that is,
f dx ug (xX)ug(x) = 0 (5-6)

when El - Ez.



The Hamiltonian Operator ...

2. The cigenfunctions of H form a complecte sct. By this we mean the following: Any
arbitrary squarc integrable function of x, one that satisfies

f dx|y(x)|? < oo
may be expanded in terms of cigenfunctions of M, so that

Yr(x) = ; Crre(x) (5-7)
where the sum is over all the cigenfunctions. The cigenvalues of H, the spectrum
of H, may be a discrete sct as in the infinite box, or it may involve discrete values
(labeled by n as for the well) and also as a continuous cnergy variable, as appecars

in the example of a plane wave traversing a potential well seen in Chapter 4. In
that latter case we have the schematic expression

W) = 3 Cuo + [ dECEL) (5-8)



The Hamiltonian Operator ...

3. The eigenfunctions can be multiplied by constants so that they become normal-
ized. For the discrete set this reads

[ axutcon =5, (5-9)

4. Consider any solution of (5-1), Yd(x, 7). Att = 0, the wave function ¢«(x, 0), which
we write as §(x), may be expanded as in (5-7), for example. Because cach eigen-
function has a simple time dependence given by e “*, the time-dependent solu-
tion has the form

Wx, 1) = ;} Cpug(x)e"E" (5-10)



2. Time Dependence and The Classical Limit

Let us now turn to the important question of the classical limit of quantum theory. To
do this we must first study the time development of expectation values of operators. In
general, the expectation value of an operator changes with time. It may change with
time because the operator has an explicit time dependence—for example, the operator
x + pt/m—and it also changes with time because the expectation value is taken with re-
spect to a wave function that itself changes with time. If we write

.= | w00 vt s (5-48)



Time Dependence and The Classical Limit...

%(A)' f Yr*(x, t) ¢(x r) dx
2 f 341*(25 t)

AY(x, 1) dx

Y (x, 1)
or

< > f(,,l Hy(x, :)) Agcx, D

. f Y*(x, 1) A(.— Hy(x, t))

dx

+ f Y*(x, 1) A

< > +ﬁf Y*(x, 1) HAY(x, 1) dx

s Z f Y (x, 1) AHY(x, 1) dx




Time Dependence and The Classical Limit...

that 1s,

d dA
E(A>: <0t> +3 ([H A]): (5'49)

In the derivation we made use of the fact that H is a hermitian operator. We observe that if
A has no explicit time dependence, then the change of the expectation value for any state
1S

TV | _



Time Dependence and The Classical Limit...

If the operator commutes with F7, then its expectation value is always constant; that is,
we may say that the observable is a constant of the motion. 1f the Hamiltonian is one
of the complete set of commuting observables, then all the others are constants of the
motion.

Let us consider successively A = x and A = p. We first have

G (x> = 5 (LHL x1)

=25 veos])

Now x commutes with any function of x,
[V(x), x] = O (5-51)
so that we only have to calculate

P?. x1 = plp. x]1 + [p. xIp



Time Dependence and The Classical Limit...

Thus we obtain

2 (x) = <%> (5-53)

Next we have

& Py = i([zﬁm- + VO, p]>

= — {lp. VOD e
since p” and p evidently commute. To evaluate the last commutator, we note that

PV Y — V) pod = 2L v w0t — 2 vy Ly

= 2D 4

(5-55)




Time Dependence and The Classical Limit...

so that

dvi
Ip. Vi) = B

d,, __[dVX)
E(I’):— < dx >‘

We may combine (5-53) and (5-57) to obtain

- d? i <d;§x)>'

and thus

(5-56)

(5-57)

(5-58)



Time Dependence and The Classical Limit...

which looks very much like the equation of motion of a classical point particle in a
potential V(x)

d’xyq _  dV(xy)

a2 ; (5-59)
The only thing that keeps us from making the identification
Xa = {x) (5-60)
is that
avy , _d_ y
< dx #+ > V({x)) (5-61)

Under the circumstances where the preceding inequality becomes an approximate equal-
ity, the motion is essentially classical, as was first noted by Ehrenfest. This requires that
the potential be a slowly varying function of its argument. If we write

_ dV(x)
dx

F(x) = (5-62)



Exercises/Homework (at a paper),
THE GENERAL STRUCTURE OF WAVE MECHANICS

Exercises/homework:

1.  Use the commutation relations between the operators x and p to obtain the equations describing the
time dependence of {x) and (p) for the Hamiltonian given by

A

Solve the equations of motion you obtained in Problem ). Write your solutions in terms of {(x), and
{P)o. the expectation values at time 7 = 0.

2.  Anelectron in an oscillating electric field is described by the Hamiltonian operator

2
H = pﬁ — (eE_coswi)x

Calculate expressions for the time dependence of (x), {p), and (H).

Solve the equations of motion you obtained in Problem @@. Write your solutions in terms of {(x), and
{p)o, the expectation values at time ¢ = 0.
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