

FACTS

(Flexible AC Transmission System)

CONTENTS

- 01 What is FACTS?
- 02 Applications of FACTS(SVC, STATCOM)
- 03 LS ELECTRIC FACTS Solution
- 04 References

1. What is FACTS?

What is FACTS?

Term "FACTS" means Flexible AC Transmission System

FACTS is defined by the IEEE as "a power electronic based system and other <u>static equipment</u> that provide control of one or more AC transmission system parameters to enhance controllability and increase power transfer capability"

LS ELECTRIC FACTS solution has SVC and STATCOM

^{*} MSC: Mechanical Switched Capacitor * MSR: Mechanical Switched Reactor * SVC: Static Var Compensator * STATCOM: Static synchronous Compensator * TCSC: Thyristor Controlled Series Compensator * SSSR: Static Synchronous Series Compensator * U/IPFC: Unified/Interline Power Flow Controller

2. Applications of FACTS (SVC, STATCOM)

Main Purpose

- ✓ Over/Under voltage suppression
- ✓ Balancing of Reactive power
- ✓ Stabilization of system voltage

Applications

- Regulate Voltage
- Increase Power Transfer Capacity
- Increase AC Network Reliability
- Improve transient & Steady-State Stability
- Decrease Power Oscillation
- Strike a Balance of Three-Phase Voltage
- Compensate Reactive Power
- Suppress Flicker
- Support Renewable energy

3. LS ELECTRIC FACTS Solution

FACTS solution

- System Engineering
- Provides an optimized solution
- Main Equipment manufacture(Tr., Valve, Control and Protection etc.)

^{*} MMC: Modular Multi-level Converter, TCR: Thyristor Controlled Reactor, TSC: Thyristor Switched Capacitor

Compact FACTS solution

- System Engineering
- Provides an optimized solution
- Main Equipment manufacture(Tr., Valve, Control and Protection etc.)

^{*} MMC: Modular Multi-level Converter,

^{*} VSC : Voltage Source Converter

SVC solution (Building type)

• PJT : Shin-Jaechun S/S SVC Project

• Capacity: -225~+675Mvar

Customer: KEPCOCompletion: 2019. 06Remark: Voltage Control

MMC STATCOM solution (Building type)

LSELECTRIC

PJT : Godeok S/S STATCOM Project

Capacity: ±300Mvar
Customer: KEPCO
Completion: 2020. 07
Remark: Voltage Control

Compact FACTS Solution (container type)

LS ELECTRIC

PNL FACTS Solution (panel type)

LS ELECTRIC

■ Scalable Module Applying 125kvar PEBB

- Automatically continued operation, after withdrawing the failed PEBB, when a 125kvar PEBB fails.
- The block type enables quick module replacement and maintenance.
- 97% or higher efficiency → Minimized loss.
- Different panel configurations according to the capacity.

2Mvar / 3830 x 880 x 2205

Optimal FACTS Solution According to the Applied System Characteristics

- Factory power quality improvement, at the power system's interface bus layer
- High-voltage and large-capacity system suitable for building and container types
- Applicable to SVC and STATCOM systems
- Compensation for numerous Mvar
- Prevention of the effects of system (lead line) voltage fluctuations
- Meeting the criteria for power factor, harmonics, and flicker
- Possible installation of the highest-voltage bus layer inside the factory
- Suitable compensation for 100Mvar or less, capacity
- Applicable to building, container, and panel types
- Applicable to SVC and STATCOM systems
- Prevention of the effects of system voltage fluctuations
- Meeting the criteria for power factor, harmonics, and flicker

- Suitable for panel-type STATCOM systems
- Directly connectable to low-voltage load buses of 380V and 440V
- Connectable to up to 12kV when using a transformer
- Compensation for up to 24Mvar through the parallel connection of 12 units
- Reduced impact (voltage, power factor, harmonics, etc.) terminal load

4. References

References

- Reactive power compensation facility supply for power stabilization in the private sector, through a consortium with overseas manufacturers
- Compensation facility supply for large capacity reactive power by securing internal FACTS & HVDC know-how and product development (SVC and STATCOM)

No.	Customer	System Voltage	Capacity	Туре	USE	Completion	Manufacturer
1	SeahBesteel	22kV	±90Mvar	TCR, FC	Compensation of Fast Reactive Load Variations	2005	Consortium (LSIS + TMEIC)
2	POSCOSS	33kV	±125Mvar	TCR, FC	Compensation of Fast Reactive Load Variations	2006	Consortium (LSIS + ABB)
3	Hwan-young	22kV	±80Mvar	TCR, FC	Compensation of Fast Reactive Load Variations	2007	Consortium (LSIS + TMEIC)
4	KOSCO	22kV	±120Mvar	TCR, FC	Compensation of Fast Reactive Load Variations	2008	Consortium (LSIS + ABB)
5	KEPCO	154kV	±200Mvar	TCR, TSC	Voltage Control	2008	Consortium (LSIS + TMEIC)
6	ASIASS	22kV	±80Mvar	STATCOM	Compensation of Fast Reactive Load Variations	2009	Consortium (LSIS + ABB)
7	KEPCO	154kVac / 80kVdc	60MW	HVDC (Pilot)	Transmission	2014	LSIS
8	LS-Nikko	22kV	±100Mvar	TCR, TSC	Power Factor Voltage Control	2015	LSIS
9	SeahBesteel	22kV	±90Mvar	TCR, HF	Compensation of Fast Reactive Load Variations	2016	LSIS
10	KEPCO	345kV	-225 / +675Mvar	TCR, TSC, HF	Voltage Control	2019. 4	LSIS
11	KEPCO	345kV	±300Mvar	MMC STATCOM	Voltage Control	2020. 5	LS ELECTRIC

aguyie dankon da

Beolyαριστώς and state an

paldies hvala kiitos naissy sigobrigado dzięki kinks go sigobrigado dzięki kinks go sigos sigos