APLIKASI TERMODINAMIKA PADA PROSES ALIR

PROSES ALIR DALAM TANGKI

- unsteady state (transient) : keadaan berubah terhadap waktu
- steady state = tunak : keadaan tidak berubah terhadap waktu

Open systems

- Mass balance for open systems:

$$
\frac{d m_{c v}}{d t}=-\Delta(\dot{m})_{f s}=-\Delta(\rho u A)_{f s} \quad \Delta(\dot{m})_{f s}=\dot{m}_{3}-\dot{m}_{1}-\dot{m}_{2}
$$

- energy balance for open systems:

$$
\begin{gathered}
\frac{d(m U)_{c v}}{d t}=-\Delta\left[\left(U+\frac{1}{2} u^{2}+z g\right) \dot{m}\right]_{f s}+\dot{Q}+\text { work rate } \\
\downarrow \begin{array}{c}
\downarrow \\
\text { PV work }+ \text { shaft work }+\ldots \text { etc. } \\
-\Delta[(P V) \dot{m}]_{f s}+\dot{W}
\end{array} \\
\frac{d(m U)_{c v}}{d t}=-\Delta\left[\left(U+\frac{1}{2} u^{2}+z g\right) \dot{m}\right]_{f s}+\dot{Q}-\Delta[(P V) \dot{m}]_{f s}+\dot{W}
\end{gathered}
$$

$$
\begin{gathered}
\frac{d(m U)_{c v}}{d t}+\Delta\left[\left(H+\frac{1}{2} u^{2}+z g\right) \dot{m}\right]_{f s}=\dot{Q}+\dot{W} \\
\downarrow \\
\frac{d(m U)_{c v}}{d t}+\Delta(H \dot{m})_{f s}=\dot{Q}+\dot{W}
\end{gathered}
$$

Example :
An evacuated tank is filled with gas from a constant-pressure line. What is the relation between the enthalpy of the gas in the entrance line and the internal energy of the gas in the tank? Neglect heat transfer between the gas and the tank.

No expansion work
$\frac{d(m U)_{c v}}{d t}+\Delta(H \dot{m})_{f s}=\dot{Q}+\dot{W} \xrightarrow{\text { No stirring work }} \xrightarrow{\text { No shaft work }}$

$$
\begin{aligned}
& \frac{\frac{d(m U)_{c v}}{d t}-H^{\prime} \dot{m}^{\prime}=0}{} \\
& \left\lvert\, \frac{d m_{c v}}{d t}=-\Delta(\dot{m})_{f s}=\dot{m}^{\prime}\right. \\
& \hline
\end{aligned}
$$

$\begin{array}{ll}\Delta(m U)_{c v}-H^{\prime} \Delta m_{c v}=0 & \frac{d(m U)_{c v}}{d t}-H^{\prime} \frac{d m_{c v}}{d t}=0 \\ \left(m_{2} U_{2}\right)-\left(m_{1}\left(U_{1}\right)-H^{\prime}\left(m_{2}-\eta 1_{1}\right)=0\right. & U_{2}=H^{\prime}\end{array}$

Example :

An insulated, electrically heated tank for hot water contains 190 kg of liquid water at $60^{\circ} \mathrm{C}$ when a power outage occurs. If water is withdrawn from the tank at a steady rate of $0.2 \mathrm{~kg} / \mathrm{s}$, how long will it take for the temperature of the water in the tank to drop from 60 to $35^{\circ} \mathrm{C}$? Assume that cold water enters the tank at $10^{\circ} \mathrm{C}$ and that heat losses from the tank are negligible. For liquid water let $\mathrm{Cv}=\mathrm{Cp}=\mathrm{C}$, independent of T and P .

$$
\begin{aligned}
& \frac{d(m U)_{c v}}{d t}+\Delta(H \dot{m})_{f s}=\dot{Q}+\dot{W} \longrightarrow m \frac{d U}{d t}+\dot{m}\left(H-H_{1}\right)=0 \\
& \begin{array}{c}
\frac{d U}{d t}=C \frac{d T}{d t} d\left(H-H_{1}\right)=C\left(T-T_{1}\right) \\
d t=-\frac{m}{\dot{m}} \frac{d T}{T-T_{1}}
\end{array} \\
& t=-\frac{m}{\dot{m}} \ln \left(\frac{T-T_{1}}{T_{0}-T_{1}}\right) \\
& t=-\frac{190}{0.2} \ln \left(\frac{35-10}{60-10}\right)=658.5 \mathrm{~s}
\end{aligned}
$$

Example :

A $1.5 \mathrm{~m}^{3}$ tank contains 500 kg of liquid water in equilibrium with pure water vapor, which fills the remainder of the tank. The temperature and pressure are $100^{\circ} \mathrm{C}$, and 101.33 kPa . From a water line at a constant temperature of $70^{\circ} \mathrm{C}$ and a constant pressure somewhat above $101.33 \mathrm{kPa}, 750 \mathrm{~kg}$ of liquid is bled into the tank. If the temperature and pressure in the tank are not to change as a result of the process, how much energy as heat must be transferred to the tank?

Energy balance:

At the end of the process, the tank still contains saturated liquid and saturated vapor in equilibrium at $100^{\circ} \mathrm{C}$ and 101.33 kPa .
$Q=\left(m_{2} H_{2}\right)_{c v}-\left(m_{1} H_{1}\right)_{c v}-H^{\prime} \Delta m_{c v}$

$$
\begin{array}{|l|}
\hline H^{\prime}=293.0 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
\hline \mathrm{H}_{c v}^{l}=419.1 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
\hline \text { saturated liquid } @ 70^{\circ} \mathrm{C} \\
\hline H_{c v}^{v}=2676.0 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
\text { saturated liquid } @ 100^{\circ} \mathrm{C} \\
\hline
\end{array}
$$

From the steam table, the specific volumes of saturated liquid and saturated vapor at $100^{\circ} \mathrm{C}$ are 0.001044 and $1.673 \mathrm{~m}^{3} / \mathrm{kg}$, respectively.

$$
\left(m_{1} H_{1}\right)_{c v}=m_{1}^{l} H_{1}^{l}+m_{1}^{v} H_{1}^{v}=500(419.1)+\frac{1.5-(500)(0.001044)}{1.673}(2676.0)=211616 \mathrm{~kJ}
$$

$$
\begin{gathered}
m_{2}=500+\frac{1.5-(500)(0.001044)}{1.673}+750=m_{2}^{l}+m_{2}^{v} 1.5=1.673 m_{2}^{v}+0.001044 m_{2}^{l} \\
\downarrow \\
\left(m_{2} H_{2}\right)_{c v}=m_{2}^{l} H_{2}^{l}+m_{2}^{v} H_{2}^{v}=524458 \mathrm{~kJ}
\end{gathered}
$$

$$
Q=\left(m_{2} H_{2}\right)_{c v}-\left(m_{1} H_{1}\right)_{c v}-H^{\prime} \Delta m_{c v}=524458-211616-(750)(293.0)=93092 \mathrm{~kJ}
$$

EXERCISE

SVNA $6^{\text {th }}$ edition
Problem no. 6.76

HOMEWORK

SVNA $6^{\text {th }}$ edition
Problems
No. 6.71
6.72

