
Chapter 3

Brute Force

Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

3-1Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Brute Force

A straightforward approach, usually based directly on the
problem’s statement and definitions of the concepts involved

Examples:

1. Computing an (a > 0, n a nonnegative integer)

2. Computing n!

3. Multiplying two matrices

4. Searching for a key of a given value in a list

3-2Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Brute-Force Sorting Algorithm

Selection Sort Scan the array to find its smallest element and
swap it with the first element. Then, starting with the second
element, scan the elements to the right of it to find the
smallest among them and swap it with the second elements.
Generally, on pass i (0  i  n-2), find the smallest element in
A[i..n-1] and swap it with A[i]:

A[0]  . . .  A[i-1] | A[i], . . . , A[min], . . ., A[n-1]

in their final positions

Example: 7 3 2 5

3-3Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Analysis of Selection Sort

Time efficiency:

Space efficiency:

Stability:

Θ(n^2)

Θ(1), so in place

yes

3-4Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Brute-Force String Matching

� pattern: a string of m characters to search for

� text: a (longer) string of n characters to search in

� problem: find a substring in the text that matches the pattern

Brute-force algorithm

Step 1 Align pattern at beginning of text

Step 2 Moving from left to right, compare each character of
pattern to the corresponding character in text until
– all characters are found to match (successful search); or

– a mismatch is detected

Step 3 While pattern is not found and the text is not yet
exhausted, realign pattern one position to the right and
repeat Step 2

3-5Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Examples of Brute-Force String Matching

1. Pattern: 001011
Text: 10010101101001100101111010

2. Pattern: happy
Text: It is never too late to have a happy
childhood.

3-6Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Pseudocode and Efficiency

Time efficiency: Θ(mn) comparisons (in the worst case)

Why?

3-7Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Brute-Force Polynomial Evaluation

Problem: Find the value of polynomial

p(x) = anxn + an-1x
n-1 +… + a1x

1 + a0

at a point x = x0

Brute-force algorithm

Efficiency:

p 0.0
for i n downto 0 do
power 1

for j 1 to i do //compute xi

power power  x
p p + a[i]  power

return p

0in i = Θ(n^2) multiplications

3-8Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Polynomial Evaluation: Improvement

We can do better by evaluating from right to left:

Better brute-force algorithm

Efficiency:

Horner’s Rule is another linear time method.

p a[0]
power 1
for i 1 to n do

power power  x
p p + a[i]  power

return p

Θ(n) multiplications

3-9Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Closest-Pair Problem

Find the two closest points in a set of n points (in the two-
dimensional Cartesian plane).

Brute-force algorithm

Compute the distance between every pair of distinct points

and return the indexes of the points for which the distance
is the smallest.

3-10Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Closest-Pair Brute-Force Algorithm (cont.)

Efficiency:

How to make it faster?

Θ(n^2) multiplications (or sqrt)

Using divide-and-conquer!

3-11Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Brute-Force Strengths and Weaknesses

� Strengths

• wide applicability

• simplicity

• yields reasonable algorithms for some important problems
(e.g., matrix multiplication, sorting, searching, string
matching)

� Weaknesses

• rarely yields efficient algorithms

• some brute-force algorithms are unacceptably slow

• not as constructive as some other design techniques

3-12Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Exhaustive Search

A brute force solution to a problem involving search for an
element with a special property, usually among combinatorial
objects such as permutations, combinations, or subsets of a
set.

Method:

• generate a list of all potential solutions to the problem in a
systematic manner (see algorithms in Sec. 5.4)

• evaluate potential solutions one by one, disqualifying
infeasible ones and, for an optimization problem, keeping
track of the best one found so far

• when search ends, announce the solution(s) found

3-13Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Example 1: Traveling Salesman Problem

� Given n cities with known distances between each pair, find
the shortest tour that passes through all the cities exactly
once before returning to the starting city

� Alternatively: Find shortest Hamiltonian circuit in a
weighted connected graph

� Example:

a b

c d

8

2

7

5 3
4

How do we represent a solution (Hamiltonian circuit)?

3-14Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

TSP by Exhaustive Search

Tour Cost

a→b→c→d→a 2+3+7+5 = 17

a→b→d→c→a 2+4+7+8 = 21

a→c→b→d→a 8+3+4+5 = 20

a→c→d→b→a 8+7+4+2 = 21

a→d→b→c→a 5+4+3+8 = 20

a→d→c→b→a 5+7+3+2 = 17

Efficiency: Θ((n-1)!)

Chapter 5 discusses how to generate permutations fast.

3-15Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Example 2: Knapsack Problem

Given n items:

• weights: w1 w2 … wn

• values: v1 v2 … vn

• a knapsack of capacity W

Find most valuable subset of the items that fit into the knapsack

Example: Knapsack capacity W=16

item weight value

1 2 $20

2 5 $30

3 10 $50

4 5 $10

3-16Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Knapsack Problem by Exhaustive Search

Subset Total weight Total value
{1} 2 $20
{2} 5 $30
{3} 10 $50
{4} 5 $10

{1,2} 7 $50
{1,3} 12 $70
{1,4} 7 $30
{2,3} 15 $80
{2,4} 10 $40
{3,4} 15 $60

{1,2,3} 17 not feasible
{1,2,4} 12 $60
{1,3,4} 17 not feasible
{2,3,4} 20 not feasible

{1,2,3,4} 22 not feasible Efficiency: Θ(2^n)
Each subset can be represented by a binary string (bit vector, Ch 5).

3-17Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Example 3: The Assignment Problem

There are n people who need to be assigned to n jobs, one
person per job. The cost of assigning person i to job j is C[i,j].
Find an assignment that minimizes the total cost.

Job 0 Job 1 Job 2 Job 3

Person 0 9 2 7 8

Person 1 6 4 3 7

Person 2 5 8 1 8

Person 3 7 6 9 4

Algorithmic Plan: Generate all legitimate assignments, compute
their costs, and select the cheapest one.

How many assignments are there?

Pose the problem as one about a cost matrix:

n!
cycle cover
in a graph

3-18Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

9 2 7 8

6 4 3 7

5 8 1 8

7 6 9 4

Assignment (col.#s) Total Cost

1, 2, 3, 4 9+4+1+4=18

1, 2, 4, 3 9+4+8+9=30

1, 3, 2, 4 9+3+8+4=24

1, 3, 4, 2 9+3+8+6=26

1, 4, 2, 3 9+7+8+9=33

1, 4, 3, 2 9+7+1+6=23

etc.

(For this particular instance, the optimal assignment can be found by
exploiting the specific features of the number given. It is:)

Assignment Problem by Exhaustive Search

C =

2,1,3,4

3-19Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Final Comments on Exhaustive Search

� Exhaustive-search algorithms run in a realistic amount of
time only on very small instances

� In some cases, there are much better alternatives!

• Euler circuits

• shortest paths

• minimum spanning tree

• assignment problem

� In many cases, exhaustive search or its variation is the only
known way to get exact solution

The Hungarian method
runs in O(n^3) time.

