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Gauss’s Law

CHAPTE R OUTL I N E

24.1 Electric Flux

24.2 Gauss’s Law

24.3 Application of Gauss’s Law to
Various Charge Distributions

24.4 Conductors in Electrostatic
Equilibrium

24.5 Formal Derivation of Gauss’s
Law

! In a table-top plasma ball, the colorful lines emanating from the sphere give evidence of
strong electric fields. Using Gauss’s law, we show in this chapter that the electric field
surrounding a charged sphere is identical to that of a point charge. (Getty Images)
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In the preceding chapter we showed how to calculate the electric field generated by
a given charge distribution. In this chapter, we describe Gauss’s law and an alterna-
tive procedure for calculating electric fields. The law is based on the fact that the
fundamental electrostatic force between point charges exhibits an inverse-square
behavior. Although a consequence of Coulomb’s law, Gauss’s law is more convenient
for calculating the electric fields of highly symmetric charge distributions and
makes possible useful qualitative reasoning when dealing with complicated
problems.

24.1 Electric Flux

The concept of electric field lines was described qualitatively in Chapter 23. We now
treat electric field lines in a more quantitative way.

Consider an electric field that is uniform in both magnitude and direction, as
shown in Figure 24.1. The field lines penetrate a rectangular surface of area A, whose
plane is oriented perpendicular to the field. Recall from Section 23.6 that the number
of lines per unit area (in other words, the line density) is proportional to the magnitude
of the electric field. Therefore, the total number of lines penetrating the surface is
proportional to the product EA. This product of the magnitude of the electric field E
and surface area A perpendicular to the field is called the electric flux !E (uppercase
Greek phi):

(24.1)

From the SI units of E and A, we see that !E has units of newton-meters squared per
coulomb (N " m2/C.) Electric flux is proportional to the number of electric field
lines penetrating some surface.

!E # E A

Example 24.1 Electric Flux Through a Sphere

What is the electric flux through a sphere that has a
radius of 1.00 m and carries a charge of $1.00 %C at its
center?

Solution The magnitude of the electric field 1.00 m
from this charge is found using Equation 23.9:

# 8.99 & 103 N/C

E # ke   
q
r  

2  # (8.99 & 109 N"m2/C2) 
1.00 & 10'6 C

(1.00 m)2

The field points radially outward and is therefore every-
where perpendicular to the surface of the sphere. The flux
through the sphere (whose surface area A # 4(r 2 #
12.6 m2) is thus

# 1.13 & 105 N"m2/C

!E # EA # (8.99 & 103 N/C)(12.6 m2)

Figure 24.1 Field lines
representing a uniform electric
field penetrating a plane of area A
perpendicular to the field. The
electric flux !E through this area is
equal to EA.

Area = A

E



If the surface under consideration is not perpendicular to the field, the flux
through it must be less than that given by Equation 24.1. We can understand this by
considering Figure 24.2, where the normal to the surface of area A is at an angle ) to
the uniform electric field. Note that the number of lines that cross this area A is equal
to the number that cross the area A*, which is a projection of area A onto a plane ori-
ented perpendicular to the field. From Figure 24.2 we see that the two areas are
related by A* # A cos ). Because the flux through A equals the flux through A*, we
conclude that the flux through A is

(24.2)

From this result, we see that the flux through a surface of fixed area A has a maximum
value EA when the surface is perpendicular to the field (when the normal to the
surface is parallel to the field, that is, ) # 0° in Figure 24.2); the flux is zero when
the surface is parallel to the field (when the normal to the surface is perpendicular to
the field, that is, ) # 90°).

We assumed a uniform electric field in the preceding discussion. In more general
situations, the electric field may vary over a surface. Therefore, our definition of flux
given by Equation 24.2 has meaning only over a small element of area. Consider a gen-
eral surface divided up into a large number of small elements, each of area +A. The
variation in the electric field over one element can be neglected if the element is suffi-
ciently small. It is convenient to define a vector +Ai whose magnitude represents the
area of the i th element of the surface and whose direction is defined to be perpendicu-
lar to the surface element, as shown in Figure 24.3. The electric field Ei at the location
of this element makes an angle )i with the vector +Ai. The electric flux +!E through
this element is

where we have used the definition of the scalar product (or dot product; see Chapter
7) of two vectors (A ! B # AB cos )). By summing the contributions of all elements, we
obtain the total flux through the surface. If we let the area of each element approach
zero, then the number of elements approaches infinity and the sum is replaced by an
integral. Therefore, the general definition of electric flux is1

(24.3)

Equation 24.3 is a surface integral, which means it must be evaluated over the surface
in question. In general, the value of !E depends both on the field pattern and on the
surface.

!E # lim
+Ai : 0 

! Ei "+ Ai # "
surface

E"d A

+!E # Ei  +Ai cos )i # Ei "+ Ai

!E # E A* # E A cos )
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Figure 24.2 Field lines representing a uniform electric field penetrating an area A that
is at an angle ) to the field. Because the number of lines that go through the area A* is
the same as the number that go through A, the flux through A* is equal to the flux
through A and is given by !E # EA cos ).

A

θ

θ

A′ = A cos

E

Normal

θ

Figure 24.3 A small element of
surface area +Ai . The electric field
makes an angle )i with the vector
+A i, defined as being normal to
the surface element, and the flux
through the element is equal to
Ei +Ai cos )i .

∆A i

E i
θi

1 Drawings with field lines have their inaccuracies because a limited number of field lines are
typically drawn in a diagram. Consequently, a small area element drawn on a diagram (depending on
its location) may happen to have too few field lines penetrating it to represent the flux accurately. We
stress that the basic definition of electric flux is Equation 24.3. The use of lines is only an aid for
visualizing the concept.

Definition of electric flux



We are often interested in evaluating the flux through a closed surface, which is
defined as one that divides space into an inside and an outside region, so that one
cannot move from one region to the other without crossing the surface. The surface of
a sphere, for example, is a closed surface.

Consider the closed surface in Figure 24.4. The vectors +A i point in different
directions for the various surface elements, but at each point they are normal to the
surface and, by convention, always point outward. At the element labeled !, the field
lines are crossing the surface from the inside to the outside and ) , 90°; hence, the
flux +!E # E " +A1 through this element is positive. For element ", the field lines
graze the surface (perpendicular to the vector +A 2); thus, ) # 90° and the flux is zero.
For elements such as #, where the field lines are crossing the surface from outside to
inside, 180° - ) - 90° and the flux is negative because cos ) is negative. The net flux
through the surface is proportional to the net number of lines leaving the surface,
where the net number means the number leaving the surface minus the number entering the
surface. If more lines are leaving than entering, the net flux is positive. If more lines are
entering than leaving, the net flux is negative. Using the symbol # to represent an
integral over a closed surface, we can write the net flux !E through a closed surface as

(24.4)

where En represents the component of the electric field normal to the surface. If the
field is normal to the surface at each point and constant in magnitude, the calculation
is straightforward, as it was in Example 24.1. Example 24.2 also illustrates this point.

!E # $ E"d A # $ En dA
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Quick Quiz 24.1 Suppose the radius of the sphere in Example 24.1 is
changed to 0.500 m. What happens to the flux through the sphere and the magnitude
of the electric field at the surface of the sphere? (a) The flux and field both increase.
(b) The flux and field both decrease. (c) The flux increases and the field decreases.
(d) The flux decreases and the field increases. (e) The flux remains the same and the
field increases. (f) The flux decreases and the field remains the same.

Active Figure 24.4 A closed
surface in an electric field. The area
vectors +A i are, by convention,
normal to the surface and point
outward. The flux through an area
element can be positive (element
!), zero (element "), or negative
(element #).

At the Active Figures link
at http://www.pse6.com, you
can select any segment on the
surface and see the
relationship between the
electric field vector E and the
area vector "Ai .

∆A1

∆A3

∆A2 !
"

#

E

#
!

"

E
θ

Eθ

En

En

Karl Friedrich Gauss
German mathematician and
astronomer (1777–1855)

Gauss received a doctoral degree
in mathematics from the University
of Helmstedt in 1799. In addition
to his work in electromagnetism,
he made contributions to
mathematics and science in
number theory, statistics, non-
Euclidean geometry, and
cometary orbital mechanics. He
was a founder of the German
Magnetic Union, which studies
the Earth’s magnetic field on a
continual basis.
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24.2 Gauss’s Law

In this section we describe a general relationship between the net electric flux through
a closed surface (often called a gaussian surface) and the charge enclosed by the
surface. This relationship, known as Gauss’s law, is of fundamental importance in the
study of electric fields.

Let us again consider a positive point charge q located at the center of a sphere of
radius r, as shown in Figure 24.6. From Equation 23.9 we know that the magnitude
of the electric field everywhere on the surface of the sphere is E # keq/r 2. As noted in
Example 24.1, the field lines are directed radially outward and hence are perpendicu-
lar to the surface at every point on the surface. That is, at each surface point, E is par-
allel to the vector +Ai representing a local element of area +Ai surrounding the
surface point. Therefore,

and from Equation 24.4 we find that the net flux through the gaussian surface is

!E # $  E"d A # $  E   dA # E  $ dA

E"+ Ai # E  + Ai

Example 24.2 Flux Through a Cube

Consider a uniform electric field E oriented in the x direc-
tion. Find the net electric flux through the surface of a cube
of edge length !, oriented as shown in Figure 24.5.

Solution The net flux is the sum of the fluxes through all
faces of the cube. First, note that the flux through four of

the faces (#, $, and the unnumbered ones) is zero because
E is perpendicular to d A on these faces.

The net flux through faces ! and " is

For face !, E is constant and directed inward but dA1 is
directed outward () # 180°); thus, the flux through this
face is

because the area of each face is A # !2.
For face ", E is constant and outward and in the same

direction as dA2 () # 0°); hence, the flux through this face is

Therefore, the net flux over all six faces is

0!E # 'E !2 $ E !2 $ 0 $ 0 $ 0 $ 0 #

"
2
 E"d A # "

2
 E (cos  0.) dA # E "

2
 dA # $E A # E !2

" 
1
E"d A # "

1
 E (cos 180.) d A # 'E "

1
 d A # 'E A # 'E !2

!E # "
1
 E"d A $ "

2
 E"d A

Quick Quiz 24.2 In a charge-free region of space, a closed container is
placed in an electric field. A requirement for the total electric flux through the surface
of the container to be zero is that (a) the field must be uniform, (b) the container
must be symmetric, (c) the container must be oriented in a certain way, or (d) the
requirement does not exist— the total electric flux is zero no matter what.

Figure 24.5 (Example 24.2) A closed surface in the shape of a
cube in a uniform electric field oriented parallel to the x axis.
Side $ is the bottom of the cube, and side ! is opposite side ".

y

z !

!

!
x

E

dA2

dA1

dA3

!

"

#

$ dA4

Figure 24.6 A spherical gaussian
surface of radius r surrounding a
point charge q. When the charge is
at the center of the sphere, the
electric field is everywhere normal
to the surface and constant in
magnitude.

Gaussian
surface

r

q

dA

E
+ i
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where we have moved E outside of the integral because, by symmetry, E is constant over
the surface and given by E # keq/r 2. Furthermore, because the surface is spherical,
# dA # A # 4(r 2. Hence, the net flux through the gaussian surface is

Recalling from Section 23.3 that ke # 1/4(/0, we can write this equation in the form

(24.5)

We can verify that this expression for the net flux gives the same result as Example
24.1: !E # (1.00 & 10'6 C)/(8.85 & 10'12 C2/N " m2) # 1.13 & 105 N " m2/C.

Note from Equation 24.5 that the net flux through the spherical surface is propor-
tional to the charge inside. The flux is independent of the radius r because the area of
the spherical surface is proportional to r 2, whereas the electric field is proportional to
1/r 2. Thus, in the product of area and electric field, the dependence on r cancels.

Now consider several closed surfaces surrounding a charge q, as shown in Figure
24.7. Surface S1 is spherical, but surfaces S2 and S3 are not. From Equation 24.5, the
flux that passes through S1 has the value q//0. As we discussed in the preceding section,
flux is proportional to the number of electric field lines passing through a surface. The
construction shown in Figure 24.7 shows that the number of lines through S1 is equal to
the number of lines through the nonspherical surfaces S2 and S3. Therefore, we
conclude that the net flux through any closed surface surrounding a point charge
q is given by q/#0 and is independent of the shape of that surface.

Now consider a point charge located outside a closed surface of arbitrary shape, as
shown in Figure 24.8. As you can see from this construction, any electric field line that
enters the surface leaves the surface at another point. The number of electric field
lines entering the surface equals the number leaving the surface. Therefore, we
conclude that the net electric flux through a closed surface that surrounds no
charge is zero. If we apply this result to Example 24.2, we can easily see that the net
flux through the cube is zero because there is no charge inside the cube.

Let us extend these arguments to two generalized cases: (1) that of many point
charges and (2) that of a continuous distribution of charge. We once again use the
superposition principle, which states that the electric field due to many charges is
the vector sum of the electric fields produced by the individual charges.
Therefore, we can express the flux through any closed surface as

where E is the total electric field at any point on the surface produced by the vector
addition of the electric fields at that point due to the individual charges. Consider the
system of charges shown in Figure 24.9. The surface S surrounds only one charge, q1;
hence, the net flux through S is q1//0. The flux through S due to charges q2 , q3 , and
q4 outside it is zero because each electric field line that enters S at one point leaves it at

$ E"d A # $ (E1 $ E2 $ " " ")"d A

!E #
q
/0

!E #
ke q
r  

2  (4(r 
2) # 4(ke q

Figure 24.7 Closed surfaces of various shapes surrounding a
charge q. The net electric flux is the same through all
surfaces.

S3

S2

S1

q

Figure 24.8 A point charge
located outside a closed surface.
The number of lines entering the
surface equals the number leaving
the surface.

q

Active Figure 24.9 The net
electric flux through any closed
surface depends only on the
charge inside that surface. The net
flux through surface S is q1//0,
the net flux through surface S* is
(q 2 $ q3)//0, and the net flux
through surface S 0 is zero. Charge
q4 does not contribute to the flux
through any surface because it is
outside all surfaces.

At the Active Figures link
at http://www.pse6.com, you
can change the size and shape
of a closed surface and see the
effect on the electric flux of
surrounding combinations of
charge with that surface.

S

q1

q2

q3 S ′

S ′′

q4
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Quick Quiz 24.3 If the net flux through a gaussian surface is zero, the follow-
ing four statements could be true. Which of the statements must be true? (a) There are no
charges inside the surface. (b) The net charge inside the surface is zero. (c) The
electric field is zero everywhere on the surface. (d) The number of electric field lines
entering the surface equals the number leaving the surface.

Quick Quiz 24.4 Consider the charge distribution shown in Figure 24.9. The
charges contributing to the total electric flux through surface S * are (a) q1 only (b) q4
only (c) q2 and q3 (d) all four charges (e) none of the charges.

Quick Quiz 24.5 Again consider the charge distribution shown in Figure
24.9. The charges contributing to the total electric field at a chosen point on the
surface S * are (a) q1 only (b) q4 only (c) q2 and q3 (d) all four charges (e) none of the
charges.

Conceptual Example 24.3 Flux Due to a Point Charge

A spherical gaussian surface surrounds a point charge q.
Describe what happens to the total flux through the
surface if 

(A) the charge is tripled, 

(B) the radius of the sphere is doubled, 

(C) the surface is changed to a cube, and 

(D) the charge is moved to another location inside the
surface.

Solution
(A) The flux through the surface is tripled because flux
is proportional to the amount of charge inside the surface.

(B) The flux does not change because all electric field lines
from the charge pass through the sphere, regardless of its
radius.

(C) The flux does not change when the shape of the
gaussian surface changes because all electric field lines
from the charge pass through the surface, regardless of its
shape.

(D) The flux does not change when the charge is moved to
another location inside that surface because Gauss’s law
refers to the total charge enclosed, regardless of where the
charge is located inside the surface.

another. The surface S * surrounds charges q2 and q3; hence, the net flux through it is
(q2 $ q3)//0. Finally, the net flux through surface S 0 is zero because there is no charge
inside this surface. That is, all the electric field lines that enter S 0 at one point leave at
another. Notice that charge q4 does not contribute to the net flux through any of the
surfaces because it is outside all of the surfaces.

Gauss’s law, which is a generalization of what we have just described, states that
the net flux through any closed surface is

(24.6)

where q in represents the net charge inside the surface and E represents the electric
field at any point on the surface.

A formal proof of Gauss’s law is presented in Section 24.5. When using Equation
24.6, you should note that although the charge q in is the net charge inside the gaussian
surface, E represents the total electric field, which includes contributions from charges
both inside and outside the surface.

In principle, Gauss’s law can be solved for E to determine the electric field due to a
system of charges or a continuous distribution of charge. In practice, however, this type of
solution is applicable only in a limited number of highly symmetric situations. In the next
section we use Gauss’s law to evaluate the electric field for charge distributions that have
spherical, cylindrical, or planar symmetry. If one chooses the gaussian surface surround-
ing the charge distribution carefully, the integral in Equation 24.6 can be simplified.

!E # $ E"d A #
q in

/0

! PITFALL PREVENTION
24.1 Zero Flux is not Zero

Field
We see two situations in which
there is zero flux through a
closed surface—either there are
no charged particles enclosed by
the surface or there are charged
particles enclosed, but the net
charge inside the surface is zero.
For either situation, it is incorrect
to conclude that the electric field
on the surface is zero. Gauss’s law
states that the electric flux is pro-
portional to the enclosed charge,
not the electric field.

Gauss’s law
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Example 24.4 The Electric Field Due to a Point Charge

Starting with Gauss’s law, calculate the electric field due to
an isolated point charge q.

Solution A single charge represents the simplest possible
charge distribution, and we use this familiar case to show
how to solve for the electric field with Gauss’s law. Figure
24.10 and our discussion of the electric field due to a point
charge in Chapter 23 help us to conceptualize the physical
situation. Because the space around the single charge has
spherical symmetry, we categorize this problem as one in
which there is enough symmetry to apply Gauss’s law. To
analyze any Gauss’s law problem, we consider the details of
the electric field and choose a gaussian surface that satisfies
some or all of the conditions that we have listed above. We
choose a spherical gaussian surface of radius r centered on
the point charge, as shown in Figure 24.10. The electric field
due to a positive point charge is directed radially outward by

symmetry and is therefore normal to the surface at every
point. Thus, as in condition (2), E is parallel to dA at each
point. Therefore, E " dA # E dA and Gauss’s law gives

By symmetry, E is constant everywhere on the surface, which
satisfies condition (1), so it can be removed from the inte-
gral. Therefore,

where we have used the fact that the surface area of a
sphere is 4(r 2. Now, we solve for the electric field:

To finalize this problem, note that this is the familiar
electric field due to a point charge that we developed from
Coulomb’s law in Chapter 23.

What If? What if the charge in Figure 24.10 were not at the
center of the spherical gaussian surface?

Answer In this case, while Gauss’s law would still be valid,
the situation would not possess enough symmetry to evalu-
ate the electric field. Because the charge is not at the center,
the magnitude of E would vary over the surface of the
sphere and the vector E would not be everywhere perpen-
dicular to the surface.

ke   
q

r  
2E #

q
4(/0r 

2 #

$  E  dA # E  $ d A # E (4( r  
2) #

q 

/0

!E # $  E"d A # $  E  dA #
q 

/0

24.3 Application of Gauss’s Law to Various 
Charge Distributions

As mentioned earlier, Gauss’s law is useful in determining electric fields when the
charge distribution is characterized by a high degree of symmetry. The following exam-
ples demonstrate ways of choosing the gaussian surface over which the surface integral
given by Equation 24.6 can be simplified and the electric field determined. In
choosing the surface, we should always take advantage of the symmetry of the charge
distribution so that we can remove E from the integral and solve for it. The goal in this
type of calculation is to determine a surface that satisfies one or more of the following
conditions:

1. The value of the electric field can be argued by symmetry to be constant over the
surface.

2. The dot product in Equation 24.6 can be expressed as a simple algebraic product
E dA because E and d A are parallel.

3. The dot product in Equation 24.6 is zero because E and d A are perpendicular.

4. The field can be argued to be zero over the surface.

All four of these conditions are used in examples throughout the remainder of this
chapter.

! PITFALL PREVENTION
24.2 Gaussian Surfaces

are not Real
A gaussian surface is an imaginary
surface that you choose to satisfy
the conditions listed here. It does
not have to coincide with a physi-
cal surface in the situation.

Figure 24.10 (Example 24.4) The point charge q is at the
center of the spherical gaussian surface, and E is parallel to d A
at every point on the surface.

Gaussian
surface

r

q

dA

E
+
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Example 24.5 A Spherically Symmetric Charge Distribution

An insulating solid sphere of radius a has a uniform volume
charge density 1 and carries a total positive charge Q (Fig.
24.11).

(A) Calculate the magnitude of the electric field at a point
outside the sphere.

Solution Because the charge distribution is spherically sym-
metric, we again select a spherical gaussian surface of radius
r, concentric with the sphere, as shown in Figure 24.11a. For
this choice, conditions (1) and (2) are satisfied, as they were
for the point charge in Example 24.4. Following the line of
reasoning given in Example 24.4, we find that

Note that this result is identical to the one we obtained for a
point charge. Therefore, we conclude that, for a uniformly
charged sphere, the field in the region external to the
sphere is equivalent to that of a point charge located at
the center of the sphere.

(B) Find the magnitude of the electric field at a point inside
the sphere.

Solution In this case we select a spherical gaussian surface
having radius r , a, concentric with the insulating sphere
(Fig. 24.11b). Let us denote the volume of this smaller
sphere by V *. To apply Gauss’s law in this situation, it is
important to recognize that the charge q in within the gauss-
ian surface of volume V * is less than Q. To calculate q in, we
use the fact that q in # 1V *:

By symmetry, the magnitude of the electric field is
constant everywhere on the spherical gaussian surface and
is normal to the surface at each point — both conditions

q in # 1V * # 1 (4
3 

( r  
3)

  (for r - a)ke  
Q
r 

2(1)   E #

(1) and (2) are satisfied. Therefore, Gauss’s law in the
region r , a gives

Solving for E gives

Because by definition and because ke # 1/4(/0,
this expression for E can be written as

Note that this result for E differs from the one we
obtained in part (A). It shows that E : 0 as r : 0.
Therefore, the result eliminates the problem that would
exist at r # 0 if E varied as 1/r 2 inside the sphere as it does
outside the sphere. That is, if E 2 1/r 2 for r , a, the field
would be infinite at r # 0, which is physically impossible.

What If? Suppose we approach the radial position r $ a
from inside the sphere and from outside. Do we measure the
same value of the electric field from both directions?

Answer From Equation (1), we see that the field
approaches a value from the outside given by

From the inside, Equation (2) gives us

Thus, the value of the field is the same as we approach the
surface from both directions. A plot of E versus r is shown in
Figure 24.12. Note that the magnitude of the field is contin-
uous, but the derivative of the field magnitude is not.

E # lim
r : a %ke  

Q
a 

3   r& # ke  
Q
a 

3  
 a # ke  

Q
a 

2

E # lim
r : a %ke  

Q
r 

2 & # ke  
Q
a 

2

  (for r , a)ke  
Q
a 

3   r(2)   E #
Qr

4(/0a 
3 #

1 # Q /4
3 (a3

E #
q in

4(/0r 
2 #

1(4
3 (r 

3)
4(/0r 

2 #
1

3/0
  r

$  E  dA # E  $ dA # E (4(r 
2) #  

q in
/0

(a)

Gaussian
sphere

(b)

Gaussian
spherer

a

r

a

Figure 24.11 (Example 24.5) A uniformly charged insulating
sphere of radius a and total charge Q. (a) For points outside the
sphere, a large spherical gaussian surface is drawn concentric
with the sphere. In diagrams such as this, the dotted line
represents the intersection of the gaussian surface with the
plane of the page. (b) For points inside the sphere, a spherical
gaussian surface smaller than the sphere is drawn.

a

E

a r

E =
keQ
r2

E =
keQ
a3 r

Figure 24.12 (Example 24.5) A plot of E versus r for a uniformly
charged insulating sphere. The electric field inside the sphere
(r , a) varies linearly with r. The field outside the sphere (r - a)
is the same as that of a point charge Q located at r # 0.

At the Interactive Worked Example link at http://www.pse6.com, you can investigate the electric field inside and outside
the sphere.

Interactive
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Example 24.6 The Electric Field Due to a Thin Spherical Shell

A thin spherical shell of radius a has a total charge Q distrib-
uted uniformly over its surface (Fig. 24.13a). Find the
electric field at points

(A) outside and

(B) inside the shell.

Solution

(A) The calculation for the field outside the shell is identical
to that for the solid sphere shown in Example 24.5a. If we
construct a spherical gaussian surface of radius r - a concen-
tric with the shell (Fig. 24.13b), the charge inside this surface
is Q. Therefore, the field at a point outside the shell is equiv-
alent to that due to a point charge Q located at the center:

(B) The electric field inside the spherical shell is zero. This
follows from Gauss’s law applied to a spherical surface of
radius r , a concentric with the shell (Fig. 24.13c). Because of
the spherical symmetry of the charge distribution and
because the net charge inside the surface is zero—satisfaction
of conditions (1) and (2) again—application of Gauss’s
law shows that E # 0 in the region r , a. We obtain the
same results using Equation 23.11 and integrating over the
charge distribution. This calculation is rather complicated.
Gauss’s law allows us to determine these results in a much
simpler way.

  (for r - a)ke  
Q
r  

2E #

Example 24.7 A Cylindrically Symmetric Charge Distribution

Find the electric field a distance r from a line of positive
charge of infinite length and constant charge per unit
length 3 (Fig. 24.14a).

Solution The symmetry of the charge distribution
requires that E be perpendicular to the line charge and
directed outward, as shown in Figure 24.14a and b. To
reflect the symmetry of the charge distribution, we select a
cylindrical gaussian surface of radius r and length ! that is
coaxial with the line charge. For the curved part of this
surface, E is constant in magnitude and perpendicular to
the surface at each point—satisfaction of conditions
(1) and (2). Furthermore, the flux through the ends of
the gaussian cylinder is zero because E is parallel to
these surfaces—the first application we have seen of
condition (3).

We take the surface integral in Gauss’s law over the
entire gaussian surface. Because of the zero value of E " dA
for the ends of the cylinder, however, we can restrict our
attention to only the curved surface of the cylinder.

The total charge inside our gaussian surface is 3!.
Applying Gauss’s law and conditions (1) and (2), we find
that for the curved surface

The area of the curved surface is A # 2(r!; therefore,

(24.7)

Thus, we see that the electric field due to a cylindrically
symmetric charge distribution varies as 1/r, whereas the
field external to a spherically symmetric charge distribution
varies as 1/r 2. Equation 24.7 was also derived by integra-
tion of the field of a point charge. (See Problem 35 in 
Chapter 23.)

2ke  
3
rE #

3

2(/0r
#

E (2(r !) #
3!

/0

!E # $  E"d A # E  $ dA # E A #
q  in

/0
#

3!

/0

Figure 24.13 (Example 24.6) (a) The electric field inside a uniformly charged
spherical shell is zero. The field outside is the same as that due to a point charge Q
located at the center of the shell. (b) Gaussian surface for r - a. (c) Gaussian surface
for r , a.
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Example 24.8 A Plane of Charge

Find the electric field due to an infinite plane of positive
charge with uniform surface charge density 4.

Solution By symmetry, E must be perpendicular to the
plane and must have the same magnitude at all points
equidistant from the plane. The fact that the direction of
E is away from positive charges indicates that the direction
of E on one side of the plane must be opposite its direc-
tion on the other side, as shown in Figure 24.15. A gauss-
ian surface that reflects the symmetry is a small cylinder
whose axis is perpendicular to the plane and whose ends

each have an area A and are equidistant from the plane.
Because E is parallel to the curved surface—and,
therefore, perpendicular to dA everywhere on the
surface—condition (3) is satisfied and there is no contri-
bution to the surface integral from this surface. For the
flat ends of the cylinder, conditions (1) and (2) are satis-
fied. The flux through each end of the cylinder is EA;
hence, the total flux through the entire gaussian surface is
just that through the ends, !E # 2EA.

Noting that the total charge inside the surface is
q in # 4A , we use Gauss’s law and find that the total flux
through the gaussian surface is

leading to

(24.8)

Because the distance from each flat end of the cylinder
to the plane does not appear in Equation 24.8, we conclude
that E # 4/2/0 at any distance from the plane. That is, the
field is uniform everywhere.

What If? Suppose we place two infinite planes of charge
parallel to each other, one positively charged and the other
negatively charged. Both planes have the same surface
charge density. What does the electric field look like now?

E #
4

2/0

!E # 2E A #
q  in

/0
#

4A
/0

What If? What if the line segment in this example were not
infinitely long?

Answer If the line charge in this example were of finite
length, the result for E would not be that given by Equa-
tion 24.7. A finite line charge does not possess sufficient
symmetry for us to make use of Gauss’s law. This is
because the magnitude of the electric field is no longer
constant over the surface of the gaussian cylinder—
the field near the ends of the line would be different from
that far from the ends. Thus, condition (1) would not be
satisfied in this situation. Furthermore, E is not perpen-
dicular to the cylindrical surface at all points—the field
vectors near the ends would have a component parallel to
the line. Thus, condition (2) would not be satisfied. For
points close to a finite line charge and far from the ends,
Equation 24.7 gives a good approximation of the value of
the field.

It is left for you to show (see Problem 29) that the
electric field inside a uniformly charged rod of finite radius
and infinite length is proportional to r.

Gaussian
surface

+
+
+

+
+
+

E

dA!

r

(a)

E

(b)

Figure 24.14 (Example 24.7) (a) An infinite line of charge
surrounded by a cylindrical gaussian surface concentric with
the line. (b) An end view shows that the electric field at the
cylindrical surface is constant in magnitude and perpendicular
to the surface.

Figure 24.15 (Example 24.8) A cylindrical gaussian surface
penetrating an infinite plane of charge. The flux is EA through
each end of the gaussian surface and zero through its curved
surface.
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24.4 Conductors in Electrostatic Equilibrium

As we learned in Section 23.2, a good electrical conductor contains charges (electrons)
that are not bound to any atom and therefore are free to move about within the mater-
ial. When there is no net motion of charge within a conductor, the conductor is in
electrostatic equilibrium. A conductor in electrostatic equilibrium has the following
properties:

1. The electric field is zero everywhere inside the conductor.

2. If an isolated conductor carries a charge, the charge resides on its surface.

3. The electric field just outside a charged conductor is perpendicular to the surface
of the conductor and has a magnitude 4//0, where 4 is the surface charge density
at that point.

4. On an irregularly shaped conductor, the surface charge density is greatest at loca-
tions where the radius of curvature of the surface is smallest.

We verify the first three properties in the discussion that follows. The fourth prop-
erty is presented here so that we have a complete list of properties for conductors in
electrostatic equilibrium, but cannot be verified until Chapter 25.

We can understand the first property by considering a conducting slab placed in
an external field E (Fig. 24.16). The electric field inside the conductor must be
zero under the assumption that we have electrostatic equilibrium. If the field
were not zero, free electrons in the conductor would experience an electric force
(F # q E) and would accelerate due to this force. This motion of electrons, however,
would mean that the conductor is not in electrostatic equilibrium. Thus, the
existence of electrostatic equilibrium is consistent only with a zero field in the
conductor.

Let us investigate how this zero field is accomplished. Before the external field is
applied, free electrons are uniformly distributed throughout the conductor. When the
external field is applied, the free electrons accelerate to the left in Figure 24.16, caus-
ing a plane of negative charge to be present on the left surface. The movement of elec-
trons to the left results in a plane of positive charge on the right surface. These planes
of charge create an additional electric field inside the conductor that opposes the
external field. As the electrons move, the surface charge densities on the left and right
surfaces increase until the magnitude of the internal field equals that of the external
field, resulting in a net field of zero inside the conductor. The time it takes a good con-
ductor to reach equilibrium is on the order of 10'16 s, which for most purposes can be
considered instantaneous.

Properties of a conductor in
electrostatic equilibrium

Figure 24.16 A conducting slab in
an external electric field E. The
charges induced on the two
surfaces of the slab produce an
electric field that opposes the
external field, giving a resultant
field of zero inside the slab.
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Answer In this situation, the electric fields due to the two
planes add in the region between the planes, resulting in a
uniform field of magnitude 4//0, and cancel elsewhere to

give a field of zero. This is a practical way to achieve uniform
electric fields, such as those needed in the CRT tube
discussed in Section 23.7.

Conceptual Example 24.9 Don’t Use Gauss’s Law Here!

Explain why Gauss’s law cannot be used to calculate
the electric field near an electric dipole, a charged disk, or a
triangle with a point charge at each corner.

Solution The charge distributions of all these configura-
tions do not have sufficient symmetry to make the use of

Gauss’s law practical. We cannot find a closed surface
surrounding any of these distributions that satisfies one or
more of conditions (1) through (4) listed at the beginning
of this section.
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We can use Gauss’s law to verify the second property of a conductor in electrostatic
equilibrium. Figure 24.17 shows an arbitrarily shaped conductor. A gaussian surface is
drawn inside the conductor and can be as close to the conductor’s surface as we wish.
As we have just shown, the electric field everywhere inside the conductor is zero when
it is in electrostatic equilibrium. Therefore, the electric field must be zero at every
point on the gaussian surface, in accordance with condition (4) in Section 24.3. Thus,
the net flux through this gaussian surface is zero. From this result and Gauss’s law, we
conclude that the net charge inside the gaussian surface is zero. Because there can be
no net charge inside the gaussian surface (which is arbitrarily close to the conductor’s
surface), any net charge on the conductor must reside on its surface. Gauss’s law
does not indicate how this excess charge is distributed on the conductor’s surface, only
that it resides exclusively on the surface.

We can also use Gauss’s law to verify the third property. First, note that if the field
vector E had a component parallel to the conductor’s surface, free electrons would
experience an electric force and move along the surface; in such a case, the conduc-
tor would not be in equilibrium. Thus, the field vector must be perpendicular to the
surface. To determine the magnitude of the electric field, we draw a gaussian surface
in the shape of a small cylinder whose end faces are parallel to the surface of the
conductor (Fig. 24.18). Part of the cylinder is just outside the conductor, and part is
inside. The field is perpendicular to the conductor’s surface from the condition of
electrostatic equilibrium. Thus, we satisfy condition (3) in Section 24.3 for the curved
part of the cylindrical gaussian surface—there is no flux through this part of the
gaussian surface because E is parallel to the surface. There is no flux through the flat
face of the cylinder inside the conductor because here E # 0; this satisfies condition
(4). Hence, the net flux through the gaussian surface is that through only the flat face
outside the conductor, where the field is perpendicular to the gaussian surface. Using
conditions (1) and (2) for this face, the flux is EA, where E is the electric field just
outside the conductor and A is the area of the cylinder’s face. Applying Gauss’s law to
this surface, we obtain

where we have used the fact that q in # 4A. Solving for E gives for the electric field just
outside a charged conductor

(24.9)

Figure 24.19 shows electric field lines made visible by pieces of thread floating
in oil. Notice that the field lines are perpendicular to both the cylindrical conducting
surface and the straight conducting surface.

E #
4

/0

!E # $ E dA # EA #
q in

/0
#

4A
/0

Figure 24.17 A conductor of
arbitrary shape. The broken line
represents a gaussian surface that
can be as close to the surface of the
conductor as we wish.

Gaussian
surface

Figure 24.18 A gaussian surface
in the shape of a small cylinder is
used to calculate the electric field
just outside a charged conductor.
The flux through the gaussian
surface is EA. Remember that E is
zero inside the conductor.

A

+
+ + +

+

+
+
+

++
+
+
+
++ +

+
+

+
+

E

Figure 24.19 Electric field pattern
surrounding a charged conducting
plate placed near an oppositely
charged conducting cylinder. Small
pieces of thread suspended in oil
align with the electric field lines.
Note that (1) the field lines are
perpendicular to both conductors
and (2) there are no lines inside
the cylinder (E # 0).

Quick Quiz 24.6 Your little brother likes to rub his feet on the carpet
and then touch you to give you a shock. While you are trying to escape the shock
treatment, you discover a hollow metal cylinder in your basement, large enough to
climb inside. In which of the following cases will you not be shocked? (a) You climb
inside the cylinder, making contact with the inner surface, and your charged
brother touches the outer metal surface. (b) Your charged brother is inside touch-
ing the inner metal surface and you are outside, touching the outer metal surface.
(c) Both of you are outside the cylinder, touching its outer metal surface but not
touching each other directly.
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Explore the electric field of the system in Figure 24.20 at the Interactive Worked Example link at http://www.pse6.com.
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24.5 Formal Derivation of Gauss’s Law

One way of deriving Gauss’s law involves solid angles. Consider a spherical surface of
radius r containing an area element +A. The solid angle +5 (5: uppercase Greek
omega) subtended at the center of the sphere by this element is defined to be

From this equation, we see that +5 has no dimensions because +A and r 2 both have
dimensions L2. The dimensionless unit of a solid angle is the steradian. (You may want
to compare this equation to Equation 10.1b, the definition of the radian.) Because the

+5 ' 
+A
r 

2

Figure 24.20 (Example 24.10) A solid conducting sphere of
radius a and carrying a charge 2Q surrounded by a conducting
spherical shell carrying a charge 'Q.

–Q

r
a

b

c

2Q

!

#"

$

Figure 24.21 (Example 24.10) A plot of E versus r for the two-
conductor system shown in Figure 24.20.

a

E

r
b c

E =
2keQ

r 2

E =
keQ
r2

Example 24.10 A Sphere Inside a Spherical Shell

A solid conducting sphere of radius a carries a net positive
charge 2Q. A conducting spherical shell of inner radius b
and outer radius c is concentric with the solid sphere and
carries a net charge 'Q. Using Gauss’s law, find the electric
field in the regions labeled !, ", #, and $ in Figure 24.20
and the charge distribution on the shell when the entire
system is in electrostatic equilibrium.

Solution First note that the charge distributions on both
the sphere and the shell are characterized by spherical sym-
metry around their common center. To determine the elec-
tric field at various distances r from this center, we construct
a spherical gaussian surface for each of the four regions of
interest. Such a surface for region " is shown in Figure
24.20.

To find E inside the solid sphere (region !), consider a
gaussian surface of radius r , a. Because there can be no
charge inside a conductor in electrostatic equilibrium, we
see that q in # 0; thus, on the basis of Gauss’s law and sym-
metry, E1 # 0 for r , a.

In region "—between the surface of the solid sphere
and the inner surface of the shell—we construct a spherical
gaussian surface of radius r where a , r , b and note that
the charge inside this surface is $ 2Q (the charge on the
solid sphere). Because of the spherical symmetry, the
electric field lines must be directed radially outward and be

constant in magnitude on the gaussian surface. Following
Example 24.4 and using Gauss’s law, we find that

In region $, where r - c, the spherical gaussian surface we
construct surrounds a total charge of q in # 2Q $ ('Q) #
Q. Therefore, application of Gauss’s law to this surface gives

In region #, the electric field must be zero because the
spherical shell is also a conductor in equilibrium. Figure
24.21 shows a graphical representation of the variation of
electric field with r.

If we construct a gaussian surface of radius r where
b , r , c, we see that q in must be zero because E3 # 0. From
this argument, we conclude that the charge on the inner
surface of the spherical shell must be ' 2Q to cancel the
charge $ 2Q on the solid sphere. Because the net charge on
the shell is ' Q , we conclude that its outer surface must
carry a charge $ Q.

  (for r - c)
keQ
r 

2E4 #

  (for a , r , b)
2keQ

r 
2E 2 #

2Q
4(/0r 

2 #

E 2A # E 2(4(r 
2) #

q in

/0
#

2Q
/0
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surface area of a sphere is 4(r 2, the total solid angle subtended by the sphere is

Now consider a point charge q surrounded by a closed surface of arbitrary shape
(Fig. 24.22). The total electric flux through this surface can be obtained by evaluating
E " +A for each small area element +A and summing over all elements. The flux
through each element is

where r is the distance from the charge to the area element, ) is the angle between the
electric field E and +A for the element, and E # keq/r 2 for a point charge. In Figure
24.23, we see that the projection of the area element perpendicular to the radius
vector is +A cos ). Thus, the quantity (+A cos ))/r 2 is equal to the solid angle +5 that
the surface element +A subtends at the charge q. We also see that +5 is equal to the
solid angle subtended by the area element of a spherical surface of radius r. Because
the total solid angle at a point is 4( steradians, the total flux through the closed
surface is

Thus we have derived Gauss’s law, Equation 24.6. Note that this result is independent
of the shape of the closed surface and independent of the position of the charge
within the surface.

!E # ke q   $  
dA cos )

r 
2 # ke q   $ d 5 # 4(ke q #

q
/0

+!E # E"+ A # (E cos ))+A # ke q   
+A cos )

r  
2

5 #
4(r 

2

r 
2 # 4( steradians

Summary 753

Electric flux is proportional to the number of electric field lines that penetrate a
surface. If the electric field is uniform and makes an angle ) with the normal to a
surface of area A, the electric flux through the surface is

(24.2)

In general, the electric flux through a surface is

(24.3)!E # "
surface

E"d A

!E # EA cos )

S U M M A RY

Figure 24.23 The area element +A subtends a solid angle +5 # (+A cos ))/r 2 at the
charge q.

∆Ω
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r

∆A

∆A cos θ ∆A

θ
E

θ

Figure 24.22 A closed surface of
arbitrary shape surrounds a point
charge q. The net electric flux
through the surface is independent
of the shape of the surface.
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Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.
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1. The Sun is lower in the sky during the winter months than
it is in the summer. How does this change the flux of
sunlight hitting a given area on the surface of the Earth?
How does this affect the weather?

2. If the electric field in a region of space is zero, can you con-
clude that no electric charges are in that region? Explain.

3. If more electric field lines leave a gaussian surface than
enter it, what can you conclude about the net charge
enclosed by that surface?

4. A uniform electric field exists in a region of space in which
there are no charges. What can you conclude about the
net electric flux through a gaussian surface placed in this
region of space?

If the total charge inside a closed surface is known but the
distribution of the charge is unspecified, can you use
Gauss’s law to find the electric field? Explain.

6. Explain why the electric flux through a closed surface with
a given enclosed charge is independent of the size or
shape of the surface.

7. Consider the electric field due to a nonconducting infinite
plane having a uniform charge density. Explain why the
electric field does not depend on the distance from the
plane, in terms of the spacing of the electric field lines.

8. Use Gauss’s law to explain why electric field lines must
begin or end on electric charges. (Suggestion: Change the
size of the gaussian surface.)

5.

Q U E S T I O N S

You should be able to apply Equations 24.2 and 24.3 in a variety of situations, particu-
larly those in which symmetry simplifies the calculation.

Gauss’s law says that the net electric flux !E through any closed gaussian surface
is equal to the net charge q in inside the surface divided by /0:

(24.6)

Using Gauss’s law, you can calculate the electric field due to various symmetric
charge distributions. Table 24.1 lists some typical results.

A conductor in electrostatic equilibrium has the following properties:

1. The electric field is zero everywhere inside the conductor.
2. Any net charge on the conductor resides entirely on its surface.
3. The electric field just outside the conductor is perpendicular to its surface and has a

magnitude 4//0, where 4 is the surface charge density at that point.
4. On an irregularly shaped conductor, the surface charge density is greatest where

the radius of curvature of the surface is the smallest.

!E # $ E"d A #
q in

/0

Charge Distribution Electric Field Location

Insulating sphere of radius R, r - R
uniform charge density, and 
total charge Q r , R

Thin spherical shell of radius R r - R
and total charge Q

r , R

Line charge of infinite length Outside the line
and charge per unit length 3

Infinite charged plane having 
Everywhere outside the planesurface charge density 4

Conductor having surface 
Just outside the conductorcharge density 4

Inside the conductor

Typical Electric Field Calculations Using Gauss’s Law

Table 24.1
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Problems 755

9. On the basis of the repulsive nature of the force between
like charges and the freedom of motion of charge within a
conductor, explain why excess charge on an isolated con-
ductor must reside on its surface.

A person is placed in a large hollow metallic sphere that
is insulated from ground. If a large charge is placed on
the sphere, will the person be harmed upon touching the
inside of the sphere? Explain what will happen if the
person also has an initial charge whose sign is opposite
that of the charge on the sphere.

11. Two solid spheres, both of radius R , carry identical total
charges, Q. One sphere is a good conductor while the
other is an insulator. If the charge on the insulating sphere
is uniformly distributed throughout its interior volume,

10.

how do the electric fields outside these two spheres
compare? Are the fields identical inside the two spheres?

A common demonstration involves charging a rubber
balloon, which is an insulator, by rubbing it on your hair,
and touching the balloon to a ceiling or wall, which is also
an insulator. The electrical attraction between the charged
balloon and the neutral wall results in the balloon sticking
to the wall. Imagine now that we have two infinitely large
flat sheets of insulating material. One is charged and the
other is neutral. If these are brought into contact, will an
attractive force exist between them, as there was for the
balloon and the wall?

13. You may have heard that one of the safer places to be during
a lightning storm is inside a car. Why would this be the case?

12.

Section 24.1 Electric Flux
1. An electric field with a magnitude of 3.50 kN/C is applied

along the x axis. Calculate the electric flux through a rec-
tangular plane 0.350 m wide and 0.700 m long assuming
that (a) the plane is parallel to the yz plane; (b) the plane
is parallel to the xy plane; (c) the plane contains the y axis,
and its normal makes an angle of 40.0° with the x axis.

2. A vertical electric field of magnitude 2.00 & 104 N/C exists
above the Earth’s surface on a day when a thunderstorm is
brewing. A car with a rectangular size of 6.00 m by 3.00 m
is traveling along a roadway sloping downward at 10.0°.
Determine the electric flux through the bottom of the car.

A 40.0-cm-diameter loop is rotated in a uniform electric field
until the position of maximum electric flux is found. The
flux in this position is measured to be 5.20 & 105 N "m2/C.
What is the magnitude of the electric field?

4. Consider a closed triangular box resting within a horizon-
tal electric field of magnitude E # 7.80 & 104 N/C as
shown in Figure P24.4. Calculate the electric flux through
(a) the vertical rectangular surface, (b) the slanted
surface, and (c) the entire surface of the box.

3.

5. A uniform electric field a î $ b ĵ intersects a surface of area
A. What is the flux through this area if the surface lies
(a) in the yz plane? (b) in the xz plane? (c) in the xy plane?

6. A point charge q is located at the center of a uniform ring
having linear charge density 3 and radius a, as shown in
Figure P24.6. Determine the total electric flux through a
sphere centered at the point charge and having radius R ,
where R , a.

7. A pyramid with horizontal square base, 6.00 m on each
side, and a height of 4.00 m is placed in a vertical electric
field of 52.0 N/C. Calculate the total electric flux through
the pyramid’s four slanted surfaces.

8. A cone with base radius R and height h is located on a
horizontal table. A horizontal uniform field E penetrates
the cone, as shown in Figure P24.8. Determine the electric
flux that enters the left-hand side of the cone.

Section 24.2 Gauss’s Law
The following charges are located inside a submarine:
5.00 %C, ' 9.00 %C, 27.0 %C, and ' 84.0 %C. (a) Calculate

9.

1, 2, 3 # straightforward, intermediate, challenging # full solution available in the Student Solutions Manual and Study Guide

# coached solution with hints available at http://www.pse6.com # computer useful in solving problem             

# paired numerical and symbolic problems
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the net electric flux through the hull of the submarine.
(b) Is the number of electric field lines leaving the
submarine greater than, equal to, or less than the number
entering it?

10. The electric field everywhere on the surface of a thin
spherical shell of radius 0.750 m is measured to be
890 N/C and points radially toward the center of the
sphere. (a) What is the net charge within the sphere’s
surface? (b) What can you conclude about the nature and
distribution of the charge inside the spherical shell?

11. Four closed surfaces, S1 through S4, together with the
charges ' 2Q , Q , and 'Q are sketched in Figure P24.11.
(The colored lines are the intersections of the surfaces
with the page.) Find the electric flux through each
surface.

12. (a) A point charge q is located a distance d from an infi-
nite plane. Determine the electric flux through the
plane due to the point charge. (b) What If? A point
charge q is located a very small distance from the center
of a very large square on the line perpendicular to
the square and going through its center. Determine the
approximate electric flux through the square due to the
point charge. (c) Explain why the answers to parts
(a) and (b) are identical.

13. Calculate the total electric flux through the paraboloidal
surface due to a uniform electric field of magnitude E 0 in
the direction shown in Figure P24.13.

14. A point charge of 12.0 %C is placed at the center of a
spherical shell of radius 22.0 cm. What is the total electric
flux through (a) the surface of the shell and (b) any hemi-
spherical surface of the shell? (c) Do the results depend
on the radius? Explain.

A point charge Q is located just above the center
of the flat face of a hemisphere of radius R as shown in
Figure P24.15. What is the electric flux (a) through the
curved surface and (b) through the flat face?

15.

16. In the air over a particular region at an altitude of 500 m
above the ground the electric field is 120 N/C directed
downward. At 600 m above the ground the electric field is
100 N/C downward. What is the average volume charge
density in the layer of air between these two elevations? Is
it positive or negative?

17. A point charge Q # 5.00 %C is located at the center of a
cube of edge L # 0.100 m. In addition, six other identical
point charges having q # ' 1.00 %C are positioned sym-
metrically around Q as shown in Figure P24.17. Determine
the electric flux through one face of the cube.

18. A positive point charge Q is located at the center of a cube
of edge L. In addition, six other identical negative point
charges q are positioned symmetrically around Q as shown
in Figure P24.17. Determine the electric flux through one
face of the cube.
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19. An infinitely long line charge having a uniform charge per
unit length 3 lies a distance d from point O as shown in
Figure P24.19. Determine the total electric flux through
the surface of a sphere of radius R centered at O resulting
from this line charge. Consider both cases, where R , d
and R - d.

20. An uncharged nonconducting hollow sphere of radius
10.0 cm surrounds a 10.0-%C charge located at the origin
of a cartesian coordinate system. A drill with a radius of
1.00 mm is aligned along the z axis, and a hole is drilled in
the sphere. Calculate the electric flux through the hole.

21. A charge of 170 %C is at the center of a cube of edge
80.0 cm. (a) Find the total flux through each face of the
cube. (b) Find the flux through the whole surface of the
cube. (c) What If? Would your answers to parts (a) or
(b) change if the charge were not at the center? Explain.

22. The line ag in Figure P24.22 is a diagonal of a cube. A
point charge q is located on the extension of line ag , very
close to vertex a of the cube. Determine the electric flux
through each of the sides of the cube which meet at the
point a.

Section 24.3 Application of Gauss’s Law to Various
Charge Distributions

23. Determine the magnitude of the electric field at the
surface of a lead-208 nucleus, which contains 82 protons
and 126 neutrons. Assume the lead nucleus has a volume
208 times that of one proton, and consider a proton to be
a sphere of radius 1.20 & 10'15 m.

24. A solid sphere of radius 40.0 cm has a total positive charge
of 26.0 %C uniformly distributed throughout its volume.
Calculate the magnitude of the electric field (a) 0 cm,
(b) 10.0 cm, (c) 40.0 cm, and (d) 60.0 cm from the center
of the sphere.

25. A 10.0-g piece of Styrofoam carries a net charge of
' 0.700 %C and floats above the center of a large horizon-
tal sheet of plastic that has a uniform charge density on its
surface. What is the charge per unit area on the plastic
sheet?

26. A cylindrical shell of radius 7.00 cm and length 240 cm has
its charge uniformly distributed on its curved surface. The
magnitude of the electric field at a point 19.0 cm radially
outward from its axis (measured from the midpoint of the
shell) is 36.0 kN/C. Find (a) the net charge on the shell
and (b) the electric field at a point 4.00 cm from the axis,
measured radially outward from the midpoint of the shell.

27. A particle with a charge of ' 60.0 nC is placed at the
center of a nonconducting spherical shell of inner radius
20.0 cm and outer radius 25.0 cm. The spherical shell
carries charge with a uniform density of ' 1.33 %C/m3.
A proton moves in a circular orbit just outside the
spherical shell. Calculate the speed of the proton.

28. A nonconducting wall carries a uniform charge density of
8.60 %C/cm2. What is the electric field 7.00 cm in front of
the wall? Does your result change as the distance from the
wall is varied?

Consider a long cylindrical charge distribution of
radius R with a uniform charge density 1. Find the electric
field at distance r from the axis where r , R.

30. A solid plastic sphere of radius 10.0 cm has charge with uni-
form density throughout its volume. The electric field
5.00 cm from the center is 86.0 kN/C radially inward. Find
the magnitude of the electric field 15.0 cm from the center.

Consider a thin spherical shell of radius 14.0 cm with a
total charge of 32.0 %C distributed uniformly on its
surface. Find the electric field (a) 10.0 cm and (b) 20.0 cm
from the center of the charge distribution.

32. In nuclear fission, a nucleus of uranium-238, which
contains 92 protons, can divide into two smaller spheres,
each having 46 protons and a radius of 5.90 & 10'15 m.
What is the magnitude of the repulsive electric force
pushing the two spheres apart?

33. Fill two rubber balloons with air. Suspend both of them
from the same point and let them hang down on strings of
equal length. Rub each with wool or on your hair, so that
they hang apart with a noticeable separation from each
other. Make order-of-magnitude estimates of (a) the force
on each, (b) the charge on each, (c) the field each creates
at the center of the other, and (d) the total flux of electric
field created by each balloon. In your solution state the
quantities you take as data and the values you measure or
estimate for them.

34. An insulating solid sphere of radius a has a uniform
volume charge density and carries a total positive charge
Q. A spherical gaussian surface of radius r, which shares a
common center with the insulating sphere, is inflated
starting from r # 0. (a) Find an expression for the electric
flux passing through the surface of the gaussian sphere as
a function of r for r , a. (b) Find an expression for the
electric flux for r - a. (c) Plot the flux versus r.

A uniformly charged, straight filament 7.00 m in length has
a total positive charge of 2.00 %C. An uncharged cardboard
cylinder 2.00 cm in length and 10.0 cm in radius surrounds
the filament at its center, with the filament as the axis of
the cylinder. Using reasonable approximations, find (a) the
electric field at the surface of the cylinder and (b) the total
electric flux through the cylinder.

36. An insulating sphere is 8.00 cm in diameter and carries
a 5.70-%C charge uniformly distributed throughout its
interior volume. Calculate the charge enclosed by a
concentric spherical surface with radius (a) r # 2.00 cm
and (b) r # 6.00 cm.

A large flat horizontal sheet of charge has a charge per
unit area of 9.00 %C/m2. Find the electric field just above
the middle of the sheet.

37.

35.

31.

29.
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38. The charge per unit length on a long, straight filament is
' 90.0 %C/m. Find the electric field (a) 10.0 cm,
(b) 20.0 cm, and (c) 100 cm from the filament, where
distances are measured perpendicular to the length of
the filament.

Section 24.4 Conductors in Electrostatic Equilibrium
A long, straight metal rod has a radius of 5.00 cm and a
charge per unit length of 30.0 nC/m. Find the electric
field (a) 3.00 cm, (b) 10.0 cm, and (c) 100 cm from the
axis of the rod, where distances are measured perpendicu-
lar to the rod.

40. On a clear, sunny day, a vertical electric field of about
130 N/C points down over flat ground. What is the surface
charge density on the ground for these conditions?

41. A very large, thin, flat plate of aluminum of area A has a
total charge Q uniformly distributed over its surfaces.
Assuming the same charge is spread uniformly over the
upper surface of an otherwise identical glass plate, compare
the electric fields just above the center of the upper
surface of each plate.

42. A solid copper sphere of radius 15.0 cm carries a charge of
40.0 nC. Find the electric field (a) 12.0 cm, (b) 17.0 cm,
and (c) 75.0 cm from the center of the sphere. (d) What
If? How would your answers change if the sphere were
hollow?

43. A square plate of copper with 50.0-cm sides has no net
charge and is placed in a region of uniform electric field
of 80.0 kN/C directed perpendicularly to the plate. Find
(a) the charge density of each face of the plate and (b) the
total charge on each face.

44. A solid conducting sphere of radius 2.00 cm has a charge
of 8.00 %C. A conducting spherical shell of inner radius
4.00 cm and outer radius 5.00 cm is concentric with the
solid sphere and has a total charge of '4.00 %C. Find the
electric field at (a) r # 1.00 cm, (b) r # 3.00 cm, (c) r #
4.50 cm, and (d) r # 7.00 cm from the center of this
charge configuration.

45. Two identical conducting spheres each having a radius of
0.500 cm are connected by a light 2.00-m-long conduct-
ing wire. A charge of 60.0 %C is placed on one of the con-
ductors. Assume that the surface distribution of charge
on each sphere is uniform. Determine the tension in the
wire.

46. The electric field on the surface of an irregularly shaped
conductor varies from 56.0 kN/C to 28.0 kN/C. Calculate
the local surface charge density at the point on the surface
where the radius of curvature of the surface is (a) greatest
and (b) smallest.

A long, straight wire is surrounded by a hollow metal cylin-
der whose axis coincides with that of the wire. The wire
has a charge per unit length of 3, and the cylinder has a
net charge per unit length of 23. From this information,
use Gauss’s law to find (a) the charge per unit length on
the inner and outer surfaces of the cylinder and (b) the
electric field outside the cylinder, a distance r from the
axis.

47.

39.

48. A conducting spherical shell of radius 15.0 cm carries a
net charge of ' 6.40 %C uniformly distributed on its
surface. Find the electric field at points (a) just outside the
shell and (b) inside the shell.

A thin square conducting plate 50.0 cm on a side lies
in the xy plane. A total charge of 4.00 & 10'8 C is placed
on the plate. Find (a) the charge density on the plate,
(b) the electric field just above the plate, and (c) the
electric field just below the plate. You may assume that the
charge density is uniform.

50. A conducting spherical shell of inner radius a and outer
radius b carries a net charge Q. A point charge q is placed
at the center of this shell. Determine the surface charge
density on (a) the inner surface of the shell and (b) the
outer surface of the shell.

51. A hollow conducting sphere is surrounded by a larger
concentric spherical conducting shell. The inner sphere
has charge 'Q , and the outer shell has net charge $ 3Q .
The charges are in electrostatic equilibrium. Using
Gauss’s law, find the charges and the electric fields
everywhere.

52. A positive point charge is at a distance R/2 from the center
of an uncharged thin conducting spherical shell of radius
R. Sketch the electric field lines set up by this arrangement
both inside and outside the shell.

Section 24.5 Formal Derivation of Gauss’s Law
A sphere of radius R surrounds a point charge Q , located
at its center. (a) Show that the electric flux through a cir-
cular cap of half-angle ) (Fig. P24.53) is

What is the flux for (b) ) # 90° and (c) ) # 180°?

!6 #
Q

2/ 0
  (1 ' cos ))

53.

49.

Additional Problems
54. A nonuniform electric field is given by the expression

E # ay î $ bz ĵ $ cx k̂ , where a, b, and c are constants. 
Determine the electric flux through a rectangular surface
in the xy plane, extending from x # 0 to x # w and from
y # 0 to y # h.
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55. A solid insulating sphere of radius a carries a net positive
charge 3Q , uniformly distributed throughout its volume.
Concentric with this sphere is a conducting spherical shell
with inner radius b and outer radius c, and having a net
charge 'Q , as shown in Figure P24.55. (a) Construct a
spherical gaussian surface of radius r - c and find the net
charge enclosed by this surface. (b) What is the direction
of the electric field at r - c? (c) Find the electric field at
r - c. (d) Find the electric field in the region with radius r
where c - r - b. (e) Construct a spherical gaussian surface
of radius r, where c - r - b, and find the net charge
enclosed by this surface. (f) Construct a spherical gaussian
surface of radius r, where b - r - a, and find the net
charge enclosed by this surface. (g) Find the electric field
in the region b - r - a. (h) Construct a spherical gaussian
surface of radius r , a, and find an expression for the net
charge enclosed by this surface, as a function of r. Note
that the charge inside this surface is less than 3Q. (i) Find
the electric field in the region r , a. ( j) Determine the
charge on the inner surface of the conducting shell.
(k) Determine the charge on the outer surface of the
conducting shell. (l) Make a plot of the magnitude of the
electric field versus r.

56. Consider two identical conducting spheres whose surfaces
are separated by a small distance. One sphere is given a
large net positive charge while the other is given a small
net positive charge. It is found that the force between
them is attractive even though both spheres have net
charges of the same sign. Explain how this is possible.

A solid, insulating sphere of radius a has a uniform
charge density 1 and a total charge Q. Concentric with this
sphere is an uncharged, conducting hollow sphere whose
inner and outer radii are b and c, as shown in Figure
P24.57. (a) Find the magnitude of the electric field in the
regions r , a, a , r , b, b , r , c, and r - c. (b) Deter-
mine the induced charge per unit area on the inner and
outer surfaces of the hollow sphere.

57.

58. For the configuration shown in Figure P24.57, suppose
that a # 5.00 cm, b # 20.0 cm, and c # 25.0 cm. Further-
more, suppose that the electric field at a point 10.0 cm
from the center is measured to be 3.60 & 103 N/C radially
inward while the electric field at a point 50.0 cm from the
center is 2.00 & 102 N/C radially outward. From this infor-
mation, find (a) the charge on the insulating sphere,
(b) the net charge on the hollow conducting sphere, and
(c) the charges on the inner and outer surfaces of the
hollow conducting sphere.

59. A particle of mass m and charge q moves at high speed
along the x axis. It is initially near x # ' 7, and it ends
up near x # $ 7. A second charge Q is fixed at the point
x # 0, y # 'd. As the moving charge passes the stationary
charge, its x component of velocity does not change appre-
ciably, but it acquires a small velocity in the y direction.
Determine the angle through which the moving charge is
deflected. Suggestion: The integral you encounter in deter-
mining vy can be evaluated by applying Gauss’s law to a
long cylinder of radius d, centered on the stationary
charge.

60. Review problem. An early (incorrect) model of the hydro-
gen atom, suggested by J. J. Thomson, proposed that a pos-
itive cloud of charge $ e was uniformly distributed
throughout the volume of a sphere of radius R, with the
electron an equal-magnitude negative point charge ' e at
the center. (a) Using Gauss’s law, show that the electron
would be in equilibrium at the center and, if displaced
from the center a distance r , R , would experience a
restoring force of the form F # 'Kr, where K is a constant.
(b) Show that K # ke e 2/R 3. (c) Find an expression for the
frequency f of simple harmonic oscillations that an
electron of mass me would undergo if displaced a small
distance (,R) from the center and released. (d) Calculate
a numerical value for R that would result in a frequency of
2.47 & 1015 Hz, the frequency of the light radiated in the
most intense line in the hydrogen spectrum.

61. An infinitely long cylindrical insulating shell of inner
radius a and outer radius b has a uniform volume charge
density 1. A line of uniform linear charge density 3 is
placed along the axis of the shell. Determine the electric
field everywhere.

62. Two infinite, nonconducting sheets of charge are parallel
to each other, as shown in Figure P24.62. The sheet on the
left has a uniform surface charge density 4, and the one
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on the right has a uniform charge density '4. Calculate
the electric field at points (a) to the left of, (b) in between,
and (c) to the right of the two sheets.

What If? Repeat the calculations for Problem 62
when both sheets have positive uniform surface charge den-
sities of value 4.

64. A sphere of radius 2a is made of a nonconducting material
that has a uniform volume charge density 1. (Assume that
the material does not affect the electric field.) A spherical
cavity of radius a is now removed from the sphere, as
shown in Figure P24.64. Show that the electric field within
the cavity is uniform and is given by Ex # 0 and Ey #
1a/3/0. (Suggestion: The field within the cavity is the super-
position of the field due to the original uncut sphere, plus
the field due to a sphere the size of the cavity with a uni-
form negative charge density '1.)

63.

65. A uniformly charged spherical shell with surface charge
density 4 contains a circular hole in its surface. The radius
of the hole is small compared with the radius of the
sphere. What is the electric field at the center of the hole?
(Suggestion: This problem, like Problem 64, can be solved
by using the idea of superposition.)

66. A closed surface with dimensions a # b # 0.400 m and
c # 0.600 m is located as in Figure P24.66. The left edge of
the closed surface is located at position x # a. The electric
field throughout the region is nonuniform and given by
E # (3.0 $ 2.0x2)î N/C, where x is in meters. Calculate
the net electric flux leaving the closed surface. What net
charge is enclosed by the surface?

A solid insulating sphere of radius R has a nonuniform
charge density that varies with r according to the expression
1 # Ar 2, where A is a constant and r , R is measured from
the center of the sphere. (a) Show that the magnitude of the
electric field outside (r - R) the sphere is E # AR 5/5/0r 2.
(b) Show that the magnitude of the electric field inside
(r , R) the sphere is E # Ar 3/5/0. (Suggestion: The total
charge Q on the sphere is equal to the integral of 1 dV, where
r extends from 0 to R ; also, the charge q within a radius
r , R is less than Q. To evaluate the integrals, note that the
volume element dV for a spherical shell of radius r and
thickness dr is equal to 4(r 2dr.)

68. A point charge Q is located on the axis of a disk of radius
R at a distance b from the plane of the disk (Fig. P24.68).
Show that if one fourth of the electric flux from the
charge passes through the disk, then R # √3b.

67.

69. A spherically symmetric charge distribution has a charge
density given by 1 # a/r, where a is constant. Find the
electric field as a function of r. (Suggestion: The charge
within a sphere of radius R is equal to the integral of 1 dV,
where r extends from 0 to R. To evaluate the integral, note
that the volume element dV for a spherical shell of radius r
and thickness dr is equal to 4(r 2dr.)

70. An infinitely long insulating cylinder of radius R has a
volume charge density that varies with the radius as

where 10, a, and b are positive constants and r is the
distance from the axis of the cylinder. Use Gauss’s law to
determine the magnitude of the electric field at radial
distances (a) r , R and (b) r - R.

Review problem. A slab of insulating material (infinite in
two of its three dimensions) has a uniform positive charge
density 1. An edge view of the slab is shown in Figure
P24.71. (a) Show that the magnitude of the electric field a
distance x from its center and inside the slab is E # 1x//0.
(b) What If? Suppose an electron of charge 'e and mass
me can move freely within the slab. It is released from rest
at a distance x from the center. Show that the electron
exhibits simple harmonic motion with a frequency

f #
1

2(
  √ 1e

me /0

71.

1 # 10  %a '
r
b &
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72. A slab of insulating material has a nonuniform positive
charge density 1 # Cx 2, where x is measured from the
center of the slab as shown in Figure P24.71, and C is a
constant. The slab is infinite in the y and z directions.
Derive expressions for the electric field in (a) the exterior
regions and (b) the interior region of the slab
('d/2 , x , d/2).

73. (a) Using the mathematical similarity between Coulomb’s
law and Newton’s law of universal gravitation, show that
Gauss’s law for gravitation can be written as

where m in is the net mass inside the gaussian surface and
g # Fg/m represents the gravitational field at any point on

$ g"dA # '4(Gm in

the gaussian surface. (b) Determine the gravitational field
at a distance r from the center of the Earth where r , RE ,
assuming that the Earth’s mass density is uniform.

Answers to Quick Quizzes
24.1 (e). The same number of field lines pass through a

sphere of any size. Because points on the surface of the
sphere are closer to the charge, the field is stronger.

24.2 (d). All field lines that enter the container also leave the
container so that the total flux is zero, regardless of the
nature of the field or the container.

24.3 (b) and (d). Statement (a) is not necessarily true because
an equal number of positive and negative charges could
be present inside the surface. Statement (c) is not neces-
sarily true, as can be seen from Figure 24.8: a nonzero
electric field exists everywhere on the surface, but the
charge is not enclosed within the surface; thus, the net
flux is zero.

24.4 (c). The charges q1 and q4 are outside the surface and
contribute zero net flux through S *.

24.5 (d). We don’t need the surfaces to realize that any given
point in space will experience an electric field due to all
local source charges.

24.6 (a). Charges added to the metal cylinder by your brother
will reside on the outer surface of the conducting cylin-
der. If you are on the inside, these charges cannot
transfer to you from the inner surface. For this same
reason, you are safe in a metal automobile during a
lightning storm.
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