KONSEP NILAI WAKTU UANG

Dosen Pengampu: Ida Setya Dwi Jayanti, S.E., M.M.

NILAI WAKTU UANG

Pak Ibad memiliki uang sebesar Rp1.000 yang ditabung di Bank Vokasi dengan bunga 10% per tahun. Berapakah saldo tabungan Pak Ibad pada akhir tahun ke-5?

Tahun	Saldo Awal Tahun	Bunga (10%)	Saldo Akhir Tahun
1	Rp1.000,00	Rp100,00	Rp1.100,00
2	Rp1.100,00	Rp110,00	Rp1.210,00
3	Rp1.210,00	Rp121,00	Rp1.331,00
4	Rp1.331,00	Rp133,10	Rp1.464,10
5	Rp1.464,10	Rp146,41	Rp1.610,51

Saldo tabungan Pak Ibad pada akhir tahun ke-5 sebesar Rp1.610,51

FUTURE VALUE

Nilai uang di masa yang akan datang dari sejumlah uang tertentu yang dimiliki sekarang

PRESENT VALUE

Nilai sekarang dari sejumlah uang tertentu yang akan diterima di masa yang akan datang

FUTURE VALUE

Future value adalah nilai uang yang diterima di masa mendatang dari sejumlah uang yang diinvestasikan sekarang dengan tingkat suku bunga tertentu.

Rumus untuk menghitung future value:

$$FV_{r,n} = PV(1+r)^n$$

Keterangan:

FV = future value

PV = present value

r = tingkat suku bunga per periode

n = jumlah periode

FUTURE VALUE (Cont.)

```
Diketahui:
```

```
PV = Rp1.000
r = 10%
n = 5 tahun
```

Maka, nilai masa depannya adalah:

$$FV_{r,n} = PV(1+r)^n$$

$$FV_{10\%,5} = Rp1.000(1+0.1)^5$$

$$= Rp1.000(1.61051)$$

$$= Rp1.610.51$$

Apabila menggunakan tabel, $(1 + r)^n$ adalah FVIF_(r,n), sehingga:

$$FV_{r,n} = PV\big(FVIF_{(r,n)}\big)$$

PRESENT VALUE

Present value adalah nilai sekarang dari sejumlah uang tertentu yang akan diterima di masa yang akan datang.

Rumus untuk menghitung present value:

$$PV = \frac{FV_{r,n}}{(1+r)^n}$$

atau

$$PV = FV_{r,n}[(1+r)^{-n}]$$

Keterangan:

FV = future value

PV = present value

r = tingkat suku bunga per periode

n = jumlah periode

PRESENT VALUE (Cont.)

```
Diketahui:
```

FV = Rp1.610,5 r = 10%

n = 5 tahun

Maka, nilai sekarangnya adalah:

$$PV = FV_{10\%,5}[(1+0.1)^{-5}]$$

= Rp1.610,5(0,6209)
= Rp1.000

Apabila menggunakan tabel, $\frac{FV_{r,n}}{(1+r)^n}$ adalah $PVIF_{(r,n)}$, sehingga:

$$PV = (FV_{r,n})(PVIF_{(r,n)})$$

ANNUITY (ANUITAS)

Serangkaian pembayaran yang jumlahnya tetap selama beberapa periode (tahun)

ORDINARY ANNUITY

Pembayaran dilakukan tiap akhir periode

ANNUITY DUE

Pembayaran dilakukan tiap awal periode

FUTURE VALUE OF ORDINARY ANNUITY

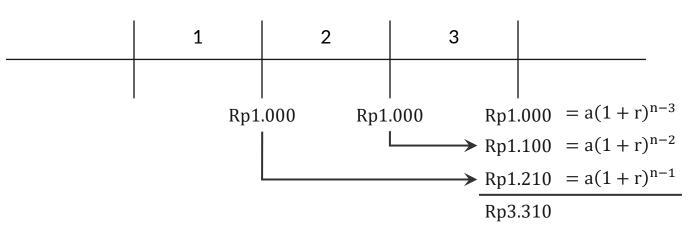
Pak Ibad merencanakan untuk menabung sebesar Rp1.000,00 setiap tahun selama tiga tahun dengan bunga 10% per tahun. Berapa nilai tabungan Pak Ibad pada akhir periode tahun ke-3?

Future Value of Ordinary Annuity

Apabila pembayaran dilakukan pada akhir tahun, maka Future Value Annuity:

$$\begin{split} \text{FVA}_{r,t} &= a(1+r)^{n-1} + a(1+r)^{n-2} + \dots + a(1+r)^1 + a(1+r)^0 \\ &= a[(1+r)^{n-1} + (1+r)^{n-2} + \dots + (1+r)^1 + (1+r)^0] \\ &= a\sum_{t=0}^{n-1} (1+r)^t \end{split}$$

Apabila dengan tabel, maka dirumuskan:


$$FVA_{r,t} = a. FVIFA_{(r,t)}$$

Maka nilai tabungan pada akhir tahun ke-3 adalah:

$$FVA_{10\%,3} = Rp1.000(3,310)$$

 $FVA_{10\%,3} = Rp3.310$

Grafik Future Value of Ordinary Annuity

FUTURE VALUE OF ANNUITY DUE

Apabila pembayaran dilakukan pada awal tahun, maka Future Value Annuity dihitung dengan mengalikan rumus Future Value of Ordinary Annuity dengan (1 + r) sehingga diperoleh:

$$(1+r)FVA_{r,t} = a(1+r)^n + a(1+r)^{n-1} + \dots + a(1+r)^1$$

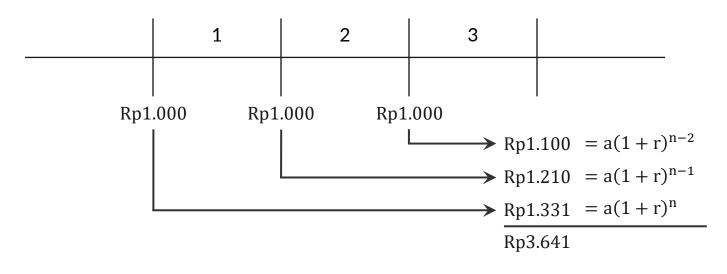
$$(1+r)FVA_{r,t} = a[(1+r)^n + (1+r)^{n-1} + \dots + (1+r)^1]$$

Berdasarkan contoh, maka nilai tabungan pada akhir tahun ke-3 adalah: Future Value of Annuity Due:

$$= (1 + r)$$
. Future Value Sum of Ordinary Annuity

$$= (1 + r). Rp3,310$$

$$= (1 + 0.1)$$
. Rp3,310


$$= Rp3.641$$

Apabila dengan tabel, maka dirumuskan:

$$FVA_{r,t} = a. FVIFA_{(r,t)}$$

Grafik Future Value of Annuity Due

PRESENT VALUE OF ORDINARY ANNUITY

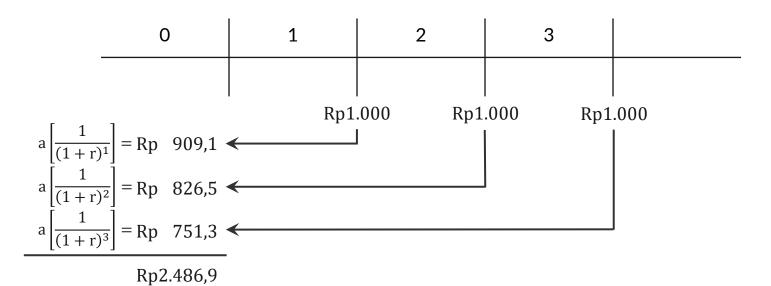
Kepada Pak Ibad ditawarkan suatu alternatif pembayaran secara anuitas sebesar Rp.1.000 setiap tahun selama 3 tahun, atau pembayaran sebesar Rp x,- sekarang. Bila suku bunga 10% per tahun, besarnya nilai x sebagai dasar untuk menerima atau menolak salah satu alternatif adalah:

Present Value of Ordinary Annuity

Bila pembayaran dilakukan pada akhir tahun, maka present value annuity-nya adalah:

$$\begin{aligned} \text{PVA}_{r,n} &= a \left(\frac{1}{(1+r)^1} \right) + a \left(\frac{1}{(1+r)^2} \right) + \dots + a \left(\frac{1}{(1+r)^n} \right) \\ \text{PVA}_{r,n} &= a \left[\left(\frac{1}{(1+r)^1} \right) + \left(\frac{1}{(1+r)^2} \right) + \dots + \left(\frac{1}{(1+r)^n} \right) \right] \end{aligned}$$

Apabila dengan tabel, maka dirumuskan:


$$PVA_{r,n} = a. PVIFA_{(r,n)}$$

Berdasarkan contoh, nilai seluruh anuitas adalah:

$$PVA_{10\%,3} = Rp1.000(2,4869) = Rp2.486,9$$

Grafik Present Value of Ordinary Annuity

Akhir Tahun

PRESENT VALUE OF ANNUITY DUE

Apabila pembayaran dilakukan pada awal setiap tahun, present value annuity-nya adalah:

$$PVA_{r,n} = a \left(\frac{1}{(1+r)^0} \right) + a \left(\frac{1}{(1+r)^1} \right) + \dots + a \left(\frac{1}{(1+r)^{n-1}} \right)$$

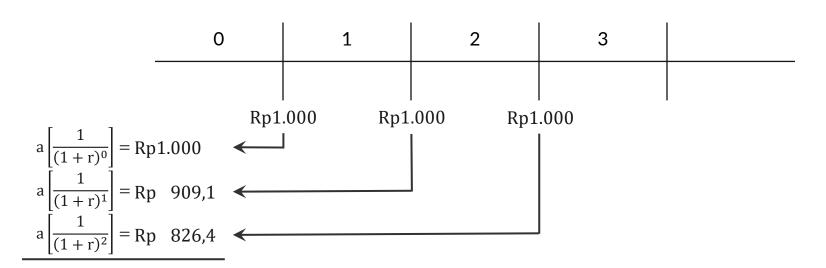
$$PVA_{r,n} = a \sum_{t=0}^{n} (1+r)^t$$

Berdasarkan contoh, present value annuity-nya adalah:

$$PVA_{10\%,3} = Rp1.000 \left[\left(\frac{1}{(1+0,1)^0} \right) + \left(\frac{1}{(1+0,1)^1} \right) + \left(\frac{1}{(1+0,1)^2} \right) \right]$$

$$= Rp1.000(1+0,9091+0,8264)$$

$$= Rp1.000(2,7355)$$


$$= Rp2.735,5$$

Apabila dengan tabel, maka dirumuskan:

$$PVA_{r,n} = a. PVIFA_{(r,n)}$$

Grafik Present Value of Annuity Due

Awal Tahun

Rp2.735,5

APLIKASI (1)

Pak Chairul menginginkan punya tabungan pada akhir tahun ke-5 sebesar Rp100.000,00. Bila suku bunga tabungan 10% per tahun, berapa jumlah yang harus ditabung setiap akhir tahun?

Future value ordinary annuity

$$FVA_{10\%,5} = a \times FVIFA_{(10\%,5)}$$

$$a = \frac{FVA_{10\%,5}}{FVIFA_{(10\%,5)}}$$

$$a = \frac{Rp100.000}{6,1051}$$

$$a = Rp16.380$$

APLIKASI (2)

Bu Arinta menerima pinjaman sebesar Rp200.000,00 dengan bunga 10% per tahun. Bu Arinta diminta untuk mengangsur pembayaran dalam jangka waktu 3 tahun dimulai pada akhir tahun pertama. Berapa besar angsuran setiap tahun? Buatlah tabel amortisasinya!

Present value ordinary annuity

$$PVA_{10\%,3} = a \times PVIFA_{(10\%,3)}$$

$$a = \frac{PVA_{10\%,3}}{PVIFA_{(10\%,3)}}$$

$$a = \frac{Rp200.000}{2,4869}$$

$$a = Rp80.421,41$$

APLIKASI (2) Cont.

Bu Arinta menerima pinjaman sebesar Rp200.000,00 dengan bunga 10% per tahun. Bu Arinta diminta untuk mengangsur pembayaran dalam jangka waktu 3 tahun dimulai pada akhir tahun pertama. Berapa besar angsuran setiap tahun? Buatlah tabel amortisasinya!

Tahun	Calda Avval	Angsuran	Pembayaran		Calda Aldain
	Saldo Awal		Bunga	Pokok Pinjaman	Saldo Akhir
	(1)	(2)	$(3) = (1) \times i$	(4) = (2) - (3)	(5) = (1) - (4)
1	Rp200.000,00	Rp80.421,41	Rp20.000,00	Rp60.421,41	Rp139.578,59
2	Rp139.578,59	Rp80.421,41	Rp13.957,86	Rp66.463,55	Rp73.115,04
3	Rp73.115,04	Rp80.421,41	Rp7.311,50	Rp73.109,90	Rp5,14
	Total	Rp241.264,22	Rp41.269,36	Rp199.994,86	

