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LEARNING GOALS

By studying this chapter, you will

learn:

• How to describe straight-line motion

in terms of average velocity, 

instantaneous velocity, average

acceleration, and instantaneous

acceleration.

• How to interpret graphs of position

versus time, velocity versus time,

and acceleration versus time for

straight-line motion.

• How to solve problems involving

straight-line motion with constant

acceleration, including free-fall 

problems.

• How to analyze straight-line motion

when the acceleration is not 

constant.

MOTION ALONG 
A STRAIGHT LINE

What distance must an airliner travel down a runway before reaching
takeoff speed? When you throw a baseball straight up in the air, how
high does it go? When a glass slips from your hand, how much time

do you have to catch it before it hits the floor? These are the kinds of questions
you will learn to answer in this chapter. We are beginning our study of physics
with mechanics, the study of the relationships among force, matter, and motion.
In this chapter and the next we will study kinematics, the part of mechanics that
enables us to describe motion. Later we will study dynamics, which relates
motion to its causes.

In this chapter we concentrate on the simplest kind of motion: a body moving
along a straight line. To describe this motion, we introduce the physical quantities
velocity and acceleration. In physics these quantities have definitions that are
more precise and slightly different from the ones used in everyday language.
Both velocity and acceleration are vectors: As you learned in Chapter 1, this
means that they have both magnitude and direction. Our concern in this chapter is
with motion along a straight line only, so we won’t need the full mathematics of
vectors just yet. But using vectors will be essential in Chapter 3 when we con-
sider motion in two or three dimensions.

We’ll develop simple equations to describe straight-line motion in the impor-
tant special case when the acceleration is constant. An example is the motion
of a freely falling body. We’ll also consider situations in which the acceleration
varies during the motion; in this case, it’s necessary to use integration to
describe the motion. (If you haven’t studied integration yet, Section 2.6 is
optional.)

? A bungee jumper speeds up during the first part of his fall, then slows to a halt
as the bungee cord stretches and becomes taut. Is it accurate to say that the
jumper is accelerating as he slows during the final part of his fall?



2.1 Displacement, Time, and Average Velocity
Suppose a drag racer drives her AA-fuel dragster along a straight track (Fig. 2.1).
To study the dragster’s motion, we need a coordinate system. We choose the x-
axis to lie along the dragster’s straight-line path, with the origin O at the starting
line. We also choose a point on the dragster, such as its front end, and represent
the entire dragster by that point. Hence we treat the dragster as a particle.

A useful way to describe the motion of the particle that represents the dragster
is in terms of the change in the particle’s coordinate x over a time interval. Sup-
pose that 1.0 s after the start the front of the dragster is at point 19 m from the
origin, and 4.0 s after the start it is at point 277 m from the origin. The
displacement of the particle is a vector that points from to (see Section 1.7).
Figure 2.1 shows that this vector points along the x-axis. The x-component of 
the displacement is the change in the value of x,
that took place during the time interval of We 
define the dragster’s average velocity during this time interval as a vector
quantity whose x-component is the change in x divided by the time interval:

In general, the average velocity depends on the particular time interval cho-
sen. For a 3.0-s time interval before the start of the race, the average velocity
would be zero because the dragster would be at rest at the starting line and would
have zero displacement.

Let’s generalize the concept of average velocity. At time the dragster is at
point with coordinate and at time it is at point with coordinate 
The displacement of the dragster during the time interval from to is the vec-
tor from to The x-component of the displacement, denoted is the
change in the coordinate x:

(2.1)

The dragster moves along the x-axis only, so the y- and z-components of the dis-
placement are equal to zero.

CAUTION The meaning of Note that is not the product of and x; it is a single
symbol that means “the change in the quantity x.” We always use the Greek capital letter

(delta) to represent a change in a quantity, equal to the final value of the quantity minus
the initial value—never the reverse. Likewise, the time interval from to is the
change in the quantity t: (final time minus initial time). ❙

The x-component of average velocity, or average x-velocity, is the x-
component of displacement, divided by the time interval during which¢t¢x,

¢t = t2 - t1

¢t,t2t1

¢

¢¢x≤x

¢x = x2 - x1

¢x,P2.P1

t2t1

x2.P2,t2x1,P1,
t1

1258 m2>13.0 s2 = 86 m>s.

14.0 s - 1.0 s2 = 3.0 s.
1277 m - 19 m2 = 258 m,

P2P1

P2,
P1,
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Position at t2 5 4.0 sPosition at t1 5 1.0 s

P1 P2

O

Displacement from t1 to t2

x1 5 19 m
Dx 5 1x2 2 x12 5 258 m

x2 5 277 m
xx-axis

FINISHSTART

When the dragster moves in the +x-direction, the displacement
Dx is positive and so is the average x-velocity:

x-coordinate of
dragster at 1.0 s

x is positive to the right of the
origin 1O2, negative to the left
of it.

x-coordinate of
dragster at 4.0 s

Dx
D t

258 m
3.0 s

5 86 m/s5vav-x 5

2.1 Positions of a dragster at two times during its run.
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the displacement occurs. We use the symbol for average x-velocity (the
subscript “av” signifies average value and the subscript x indicates that this is
the x-component):

(average x-velocity, straight-line motion) (2.2)

As an example, for the dragster and
so Eq. (2.2) gives

The average x-velocity of the dragster is positive. This means that during the time
interval, the coordinate x increased and the dragster moved in the positive 
x-direction (to the right in Fig. 2.1).

If a particle moves in the negative x-direction during a time interval, its aver-
age velocity for that time interval is negative. For example, suppose an official’s
truck moves to the left along the track (Fig. 2.2). The truck is at at

and is at at Then 
and The x-component of average

velocity is Table 2.1 lists
some simple rules for deciding whether the x-velocity is positive or negative.

CAUTION Choice of the positive x-direction You might be tempted to conclude that
positive average x-velocity must mean motion to the right, as in Fig. 2.1, and that negative
average x-velocity must mean motion to the left, as in Fig. 2.2. But that’s correct only if
the positive x-direction is to the right, as we chose it to be in Figs. 2.1 and 2.2. Had we
chosen the positive x-direction to be to the left, with the origin at the finish line, the drag-
ster would have negative average x-velocity and the official’s truck would have positive
average x-velocity. In most problems the direction of the coordinate axis will be yours to
choose. Once you’ve made your choice, you must take it into account when interpreting
the signs of and other quantities that describe motion! ❙

With straight-line motion we sometimes call simply the displacement
and simply the average velocity. But be sure to remember that these are
really the x-components of vector quantities that, in this special case, have only
x-components. In Chapter 3, displacement, velocity, and acceleration vectors
will have two or three nonzero components.

Figure 2.3 is a graph of the dragster’s position as a function of time—that is,
an x-t graph. The curve in the figure does not represent the dragster’s path in
space; as Fig. 2.1 shows, the path is a straight line. Rather, the graph is a pictorial
way to represent how the dragster’s position changes with time. The points 
and on the graph correspond to the points and along the dragster’s path.
Line is the hypotenuse of a right triangle with vertical side ¢x = x2 - x1p1p2

P2P1p2

p1

vav-x

¢x

vav-x

vav-x = ¢x>¢t = 1-258 m2>19.0 s2 = -29 m>s.
¢t = 125.0 s - 16.0 s2 = 9.0 s.-258 m

¢x = 119 m - 277 m2=t2 = 25.0 s.x2 = 19 mt1 = 16.0 s
x1 = 277 m

vav-x =
277 m - 19 m

4.0 s - 1.0 s
=

258 m

3.0 s
= 86 m>s

t2 = 4.0 s,
t1 = 1.0 s,x2 = 277 m,x1 = 19 m,

vav-x =
x2 - x1

t2 - t1
=

¢x

¢t

vav-x

Position at t1 5 16.0 sPosition at t2 5 25.0 s

O

Displacement from t1 to t2

x2 5 19 m
Dx 5 1x2 2 x12 5 2258 m

x1 5 277 m
x

FINISHSTART

When the truck moves in the 2x-direction, Dx is
negative and so is the average x-velocity:

This position is now x1.This position is now x2.

P2 P1

Dx
D t

5 229 m/s5vav-x 5
2258 m

9.0 s

2.2 Positions of an official’s truck at
two times during its motion. The points 
and now indicate the positions of the
truck, and so are the reverse of Fig. 2.1.

P2

P1

Table 2.1 Rules for the Sign 
of x-Velocity

If the x-coordinate is: . . . the x-velocity is:

Positive & increasing Positive: Particle is 
(getting more positive) moving in -direction

Positive & decreasing Negative: Particle is 
(getting less positive) moving in -direction

Negative & increasing Positive: Particle is 
(getting less negative) moving in -direction

Negative & decreasing Negative: Particle is
(getting more negative) moving in -direction

Note: These rules apply to both the average 
x-velocity and the instantaneous x-velocity

(to be discussed in Section 2.2).vx

vav-x

-x

+x

-x

+x



and horizontal side The average x-velocity of the
dragster equals the slope of the line —that is, the ratio of the triangle’s verti-
cal side to its horizontal side 

The average x-velocity depends only on the total displacement 
that occurs during the time interval not on the details of what 
happens during the time interval. At time a motorcycle might have raced past
the dragster at point in Fig. 2.1, then blown its engine and slowed down to 
pass through point at the same time as the dragster. Both vehicles have the
same displacement during the same time interval and so have the same average 
x-velocity.

If distance is given in meters and time in seconds, average velocity is meas-
ured in meters per second Other common units of velocity are kilometers
per hour feet per second miles per hour and knots

Table 2.2 lists some typical velocity
magnitudes.
11 knot = 1 nautical mile>h = 6080 ft>h2.

1mi>h2,1ft>s2,1km>h2,
1m>s2.

t2P2

P1

t1

¢t = t2 - t1,
¢x = x2 - x1

¢t.¢x
p1p2

vav-x = ¢x/¢t¢t = t2 - t1.
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2.3 The position of a dragster as a 
function of time.

Slope 5 rise over run 5

For a displacement along the x-axis, an object’s average x-velocity
vav-x equals the slope of a line connecting the corresponding points
on a graph of position 1x2
versus time 1t2.

x (m)

x2

P1

p1

P2 p2

x1

t2

t (s)
O

400

300

200

100

1 2 3

Dragster track
1not to scale2

4 5

Dx 5 x2 2 x1

Slope 5
x-v

elo
cit

y

Dt 5 t2 2 t1

t1

Dx
Dt

2.4 The winner of a 50-m swimming
race is the swimmer whose average veloc-
ity has the greatest magnitude—that is, the
swimmer who traverses a displacement 
of 50 m in the shortest elapsed time ¢t.

¢x

Test Your Understanding of Section 2.1 Each of the following auto-
mobile trips takes one hour. The positive x-direction is to the east. (i) Automobile
A travels 50 km due east. (ii) Automobile B travels 50 km due west. (iii) Automo-
bile C travels 60 km due east, then turns around and travels 10 km due west. (iv) Auto-
mobile D travels 70 km due east. (v) Automobile E travels 20 km due west, then turns
around and travels 20 km due east. (a) Rank the five trips in order of average x-velocity
from most positive to most negative. (b) Which trips, if any, have the same average 
x-velocity? (c) For which trip, if any, is the average x-velocity equal to zero? ❙

2.2 Instantaneous Velocity
Sometimes the average velocity is all you need to know about a particle’s
motion. For example, a race along a straight line is really a competition to see
whose average velocity, has the greatest magnitude. The prize goes to the
competitor who can travel the displacement from the start to the finish line in
the shortest time interval, (Fig. 2.4).

But the average velocity of a particle during a time interval can’t tell us how
fast, or in what direction, the particle was moving at any given time during the
interval. To do this we need to know the instantaneous velocity, or the velocity
at a specific instant of time or specific point along the path.

CAUTION How long is an instant? Note that the word “instant” has a somewhat differ-
ent definition in physics than in everyday language. You might use the phrase “It lasted
just an instant” to refer to something that lasted for a very short time interval. But in
physics an instant has no duration at all; it refers to a single value of time. ❙

¢t
¢x

vav-x,

Table 2.2 Typical Velocity 
Magnitudes

A snail’s pace

A brisk walk

Fastest human

Freeway speeds

Fastest car

Random motion of air molecules

Fastest airplane

Orbiting communications satellite

Electron orbiting in a 
hydrogen atom

Light traveling in a vacuum 3 * 108 m>s

2 * 106 m>s

3000 m>s

1000 m>s

500 m>s

341 m>s

30 m>s

11 m>s

2 m>s

10-3 m>s
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To find the instantaneous velocity of the dragster in Fig. 2.1 at the point we
move the second point closer and closer to the first point and compute the
average velocity over the ever-shorter displacement and time
interval. Both and become very small, but their ratio does not necessarily
become small. In the language of calculus, the limit of as approaches
zero is called the derivative of x with respect to t and is written The
instantaneous velocity is the limit of the average velocity as the time interval
approaches zero; it equals the instantaneous rate of change of position with time.
We use the symbol with no “av” subscript, for the instantaneous velocity
along the x-axis, or the instantaneous x-velocity:

(instantaneous x-velocity, straight-line motion) (2.3)

The time interval is always positive, so has the same algebraic sign as
A positive value of means that x is increasing and the motion is in the pos-

itive x-direction; a negative value of means that x is decreasing and the motion
is in the negative x-direction. A body can have positive x and negative or the
reverse; x tells us where the body is, while tells us how it’s moving (Fig. 2.5).
The rules that we presented in Table 2.1 (Section 2.1) for the sign of average 
x-velocity also apply to the sign of instantaneous x-velocity .

Instantaneous velocity, like average velocity, is a vector quantity; Eq. (2.3)
defines its x-component. In straight-line motion, all other components of instan-
taneous velocity are zero. In this case we often call simply the instantaneous
velocity. (In Chapter 3 we’ll deal with the general case in which the instanta-
neous velocity can have nonzero x-, y-, and z-components.) When we use the
term “velocity,” we will always mean instantaneous rather than average velocity.

The terms “velocity” and “speed” are used interchangeably in everyday lan-
guage, but they have distinct definitions in physics. We use the term speed to
denote distance traveled divided by time, on either an average or an instantaneous
basis. Instantaneous speed, for which we use the symbol with no subscripts,
measures how fast a particle is moving; instantaneous velocity measures how fast
and in what direction it’s moving. Instantaneous speed is the magnitude of instan-
taneous velocity and so can never be negative. For example, a particle with instan-
taneous velocity and a second particle with are
moving in opposite directions at the same instantaneous speed 

CAUTION Average speed and average velocity Average speed is not the magnitude of
average velocity. When César Cielo set a world record in 2009 by swimming 100.0 m in

, his average speed was But because he swam
two lengths in a 50-m pool, he started and ended at the same point and so had zero total
displacement and zero average velocity! Both average speed and instantaneous speed are
scalars, not vectors, because these quantities contain no information about direction. ❙

1100.0 m2>146.91 s2 = 2.132 m>s.46.91 s

25 m>s.
vx = -25 m>svx = 25 m>s

v

vx

vxvav-x

vx

vx,
vx

vx¢x.
vx¢t

vx = lim
¢tS0

¢x

¢t
=

dx

dt

vx,

dx>dt.
¢t¢x>¢t

¢t¢x
vav-x = ¢x>¢t

P1P2

P1,

2.5 Even when he’s moving forward, this
cyclist’s instantaneous x-velocity can be
negative—if he’s traveling in the negative
x-direction. In any problem, the choice of
which direction is positive and which is
negative is entirely up to you.

Example 2.1 Average and instantaneous velocities

A cheetah is crouched 20 m to the east of an observer (Fig. 2.6a). At
time the cheetah begins to run due east toward an antelope that
is 50 m to the east of the observer. During the first 2.0 s of the attack,
the cheetah’s coordinate x varies with time according to the equation

(a) Find the cheetah’s displacement
between and (b) Find its average velocity
during that interval. (c) Find its instantaneous velocity at 
by taking then then (d) Derive an0.001 s.0.01 s,¢t = 0.1 s,

t1 = 1.0 s
t2 = 2.0 s.t1 = 1.0 s

15.0 m>s22t 2.x = 20 m +

t = 0
expression for the cheetah’s instantaneous velocity as a function of
time, and use it to find at and 

SOLUTION

IDENTIFY and SET UP: Figure 2.6b shows our sketch of the 
cheetah’s motion. We use Eq. (2.1) for displacement, Eq. (2.2) for
average velocity, and Eq. (2.3) for instantaneous velocity.

t = 2.0 s.t = 1.0 svx

Continued
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EXECUTE: (a) At the cheetah’s positions
are

The displacement during this 1.0-s interval is

(b) The average x-velocity during this interval is

(c) With the time interval is from to a
new . At the position is

The average x-velocity during this 0.1-s interval is

vav-x =
26.05 m - 25 m

1.1 s - 1.0 s
= 10.5 m>s

x2 = 20 m + 15.0 m>s2211.1 s)2 = 26.05 m

t2t2 = 1.1 s
t1 = 1.0 s¢t = 0.1 s

vav-x =
x2 - x1

t2 - t1
=

40 m - 25 m

2.0 s - 1.0 s
=

15 m

1.0 s
= 15 m>s

¢x = x2 - x1 = 40 m - 25 m = 15 m

x2 = 20 m + 15.0 m>s2212.0 s22 = 40 m

x1 = 20 m + 15.0 m>s2211.0 s22 = 25 m

x1 and x2

t1 = 1.0 s and t2 = 2.0 s Following this pattern, you can calculate the average x-velocities
for 0.01-s and 0.001-s intervals: The results are and

As gets smaller, the average x-velocity gets closer
to so we conclude that the instantaneous x-velocity at

is (We suspended the rules for significant-
figure counting in these calculations.)

(d) To find the instantaneous x-velocity as a function of time,
we take the derivative of the expression for x with respect to t. The
derivative of a constant is zero, and for any n the derivative of is

so the derivative of is 2t. We therefore have

At this yields , as we found in part (c); at

EVALUATE: Our results show that the cheetah picked up speed from
(when it was at rest) to to

This makes sense; the cheetah covered
only 5 m during the interval to but it covered 15 m
during the interval to t = 2.0 s.t = 1.0 s

t = 1.0 s,t = 0
1vx = 20 m>s2.t = 2.0 s

1vx = 10 m>s2t = 1.0 st = 0

vx = 20 m>s.t = 2.0 s,
vx = 10 m>st = 1.0 s,

vx =
dx

dt
= 15.0 m>s2212t2 = 110 m>s22t

t 2nt n-1,
t n

10.0 m>s.t = 1.0 s
10.0 m>s,

¢t10.005 m>s.
10.05 m>s

(a) The situation

(b) Our sketch

(c) Decisions       Point axis in
direction cheetah runs,
so that all values will
be positive.

1       Place origin
at vehicle.
2       Mark initial

positions of cheetah
and antelope.

3       Mark positions
for cheetah at 1 s
and 2 s.

4       Add the known
and unknown
quantities.

5

2.6 A cheetah attacking an antelope from ambush. The animals are not drawn to the same scale as the axis.

Finding Velocity on an x-t Graph
We can also find the x-velocity of a particle from the graph of its position as 
a function of time. Suppose we want to find the x-velocity of the dragster in 
Fig. 2.1 at point As point in Fig. 2.1 approaches point point in the 
x-t graphs of Figs. 2.7a and 2.7b approaches point and the average x-velocity
is calculated over shorter time intervals In the limit that shown in
Fig. 2.7c, the slope of the line equals the slope of the line tangent to the
curve at point Thus, on a graph of position as a function of time for straight-
line motion, the instantaneous x-velocity at any point is equal to the slope of the
tangent to the curve at that point.

If the tangent to the x-t curve slopes upward to the right, as in Fig. 2.7c, then
its slope is positive, the x-velocity is positive, and the motion is in the positive 
x-direction. If the tangent slopes downward to the right, the slope of the x-t graph

p1.
p1p2

¢tS 0,¢t.
p1

p2P1,P2P1.ActivPhysics 1.1: Analyzing Motion Using
Diagrams
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and the x-velocity are negative, and the motion is in the negative x-direction.
When the tangent is horizontal, the slope and the x-velocity are zero. Figure 2.8
illustrates these three possibilities.

Figure 2.8 actually depicts the motion of a particle in two ways: as (a) an x-t
graph and (b) a motion diagram that shows the particle’s position at various
instants (like frames from a video of the particle’s motion) as well as arrows to
represent the particle’s velocity at each instant. We will use both x-t graphs and
motion diagrams in this chapter to help you understand motion. You will find it
worth your while to draw both an x-t graph and a motion diagram as part of solv-
ing any problem involving motion.

As the average x-velocity vav-x is calculated
over shorter and shorter time intervals ...

... its value vav-x 5 Dx/Dt approaches the
instantaneous x-velocity.

The instantaneous x-velocity vx at any
given point equals the slope of the tangent
to the x-t curve at that point.

5 40 m/s
vx 5

160 m
4.0 s

Dt 5 1.0 s
Dx 5 55 m

vav-x 5 55 m/s
      

  Slope of tangent 5

instantaneous x-velocity

p1 4.0 s

160 m

t (s)
1 2 3 4 5O

x (m)

400

300

200

100

(a) (b) (c)

t (s)
1 2 3 4 5

p2

p1 DxDt

x (m)

OO

400

300

200

100

t (s)
1 2 3 4 5

p2

Dt 5 2.0 s
Dx 5 150 m

vav-x 5 75 m/s

p1

Dx
Dt

x (m)

400

300

200

100

2.7 Using an x-t graph to go from (a), (b) average x-velocity to (c) instantaneous x-velocity In (c) we find the slope of the tangent
to the x-t curve by dividing any vertical interval (with distance units) along the tangent by the corresponding horizontal interval (with
time units).

vx.

The particle is at x , 0 and moving
in the 1x-direction.

From tA to tB it speeds up, ...

... and from tB to tC it slows down,
then halts momentarily at tC.

From tC to tD it speeds up in the 
2x-direction, ...

... and from tD to tE it slows down
 in the 2x-direction.

The steeper the slope (positive or negative) of an object’s x-t graph, the
greater is the object’s speed in the positive or negative x-direction.

Slope positive:
vx . 0

Slope zero: vx 5 0

Slope negative:
vx , 0

(a) x-t graph (b) Particle’s motion

tA 5 0

tB

tC

tD

tE

v

0
x

v
0

x

0
x

v

v

v 5 0

0
x

0
x

0

A

B

x
C

D

E
t

2.8 (a) The x-t graph of the motion of a particular particle. The slope of the tangent at any point equals the velocity at that point.
(b) A motion diagram showing the position and velocity of the particle at each of the times labeled on the x-t graph.

Test Your Understanding of Section 2.2 Figure 2.9 is an x-t graph of
the motion of a particle. (a) Rank the values of the particle’s x-velocity at the
points P, Q, R, and S from most positive to most negative. (b) At which points is

positive? (c) At which points is negative? (d) At which points is zero? (e) Rank
the values of the particle’s speed at the points P, Q, R, and S from fastest to slowest. ❙

vxvxvx

vx

R
t

S

Q

P

x

2.9 An x-t graph for a particle.



2.3 Average and Instantaneous Acceleration
Just as velocity describes the rate of change of position with time, acceleration
describes the rate of change of velocity with time. Like velocity, acceleration is a
vector quantity. When the motion is along a straight line, its only nonzero compo-
nent is along that line. As we’ll see, acceleration in straight-line motion can refer
to either speeding up or slowing down.

Average Acceleration
Let’s consider again a particle moving along the x-axis. Suppose that at time 
the particle is at point and has x-component of (instantaneous) velocity 
and at a later time it is at point and has x-component of velocity So the
x-component of velocity changes by an amount during the time
interval

We define the average acceleration of the particle as it moves from to to
be a vector quantity whose x-component (called the average x-acceleration)
equals the change in the x-component of velocity, divided by the time inter-
val

(average x-acceleration,
straight-line motion)

aav-x =
v2x - v1x

t2 - t1
=

¢vx

¢t

¢t:
¢vx,

aav-x

P2P1

¢t = t2 - t1.
¢vx = v2x - v1x

v2x.P2t2

v1x,P1

t1
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(2.4)

For straight-line motion along the x-axis we will often call simply the aver-
age acceleration. (We’ll encounter the other components of the average accelera-
tion vector in Chapter 3.)

If we express velocity in meters per second and time in seconds, then average
acceleration is in meters per second per second, or This is usually writ-
ten as and is read “meters per second squared.”

CAUTION Acceleration vs. velocity Be very careful not to confuse acceleration with
velocity! Velocity describes how a body’s position changes with time; it tells us how
fast and in what direction the body moves. Acceleration describes how the velocity
changes with time; it tells us how the speed and direction of motion are changing. It
may help to remember the phrase “acceleration is to velocity as velocity is to position.”
It can also help to imagine yourself riding along with the moving body. If the body
accelerates forward and gains speed, you feel pushed backward in your seat; if it accel-
erates backward and loses speed, you feel pushed forward. If the velocity is constant
and there’s no acceleration, you feel neither sensation. (We’ll see the reason for these
sensations in Chapter 4.) ❙

m>s2
1m>s2>s.

aav-x

Example 2.2 Average acceleration

An astronaut has left an orbiting spacecraft to test a new personal
maneuvering unit. As she moves along a straight line, her partner
on the spacecraft measures her velocity every 2.0 s, starting at time
t = 1.0 s:

Find the average x-acceleration, and state whether the speed of the
astronaut increases or decreases over each of these 2.0-s time
intervals: (a) to (b) to 
(c) to (d) to 

SOLUTION

IDENTIFY and SET UP: We’ll use Eq. (2.4) to determine the aver-
age acceleration from the change in velocity over each time
interval. To find the changes in speed, we’ll use the idea that speed

is the magnitude of the instantaneous velocity vx.v

aav-x

t2 = 15.0 s .t1 = 13.0 st2 = 11.0 s;t1 = 9.0 s
t2 = 7.0 s;t1 = 5.0 st2 = 3.0 s;t1 = 1.0 s

t t

20.8 m/s15.0 s1.2 m/s7.0 s

21.6 m/s13.0 s1.6 m/s5.0 s

21.0 m/s11.0 s1.2 m/s3.0 s

20.4 m/s9.0 s0.8 m/s1.0 s

vxvx
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Instantaneous Acceleration
We can now define instantaneous acceleration following the same procedure
that we used to define instantaneous velocity. As an example, suppose a race
car driver is driving along a straightaway as shown in Fig. 2.11. To define the
instantaneous acceleration at point we take the second point in Fig. 2.11
to be closer and closer to so that the average acceleration is computed over
shorter and shorter time intervals. The instantaneous acceleration is the limit of
the average acceleration as the time interval approaches zero. In the language
of calculus, instantaneous acceleration equals the derivative of velocity with
time. Thus

(instantaneous x-acceleration,
straight-line motion) (2.5)

Note that in Eq. (2.5) is really the x-component of the acceleration vec-
tor, or the instantaneous x-acceleration; in straight-line motion, all other
components of this vector are zero. From now on, when we use the term
“acceleration,” we will always mean instantaneous acceleration, not average
acceleration.

ax

ax = lim
¢tS0

¢vx

¢t
=

dvx

dt

P1

P2P1,

The upper part of Fig. 2.10 is our graph of the x-velocity as a
function of time. On this graph, the slope of the line connect-
ing the endpoints of each interval is the average x-acceleration

for that interval. The four slopes (and thus the
signs of the average accelerations) are, respectively, positive, neg-
ative, negative, and positive. The third and fourth slopes (and thus
the average accelerations themselves) have greater magnitude than
the first and second.

aav-x = ¢vx>¢t

vx-t
EXECUTE: Using Eq. (2.4), we find:

(a)
The speed (magnitude of instantaneous x-velocity)

increases from to 
(b)

The speed decreases from to 
(c)

The speed increases from to 
(d)

The speed decreases from to 

In the lower part of Fig. 2.10, we graph the values of 

EVALUATE: The signs and relative magnitudes of the average accel-
erations agree with our qualitative predictions. For future refer-
ence, note this connection among speed, velocity, and acceleration:
Our results show that when the average x-acceleration has the
same direction (same algebraic sign) as the initial velocity, as in
intervals (a) and (c), the astronaut goes faster. When has the
opposite direction (opposite algebraic sign) from the initial velocity,
as in intervals (b) and (d), she slows down. Thus positive x-accelera-
tion means speeding up if the x-velocity is positive [interval (a)]
but slowing down if the x-velocity is negative [interval (d)]. Simi-
larly, negative x-acceleration means speeding up if the x-velocity is
negative [interval (c)] but slowing down if the x-velocity is posi-
tive [interval (b)].

aav-x

aav-x.

0.8 m>s.1.6 m>s0.4 m>s2.
aav-x = 3-0.8 m>s - 1-1.6 m>s24>115.0 s - 13.0 s2 =

1.0 m>s.0.4 m>s-0.3 m>s2.
aav-x = 3-1.0 m>s - 1-0.4 m>s24>111.0 s - 9.0 s2 =

1.2 m>s.1.6 m>s-0.2 m>s2.
aav-x = 11.2 m>s - 1.6 m>s2>17.0 s - 5.0 s2 =

1.2 m>s.0.8 m>s
0.2 m>s2.

aav-x = 11.2 m>s - 0.8 m>s2>13.0 s - 1.0 s2 =

The slope of the line connecting each
pair of points on the vx-t graph ...

... equals the average x-acceleration
between those points.

2.10 Our graphs of x-velocity versus time (top) and average 
x-acceleration versus time (bottom) for the astronaut.

Speed v2
x-velocity v2x

Speed v1
x-velocity v1x

P2P1O
x

2.11 A Grand Prix car at two points on the straightaway.
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Example 2.3 Average and instantaneous accelerations

Suppose the x-velocity of the car in Fig. 2.11 at any time t is
given by the equation

(a) Find the change in x-velocity of the car in the time interval
to (b) Find the average x-acceleration in

this time interval. (c) Find the instantaneous x-acceleration at time
by taking to be first 0.1 s, then 0.01 s, then 0.001 s.

(d) Derive an expression for the instantaneous x-acceleration as a
function of time, and use it to find at and 

SOLUTION

IDENTIFY and SET UP: This example is analogous to Example 2.1
in Section 2.2. (Now is a good time to review that example.) In
Example 2.1 we found the average x-velocity from the change in
position over shorter and shorter time intervals, and we obtained
an expression for the instantaneous x-velocity by differentiating
the position as a function of time. In this example we have an exact
parallel. Using Eq. (2.4), we’ll find the average x-acceleration
from the change in x-velocity over a time interval. Likewise, using
Eq. (2.5), we’ll obtain an expression for the instantaneous 
x-acceleration by differentiating the x-velocity as a function of
time.

EXECUTE: (a) Before we can apply Eq. (2.4), we must find the 
x-velocity at each time from the given equation. At and

, the velocities are

The change in x-velocity between and is

(b) The average x-acceleration during this time interval of dura-
tion is

aav-x =
v2x - v1x

t2 - t1
=

4.0 m>s

2.0 s
= 2.0 m>s2

t2 - t1 = 2.0 s

¢vx = v2x - v1x = 64.5 m>s - 60.5 m>s = 4.0 m>s

t2 = 3.0 st1 = 1.0 s¢vx

v2x = 60 m>s + 10.50 m>s3213.0 s22 = 64.5 m>s

v1x = 60 m>s + 10.50 m>s3211.0 s22 = 60.5 m>s

t2 = 3.0 s
t1 = 1.0 s

t = 3.0 s.t = 1.0 sax

¢tt1 = 1.0 s

t2 = 3.0 s.t1 = 1.0 s

vx = 60 m>s + 10.50 m>s32t 2

vx During this time interval the x-velocity and average x-acceleration
have the same algebraic sign (in this case, positive), and the car
speeds up.

(c) When we have . Proceeding as
before, we find

You should follow this pattern to calculate for 
and the results are and

respectively. As gets smaller, the average
x-acceleration gets closer to 1.0 so the instantaneous 
x-acceleration at is 

(d) By Eq. (2.5) the instantaneous x-acceleration is
The derivative of a constant is zero and the deriva-

tive of is 2t, so

When ,

When

EVALUATE: Neither of the values we found in part (d) is equal to
the average x-acceleration found in part (b). That’s because the
car’s instantaneous x-acceleration varies with time. The rate of
change of acceleration with time is sometimes called the “jerk.”

ax = 11.0 m>s3213.0 s2 = 3.0 m>s2

t = 3.0 s,

ax = 11.0 m>s3211.0 s2 = 1.0 m>s2

t = 1.0 s

= 10.50 m>s3212t2 = 11.0 m>s32t

ax =
dvx

dt
=

d

dt
360 m>s + 10.50 m>s32t 24

t 2
ax = dvx>dt.

1.0 m>s2.t = 1.0 s
m>s2,
¢taav-x = 1.0005 m>s2,

aav-x = 1.005 m>s2¢t = 0.001 s;
¢t = 0.01 saav-x

aav-x =
¢vx

¢t
=

0.105 m>s

0.1 s
= 1.05 m>s2

¢vx = 0.105 m>s

v2x = 60 m>s + 10.50 m>s3211.1 s22 = 60.605 m>s

t2 = 1.1 s¢t = 0.1 s,

Finding Acceleration on a vx-t Graph or an x-t Graph
In Section 2.2 we interpreted average and instantaneous x-velocity in terms of the
slope of a graph of position versus time. In the same way, we can interpret aver-
age and instantaneous x-acceleration by using a graph with instantaneous veloc-
ity on the vertical axis and time t on the horizontal axis—that is, a graph
(Fig. 2.12). The points on the graph labeled and correspond to points and

in Fig. 2.11. The average x-acceleration during this interval is
the slope of the line As point in Fig. 2.11 approaches point point 
in the graph of Fig. 2.12 approaches point and the slope of the line 
approaches the slope of the line tangent to the curve at point Thus, on a graph
of x-velocity as a function of time, the instantaneous x-acceleration at any point
is equal to the slope of the tangent to the curve at that point. Tangents drawn at
different points along the curve in Fig. 2.12 have different slopes, so the instanta-
neous x-acceleration varies with time.

p1.
p1p2p1,vx-t

p2P1,P2p1p2.
aav-x = ¢vx>¢tP2

P1p2p1

vx-tvx
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CAUTION The signs of x-acceleration and x-velocity By itself, the algebraic sign of
the x-acceleration does not tell you whether a body is speeding up or slowing down.
You must compare the signs of the x-velocity and the x-acceleration. When and have
the same sign, the body is speeding up. If both are positive, the body is moving in the pos-
itive direction with increasing speed. If both are negative, the body is moving in the nega-
tive direction with an x-velocity that is becoming more and more negative, and again the
speed is increasing. When and have opposite signs, the body is slowing down. If 
is positive and is negative, the body is moving in the positive direction with decreasing
speed; if is negative and is positive, the body is moving in the negative direction
with an x-velocity that is becoming less negative, and again the body is slowing down.
Table 2.3 summarizes these ideas, and Fig. 2.13 illustrates some of these possibilities. ❙

The term “deceleration” is sometimes used for a decrease in speed. Because it
may mean positive or negative depending on the sign of we avoid this term.

We can also learn about the acceleration of a body from a graph of its position
versus time. Because and we can write

(2.6)ax =
dvx

dt
=

d

dt
a

dx

dt
b =

d2x

dt 2

vx = dx>dt,ax = dvx>dt

vx,ax,

axvx

ax

vxaxvx

axvx

vx

v2x

v1x

t2t1
t

O

p1

p2

Dt 5 t2 2 t1

Dvx 5 v2x 2 v1x

Slope of tangent to vx-t curve at a given point
5 instantaneous x-acceleration at that point.

For a displacement along the x-axis, an object’s average x-acceleration
equals the slope of a line connecting the corresponding points on a
graph of x-velocity (vx) versus time (t).

Slope 5
 av

era
ge a

cc
ele

rat
ion

2.12 A graph of the motion in 
Fig. 2.11.

vx-t

?

Slope zero: ax 5 0

The steeper the slope (positive or negative) of an
object’s vx-t graph, the greater is the object’s
acceleration in the positive or negative x-direction.

Object is at x , 0, moving in the 2x-direction (vx , 0),
and slowing down (vx and ax have opposite signs).

Object is at x . 0, moving in the 2x-direction (vx , 0),
and speeding up (vx and ax have the same sign).

Object is at x . 0, moving in the 1x-direction (vx . 0);
its speed is instantaneously not changing (ax 5 0).

Object is at x , 0, instantaneously at rest (vx 5 0), and
about to move in the 1x-direction (ax . 0).

Object is at x . 0, instantaneously at rest (vx 5 0), and
about to move in the 2x-direction (ax , 0).

Slope positive:
ax . 0

Slope negative:
ax , 0

(a) vx-t graph for an object 
moving on the x-axis

(b) Object’s position, velocity, and acceleration on the x-axis

0

A

B

C

D

E

t

vx

tE

tA 5 0

tB

tC

tD

0
x

0
x

0
x

0
x

a

a

v
a 5 0

v

v 5 0

0
x

a

v 5 0

v
a

2.13 (a) A graph of the motion of a different particle from that shown in Fig. 2.8. The slope of the tangent at any point
equals the x-acceleration at that point. (b) A motion diagram showing the position, velocity, and acceleration of the particle at
each of the times labeled on the graph. The positions are consistent with the graph; for instance, from to the velocity is
negative, so at the particle is at a more negative value of x than at tA.tB

tBtAvx-tvx-t

vx-t

Table 2.3 Rules for the Sign 
of x-Acceleration

If x-velocity is: . . . x-acceleration is:

Positive & increasing Positive: Particle is 
(getting more positive) moving in -direction

& speeding up

Positive & decreasing Negative: Particle is 
(getting less positive) moving in -direction

& slowing down

Negative & increasing Positive: Particle is 
(getting less negative) moving in -direction

& slowing down

Negative & decreasing Negative: Particle is 
(getting more negative) moving in -direction

& speeding up

Note: These rules apply to both the average 
x-acceleration and the instantaneous 
x-acceleration .ax

aav-x

-x

-x

+x

+x



That is, is the second derivative of x with respect to t. The second derivative of
any function is directly related to the concavity or curvature of the graph of that
function (Fig. 2.14). Where the x-t graph is concave up (curved upward), the 
x-acceleration is positive and is increasing; at a point where the x-t graph is
concave down (curved downward), the x-acceleration is negative and is
decreasing. At a point where the x-t graph has no curvature, such as an inflection
point, the x-acceleration is zero and the velocity is not changing. Figure 2.14
shows all three of these possibilities.

Examining the curvature of an x-t graph is an easy way to decide what the
sign of acceleration is. This technique is less helpful for determining numeri-
cal values of acceleration because the curvature of a graph is hard to measure
accurately.

vx

vx

ax
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The greater the curvature (upward or downward) of
an object’s x-t graph, the greater is the object’s
acceleration in the positive or negative x-direction.

Object is at x , 0, moving in the 1x-direction
(vx . 0), and speeding up (vx and ax have the
same sign).

Object is at x . 0, moving in the 2x-direction
(vx , 0), and slowing down (vx and ax have 
opposite signs).

Object is at x . 0, instantaneously at rest 
(vx 5 0), and about to move in the 
2x-direction (ax , 0).

Object is at x 5 0, moving in the 1x-direction
(vx . 0); speed is instantaneously not 
changing (ax 5 0).

Object is at x . 0, moving in the 2x-direction
(vx , 0); speed is instantaneously not 
changing (ax 5 0).

Slope positive: vx . 0
Curvature upward: ax . 0

Slope positive: vx . 0
Curvature zero: ax 5 0

Slope negative: vx , 0
Curvature zero: ax 5 0

Slope negative:
vx , 0
Curvature upward:
ax . 0

Slope zero: vx 5 0
Curvature downward: ax , 0

0

A

B

C

D

E
t

x

(a) x-t graph

tC

tD

tB

tE

tA 5 0

(b) Object’s motion

0
x

0
x

0
x

0
x

v

v

v 5 0

v

v

0
x

a

a 5 0

a

a 5 0

a

2.14 (a) The same x-t graph as shown in Fig. 2.8a. The x-velocity is equal to the slope of the graph, and the acceleration is given
by the concavity or curvature of the graph. (b) A motion diagram showing the position, velocity, and acceleration of the particle at
each of the times labeled on the x-t graph.

2.4 Motion with Constant Acceleration
The simplest kind of accelerated motion is straight-line motion with constant
acceleration. In this case the velocity changes at the same rate throughout the
motion. As an example, a falling body has a constant acceleration if the effects of
the air are not important. The same is true for a body sliding on an incline or
along a rough horizontal surface, or for an airplane being catapulted from the
deck of an aircraft carrier.

Figure 2.15 is a motion diagram showing the position, velocity, and accelera-
tion for a particle moving with constant acceleration. Figures 2.16 and 2.17 depict
this same motion in the form of graphs. Since the x-acceleration is constant, the

graph (graph of x-acceleration versus time) in Fig. 2.16 is a horizontal line.
The graph of x-velocity versus time, or graph, has a constant slope because
the acceleration is constant, so this graph is a straight line (Fig. 2.17).

vx-t
ax-t

Test Your Understanding of Section 2.3 Look again at the x-t graph in
Fig. 2.9 at the end of Section 2.2. (a) At which of the points P, Q, R, and S is the 
x-acceleration positive? (b) At which points is the x-acceleration negative? (c)
At which points does the x-acceleration appear to be zero? (d) At each point state 
whether the velocity is increasing, decreasing, or not changing. ❙

ax

If a particle moves in a
straight line with constant
x-acceleration ax ...

... the x-velocity changes
by equal amounts in equal
time intervals.

However, the position changes by different
amounts in equal time intervals because the
velocity is changing.

t � 2Dt
0

t � 3Dt
0

0
t � Dt

t � 4Dt
0

v
t � 0

0

a

v

v

v

v
a

a

a

a

x

x

x

x

x

2.15 A motion diagram for a particle
moving in a straight line in the positive
x-direction with constant positive 
x-acceleration The position, velocity,
and acceleration are shown at five equally
spaced times.

ax.
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When the x-acceleration is constant, the average x-acceleration for any
time interval is the same as This makes it easy to derive equations for the
position x and the x-velocity as functions of time. To find an expression for 
we first replace in Eq. (2.4) by 

(2.7)

Now we let and let be any later time t. We use the symbol for the 
x-velocity at the initial time the x-velocity at the later time t is Then
Eq. (2.7) becomes

(constant x-acceleration only) (2.8)

In Eq. (2.8) the term is the product of the constant rate of change of 
x-velocity, and the time interval t. Therefore it equals the total change in 
x-velocity from the initial time to the later time t. The x-velocity at any
time t then equals the initial x-velocity (at plus the change in x-velocity

(Fig. 2.17).
Equation (2.8) also says that the change in x-velocity of the particle

between and any later time t equals the area under the graph between
those two times. You can verify this from Fig. 2.16: Under this graph is a rectangle
of vertical side , horizontal side t, and area . From Eq. (2.8) this is indeed equal
to the change in velocity In Section 2.6 we’ll show that even if the 
x-acceleration is not constant, the change in x-velocity during a time interval is still
equal to the area under the curve, although in that case Eq. (2.8) does not apply.

Next we’ll derive an equation for the position x as a function of time when the
x-acceleration is constant. To do this, we use two different expressions for the
average x-velocity during the interval from to any later time t. The first
expression comes from the definition of Eq. (2.2), which is true whether or
not the acceleration is constant. We call the position at time the initial posi-
tion, denoted by The position at the later time t is simply x. Thus for the time
interval the displacement is and Eq. (2.2) gives

(2.9)

We can also get a second expression for that is valid only when the 
x-acceleration is constant, so that the x-velocity changes at a constant rate. In this
case the average x-velocity for the time interval from 0 to t is simply the average
of the x-velocities at the beginning and end of the interval:

(constant x-acceleration only) (2.10)

(This equation is not true if the x-acceleration varies during the time interval.) We
also know that with constant x-acceleration, the x-velocity at any time t is given
by Eq. (2.8). Substituting that expression for into Eq. (2.10), we find

(constant x-acceleration only) (2.11)= v0x + 1
2 axt

vav-x = 1
2 1v0x + v0x + axt2

vx

vx

vav-x =
v0x + vx

2

vav-x

vav-x =
x - x0

t

¢x = x - x0,¢t = t - 0
x0.

t = 0
vav-x,

t = 0vav-x

ax-t

vx - v0x.
axtax

ax-tt = 0
vx - v0x

axt
t = 0)v0x

vxt = 0
ax,

axt

vx = v0x + axt

ax =
vx - v0x

t - 0
  or

vx.t = 0;
v0xt2t1 = 0

ax =
v2x - v1x

t2 - t1

ax:aav-x

vx,vx

ax.
aav-xax

Constant x-acceleration: ax-t graph
is a horizontal line (slope 5 0).

Area under ax-t graph 5 vx 2 v0x
5 change in x-velocity from time 0 to time t.

O

ax

ax

t
t

2.16 An acceleration-time graph
for straight-line motion with constant 
positive x-acceleration ax.

(ax-t)

Constant
x-acceleration:
vx-t graph is a
straight line.

During time
interval t, the
x-velocity changes
by vx 2 v0x 5 axt.

Slope 5
 x-acceleration

Total area under vx-t graph 5 x 2 x0
5 change in x-coordinate from time 0 to time t.

vx

vx

v0x

O
t

t

vx

axt

v0x

2.17 A velocity-time graph for
straight-line motion with constant positive
x-acceleration The initial x-velocity
is also positive in this case.

v0xax.

1vx-t2

PhET: Forces in 1 Dimension
ActivPhysics 1.1: Analyzing Motion Using
Diagrams
ActivPhysics 1.2: Analyzing Motion Using
Graphs
ActivPhysics 1.3: Predicting Motion from
Graphs
ActivPhysics 1.4: Predicting Motion from
Equations
ActivPhysics 1.5: Problem-Solving Strategies
for Kinematics
ActivPhysics 1.6: Skier Races Downhill



Finally, we set Eqs. (2.9) and (2.11) equal to each other and simplify:

(constant x-acceleration only) (2.12)

Here’s what Eq. (2.12) tells us: If at time a particle is at position and
has x-velocity its new position x at any later time t is the sum of three
terms—its initial position plus the distance that it would move if its 
x-velocity were constant, plus an additional distance caused by the change
in x-velocity.

A graph of Eq. (2.12)—that is, an x-t graph for motion with constant x-
acceleration (Fig. 2.18a)—is always a parabola. Figure 2.18b shows such a
graph. The curve intercepts the vertical axis (x-axis) at the position at 
The slope of the tangent at equals the initial x-velocity, and the slope
of the tangent at any time t equals the x-velocity at that time. The slope and 
x-velocity are continuously increasing, so the x-acceleration is positive; you
can also see this because the graph in Fig. 2.18b is concave up (it curves
upward). If is negative, the x-t graph is a parabola that is concave down (has
a downward curvature).

If there is zero x-acceleration, the x-t graph is a straight line; if there is a con-
stant x-acceleration, the additional term in Eq. (2.12) for x as a function of 
t curves the graph into a parabola (Fig. 2.19a). We can analyze the graph in
the same way. If there is zero x-acceleration this graph is a horizontal line (the 
x-velocity is constant); adding a constant x-acceleration gives a slope to the 
graph (Fig. 2.19b).

vx-t

vx-t

1
2 axt 2

ax

ax

vx

v0x,t = 0
t = 0.x0,

1
2 axt 2

v0xtx0,
v0x,

x0t = 0

x = x0 + v0xt + 1
2 axt 2

v0x + 1
2 axt =

x - x0

t
  or
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During time interval t,
the x-velocity changes
by vx 2 v0x 5 axt.

Constant x-acceleration:
x-t graph is a parabola.

(a) A race car moves in the x-direction
with constant acceleration.

(b) The x-t graph

v0x

vx 5 v0x 1 axt

x

xx

x0x0

O

x

O
t

t

Slope 5 vx

Slope 5 v0x

2.18 (a) Straight-line motion with con-
stant acceleration. (b) A position-time (x-t)
graph for this motion (the same motion as
is shown in Figs. 2.15, 2.16, and 2.17). For
this motion the initial position the ini-
tial velocity and the acceleration 
are all positive.

axv0x,
x0,

The graph with constant x-acceleration:
x 5 x0 1 v0xt 1 axt21

2

The graph we would get
with zero x-acceleration:
x 5 x0 1 v0xt

The effect of
x-acceleration:

axt21
2

The graph with zero x-acceleration:
vx 5 v0x

The graph with constant x-acceleration:
vx 5 v0x 1 ax t

The added velocity
due to x-acceleration:
axt

(a) An x-t graph for an object moving with
positive constant x-acceleration

(b) The vx-t graph for the same object

x

x0

O
t

O
t

v0x

vx

2.19 (a) How a constant 
x-acceleration affects a body’s 
(a) x-t graph and (b) graph.vx-t

Application Testing Humans at High
Accelerations
In experiments carried out by the U.S. Air Force
in the 1940s and 1950s, humans riding a
rocket sled demonstrated that they could with-
stand accelerations as great as . The
first three photos in this sequence show Air
Force physician John Stapp speeding up from
rest to in
just 5 s. Photos 4–6 show the even greater
magnitude of acceleration as the rocket sled
braked to a halt.

421 mi>h21678 km>h =188 m>s

440 m>s2
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Just as the change in x-velocity of the particle equals the area under the 
graph, the displacement—that is, the change in position—equals the area under
the graph. To be specific, the displacement of the particle between

and any later time t equals the area under the graph between those two
times. In Fig. 2.17 we divide the area under the graph into a dark-colored rectan-
gle (vertical side , horizontal side t, and area ) and a light-colored right
triangle (vertical side , horizontal side t, and area . The total
area under the graph is

in agreement with Eq. (2.12).
The displacement during a time interval is always equal to the area under the

curve. This is true even if the acceleration is not constant, although in that
case Eq. (2.12) does not apply. (We’ll show this in Section 2.6.)

It’s often useful to have a relationship for position, x-velocity, and (constant)
x-acceleration that does not involve the time. To obtain this, we first solve 
Eq. (2.8) for t and then substitute the resulting expression into Eq. (2.12):

We transfer the term to the left side and multiply through by 

Finally, simplifying gives us

(constant x-acceleration only) (2.13)

We can get one more useful relationship by equating the two expressions
for Eqs. (2.9) and (2.10), and multiplying through by t. Doing this, we
obtain

(constant x-acceleration only) (2.14)

Note that Eq. (2.14) does not contain the x-acceleration This equation can be
handy when is constant but its value is unknown.

Equations (2.8), (2.12), (2.13), and (2.14) are the equations of motion with
constant acceleration (Table 2.4). By using these equations, we can solve any
problem involving straight-line motion of a particle with constant acceleration.

For the particular case of motion with constant x-acceleration depicted in
Fig. 2.15 and graphed in Figs. 2.16, 2.17, and 2.18, the values of and 
are all positive. We invite you to redraw these figures for cases in which one,
two, or all three of these quantities are negative.

axv0x ,x0 ,

ax

ax .

x - x0 = a
v0x + vx

2
b t

vav-x ,

vx
2 = v0x

2 + 2ax 1x - x02

2ax 1x - x02 = 2v0x vx - 2v0x
2 + vx

2 - 2v0x vx + v0x
2

2ax :x0

 x = x0 + v0x a
vx - v0x

ax
b + 1

2 ax a
vx - v0x

ax
b

2

 t =
vx - v0x

ax

vx-t

x - x0 = v0x t + 1
2 ax t 2

vx-t

1
2 
(axt)(t) = 1

2  
axt

2)axt
v0xtv0x

vx-tt = 0
x - x0vx-t

ax-t

Table 2.4 Equations of Motion
with Constant Acceleration

Includes
Equation Quantities

(2.8) t

(2.12) t x 

(2.13) x

(2.14) t x vx x - x0 = a
v0x + vx

2
b t

axvx vx
2 = v0x

2   + 2ax 1x - x02

axx = x0 + v0x t + 1
2 ax t

2

axvx vx = v0x + axt

PhET: The Moving Man
ActivPhysics 1.8: Seat Belts Save Lives
ActivPhysics 1.9: Screeching to a Halt
ActivPhysics 1.11: Car Starts, Then Stops
ActivPhysics 1.12: Solving Two-Vehicle 
Problems
ActivPhysics 1.13: Car Catches Truck
ActivPhysics 1.14: Avoiding a Rear-End 
Collision
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Example 2.4 Constant-acceleration calculations

A motorcyclist heading east through a small town accelerates at a
constant after he leaves the city limits (Fig. 2.20). At
time he is 5.0 m east of the city-limits signpost, moving east
at (a) Find his position and velocity at 
(b) Where is he when his velocity is 

SOLUTION

IDENTIFY and SET UP: The x-acceleration is constant, so we can
use the constant-acceleration equations. We take the signpost as the
origin of coordinates and choose the positive x-axis to point
east (see Fig. 2.20, which is also a motion diagram). The known
variables are the initial position and velocity, and

, and the acceleration, The unknown
target variables in part (a) are the values of the position x and the 
x-velocity at the target variable in part (b) is the value
of x when vx = 25 m >  s .

t = 2.0 s;vx

ax = 4.0 m >  s2.v0x = 15 m >  s
x0 = 5.0 m

(x = 0)

25 m >  s?
t = 2.0 s.15 m >  s.

t = 0
4.0 m >  s2

Eq. (2.12) and the x-velocity at this time by using Eq. (2.8):

(b) We want to find the value of x when but we
don’t know the time when the motorcycle has this velocity. Table
2.4 tells us that we should use Eq. (2.13), which involves x, , and

but does not involve t:

Solving for x and substituting the known values, we find

EVALUATE: You can check the result in part (b) by first using 
Eq. (2.8), to find the time at which 
which turns out to be t 2.5 s. You can then use Eq. (2.12),

, to solve for x. You should find ,
the same answer as above. That’s the long way to solve the problem,
though. The method we used in part (b) is much more efficient.

x = 55 mv0xt + 1
2 
axt

2x = x0 +
=

vx = 25 m>s,vx = v0x + axt,

 = 5.0 m +
125 m >  s22 - 115 m >  s22

214.0 m >  s22
= 55 m

x = x0 +
v 2

x - v 2
0x

2ax

v 2
x  = v   2

0x + 2ax1x - x02

ax

vx

vx = 25 m >  s,

 = 15 m >  s + 14.0 m >  s2212.0 s2 = 23 m >  s

vx = v0x + axt

 = 43 m
 = 5.0 m + 115 m >  s212.0 s2 + 1

2  14.0 m >  s2212.0 s22
 x = x0 + v0xt + 1

2 axt
2

vx

EXECUTE: (a) Since we know the values of , , and , Table
2.4 tells us that we can find the position x at by using t = 2.0 s

axv0xx0

19651
AWx

19651
AWx

x (east)
x 5 ?
t 5 2.0 s

O

v0x 5 15 m/s vx 5 ?

ax 5 4.0 m/s2

x0 5 5.0 m
  t 5 0 

OSAGE

2.20 A motorcyclist traveling with constant acceleration.

Problem-Solving Strategy 2.1 Motion with Constant Acceleration

IDENTIFY the relevant concepts: In most straight-line motion prob-
lems, you can use the constant-acceleration equations (2.8), (2.12),
(2.13), and (2.14). If you encounter a situation in which the accelera-
tion isn’t constant, you’ll need a different approach (see Section 2.6).

SET UP the problem using the following steps:
1. Read the problem carefully. Make a motion diagram showing

the location of the particle at the times of interest. Decide
where to place the origin of coordinates and which axis direc-
tion is positive. It’s often helpful to place the particle at the ori-
gin at time then Remember that your choice of
the positive axis direction automatically determines the posi-
tive directions for x-velocity and x-acceleration. If x is positive
to the right of the origin, then and are also positive toward
the right.

2. Identify the physical quantities (times, positions, velocities, and
accelerations) that appear in Eqs. (2.8), (2.12), (2.13), and
(2.14) and assign them appropriate symbols — x, 
and , or symbols related to those. Translate the prose into
physics: “When does the particle arrive at its highest point”
means “What is the value of t when x has its maximum value?”
In Example 2.4 below, “Where is the motorcyclist when his
velocity is ” means “What is the value of x when

” Be alert for implicit information. For example,
“A car sits at a stop light” usually means 

3. Make a list of the quantities such as x, and t.
Some of them will be known and some will be unknown.

ax,v0x,vx,x0,
v0x = 0.

vx = 25 m >  s?
25 m >  s?

ax

v0x,vx,x0,

axvx

x0 = 0.t = 0;

Write down the values of the known quantities, and decide
which of the unknowns are the target variables. Make note of
the absence of any of the quantities that appear in the four
constant-acceleration equations.

4. Use Table 2.4 to identify the applicable equations. (These are often
the equations that don’t include any of the absent quantities that
you identified in step 3.) Usually you’ll find a single equation that
contains only one of the target variables. Sometimes you must find
two equations, each containing the same two unknowns.

5. Sketch graphs corresponding to the applicable equations. 
The graph of Eq. (2.8) is a straight line with slope . The

graph of Eq. (2.12) is a parabola that’s concave up if is
positive and concave down if is negative.

6. On the basis of your accumulated experience with such prob-
lems, and taking account of what your sketched graphs tell you,
make any qualitative and quantitative predictions you can about
the solution.

EXECUTE the solution: If a single equation applies, solve it for the
target variable, using symbols only; then substitute the known val-
ues and calculate the value of the target variable. If you have two
equations in two unknowns, solve them simultaneously for the 
target variables.

EVALUATE your answer: Take a hard look at your results to see
whether they make sense. Are they within the general range of val-
ues that you expected?

ax

axx-t
axvx-t
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Example 2.5 Two bodies with different accelerations

A motorist traveling with a constant speed of about
passes a school-crossing corner, where the speed limit is

about . Just as the motorist passes the school-
crossing sign, a police officer on a motorcycle stopped there starts
in pursuit with a constant acceleration of (Fig. 2.21a). (a)
How much time elapses before the officer passes the motorist? (b)
What is the officer’s speed at that time? (c) At that time, what dis-
tance has each vehicle traveled?

SOLUTION

IDENTIFY and SET UP: The officer and the motorist both move
with constant acceleration (equal to zero for the motorist), so we
can use the constant-acceleration formulas. We take the origin at
the sign, so for both, and we take the positive direction 
to the right. Let and represent the positions of the officer and
the motorist at any time; their initial velocities are and

, and their accelerations are and
. Our target variable in part (a) is the time when the offi-

cer passes the motorist—that is, when the two vehicles are at the
same position x; Table 2.4 tells us that Eq. (2.12) is useful for this
part. In part (b) we’re looking for the officer’s speed (the magni-
tude of his velocity) at the time found in part (a). We’ll use 
Eq. (2.8) for this part. In part (c) we’ll use Eq. (2.12) again to find
the position of either vehicle at this same time.

Figure 2.21b shows an graph for both vehicles. The straight
line represents the motorist’s motion, 

. The graph for the officer’s motion is the right half of a 
concave–up parabola:

A good sketch will show that the officer and motorist are at the
same position at about , at which time both
have traveled about 150 m from the sign.

EXECUTE: (a) To find the value of the time t at which the motorist
and police officer are at the same position, we set by
equating the expressions above and solving that equation for t:

t = 0  or  t =
2vM0x

aPx
=

2115 m>s2

3.0 m>s2
= 10 s

vM0xt = 1
2 aPxt

2

xP = xM

t = 10 s1xP = xM2

xP = xP0 + vP0xt + 1
2 aPxt

2 = 1
2 aPxt

2

vM0xt
xM = xM0 + vM0xt =

x-t

v

aMx = 0
aPx = 3.0 m>s2vM0x = 15 m>s

vP0x = 0
xMxP

x0 = 0

3.0 m>s2

22 mi>h2110 m>s
34 mi>h2

115 m>s Both vehicles have the same x-coordinate at two times, as Fig. 2.21b
indicates. At the motorist passes the officer; at the
officer passes the motorist.

(b) We want the magnitude of the officer’s x-velocity at the
time t found in part (a). Substituting the values of and into
Eq. (2.8) along with from part (a), we find

The officer’s speed is the absolute value of this, which is also 
.

(c) In 10 s the motorist travels a distance

and the officer travels

This verifies that they have gone equal distances when the officer
passes the motorist.

EVALUATE: Our results in parts (a) and (c) agree with our estimates
from our sketch. Note that at the time when the officer passes the
motorist, they do not have the same velocity. At this time the
motorist is moving at and the officer is moving at 30 m s.
You can also see this from Fig. 2.21b. Where the two curves
cross, their slopes (equal to the values of for the two vehicles)
are different.

Is it just coincidence that when the two vehicles are at the same
position, the officer is going twice the speed of the motorist? Equa-
tion (2.14), , gives the answer. The
motorist has constant velocity, so , and the distance

that the motorist travels in time t is . The officer has
zero initial velocity, so in the same time t the officer travels a dis-
tance . If the two vehicles cover the same distance in the same
amount of time, the two values of must be the same. 
Hence when the officer passes the motorist and

—that is, the officer has exactly twice the motorist’s
velocity. Note that this is true no matter what the value of the offi-
cer’s acceleration.

vPx = 2vM0x

vM0xt = 1
2 vPxt

x - x0

1
2 vPxt

vM0xtx - x0

vM0x = vMx

x - x0 = 31v0x + vx2>24t

vx

x-t
>15 m>s

xP = 1
2 aPxt

2 = 1
2 13.0 m>s22110 s22 = 150 m

xM = vM0xt = 115 m>s2110 s2 = 150 m

30 m>s

vPx = vP0x + aPxt = 0 + 13.0 m>s22110 s2 = 30 m>s

t = 10 s
aPxvP0x

vPx

t = 10 st = 0

POLICE

Police officer: initially at rest,
constant x-acceleration

The police officer and motorist
meet at the time t where their
x-t graphs cross.

Motorist: constant x-velocity

xPO

aPx 5 3.0 m/s2 vM0x 5 15 m/s
CROSSING

xM

40

80

120

160

x (m)

x
O 1210862

t (s)

Motorist

Officer

4

(a)

(b)

SCHOOL

2.21 (a) Motion with constant acceleration overtaking motion with constant velocity. (b) A graph of x versus t for each vehicle.



2.5 Freely Falling Bodies
The most familiar example of motion with (nearly) constant acceleration is a
body falling under the influence of the earth’s gravitational attraction. Such
motion has held the attention of philosophers and scientists since ancient times.
In the fourth century B.C., Aristotle thought (erroneously) that heavy bodies fall
faster than light bodies, in proportion to their weight. Nineteen centuries later,
Galileo (see Section 1.1) argued that a body should fall with a downward acceler-
ation that is constant and independent of its weight.

Experiment shows that if the effects of the air can be neglected, Galileo is
right; all bodies at a particular location fall with the same downward acceleration,
regardless of their size or weight. If in addition the distance of the fall is small
compared with the radius of the earth, and if we ignore small effects due to the
earth’s rotation, the acceleration is constant. The idealized motion that results
under all of these assumptions is called free fall, although it includes rising as
well as falling motion. (In Chapter 3 we will extend the discussion of free fall to
include the motion of projectiles, which move both vertically and horizontally.)

Figure 2.22 is a photograph of a falling ball made with a stroboscopic light
source that produces a series of short, intense flashes. As each flash occurs, an
image of the ball at that instant is recorded on the photograph. There are equal
time intervals between flashes, so the average velocity of the ball between suc-
cessive flashes is proportional to the distance between corresponding images.
The increasing distances between images show that the velocity is continuously
changing; the ball is accelerating downward. Careful measurement shows that
the velocity change is the same in each time interval, so the acceleration of the
freely falling ball is constant.

The constant acceleration of a freely falling body is called the acceleration
due to gravity, and we denote its magnitude with the letter g. We will frequently
use the approximate value of g at or near the earth’s surface:

(approximate value near 
the earth’s surface)

The exact value varies with location, so we will often give the value of g at the
earth’s surface to only two significant figures. On the surface of the moon, the
acceleration due to gravity is caused by the attractive force of the moon rather
than the earth, and Near the surface of the sun, 

CAUTION g is always a positive number Because g is the magnitude of a vector quan-
tity, it is always a positive number. If you take the positive direction to be upward, as we
do in Example 2.6 and in most situations involving free fall, the acceleration is negative
(downward) and equal to . Be careful with the sign of g, or else you’ll have no end of
trouble with free-fall problems. ❙

In the following examples we use the constant-acceleration equations devel-
oped in Section 2.4. You should review Problem-Solving Strategy 2.1 in that sec-
tion before you study the next examples.

-g

g = 270 m>s2.g = 1.6 m>s2.

g = 9.8 m>s2 = 980 cm>s2 = 32 ft>s2
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Test Your Understanding of Section 2.4 Four possible graphs are
shown for the two vehicles in Example 2.5. Which graph is correct?

vx-t

(a) (b) (c) (d)

vx

O 10

t (s)

Motorist

Officer

vx

O 10

t (s)

Motorist

Officer

vx

O 10

t (s)

Motorist

Officer

vx

O 10

t (s)

Motorist

Officer

❙

2.22 Multiflash photo of a freely falling
ball.

PhET: Lunar Lander
ActivPhysics 1.7: Balloonist Drops Lemonade
ActivPhysics 1.10: Pole-Vaulter Lands



2.5 Freely Falling Bodies 53

Example 2.6 A freely falling coin

A one-euro coin is dropped from the Leaning Tower of Pisa and
falls freely from rest. What are its position and velocity after 1.0 s,
2.0 s, and 3.0 s?

SOLUTION

IDENTIFY and SET UP: “Falls freely” means “falls with constant
acceleration due to gravity,” so we can use the constant-accelera-
tion equations. The right side of Fig. 2.23 shows our motion dia-
gram for the coin. The motion is vertical, so we use a vertical

coordinate axis and call the coordinate y instead of x. We take the
origin O at the starting point and the upward direction as positive.
The initial coordinate and initial y-velocity are both zero.
The y-acceleration is downward (in the negative y-direction), so

(Remember that, by definition, g itself is
a positive quantity.) Our target variables are the values of y and
at the three given times. To find these, we use Eqs. (2.12) and (2.8)
with x replaced by y. Our choice of the upward direction as posi-
tive means that all positions and velocities we calculate will be
negative.

EXECUTE: At a time t after the coin is dropped, its position and 
y-velocity are

vy

ay = -g = -9.8 m>s2.

v0yy0

The Leaning Tower Our sketch for the problem

2.23 A coin freely falling from rest.

Example 2.7 Up-and-down motion in free fall

You throw a ball vertically upward from the roof of a tall building.
The ball leaves your hand at a point even with the roof railing with
an upward speed of the ball is then in free fall. On its
way back down, it just misses the railing. Find (a) the ball’s posi-
tion and velocity 1.00 s and 4.00 s after leaving your hand; (b) the
ball’s velocity when it is 5.00 m above the railing; (c) the maxi-
mum height reached; (d) the ball’s acceleration when it is at its
maximum height.

SOLUTION

IDENTIFY and SET UP: The words “in free fall” mean that the accel-
eration is due to gravity, which is constant. Our target variables are
position [in parts (a) and (c)], velocity [in parts (a) and (b)], and
acceleration [in part (d)]. We take the origin at the point where the
ball leaves your hand, and take the positive direction to be upward
(Fig. 2.24). The initial position is zero, the initial y-velocity

is and the y-acceleration is ay = -g = -9.80 m>s2.+15.0 m>s,

v0yy0

15.0 m>s;

In part (a), as in Example 2.6, we’ll use Eqs. (2.12) and (2.8) to
find the position and velocity as functions of time. In part (b) we
must find the velocity at a given position (no time is given), so
we’ll use Eq. (2.13).

Figure 2.25 shows the and graphs for the ball. The 
graph is a concave-down parabola that rises and then falls, and the

graph is a downward-sloping straight line. Note that the ball’s
velocity is zero when it is at its highest point.

EXECUTE: (a) The position and y-velocity at time t are given by
Eqs. (2.12) and (2.8) with x’s replaced by y’s:

= 15.0 m>s + 1-9.80 m>s22t

vy = v0y + ayt = v0y + 1-g2t

= 102 + 115.0 m>s2t + 1
2 1-9.80 m>s22t 2

y = y0 + v0yt + 1
2 ayt

2 = y0 + v0yt + 1
2 1-g2t 2

vy-t

y-tvy-ty-t

Continued

y = y0 + v0yt + 1
2 ayt

2 = 0 + 0 + 1
2 1-g2t 2 = 1-4.9 m>s22t 2

vy = v0y + ayt = 0 + 1-g2t = 1-9.8 m>s22t

When and 
after , the coin is 

below the origin (y is negative) and has a downward velocity ( is
negative) with magnitude 

We can find the positions and y-velocities at 2.0 s and 3.0 s in
the same way. The results are and at

and and at 

EVALUATE: All our answers are negative, as we expected. If we had
chosen the positive y-axis to point downward, the acceleration
would have been and all our answers would have been
positive.

ay = +g

t = 3.0 s.vy = -29 m>sy = -44 mt = 2.0 s,
vy = -20 m>sy = -20 m

9.8 m>s.
vy

4.9 m1 s1-9.8 m>s2211.0 s2 = -9.8 m>s;
vy =y = 1-4.9 m>s2211.0 s22 = -4.9 mt = 1.0 s,
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When these equations give and
. That is, the ball is 10.1 m above the origin (y is

positive) and moving upward ( is positive) with a speed of
This is less than the initial speed because the ball slows

as it ascends. When those equations give
and . The ball has passed its high-

est point and is 18.4 m below the origin (y is negative). It is mov-
ing downward ( is negative) with a speed of The ball
gains speed as it descends; Eq. (2.13) tells us that it is moving at
the initial speed as it moves downward past the ball’s
launching point, and continues to gain speed as it descends further.

(b) The y-velocity at any position y is given by Eq. (2.13) with
x’s replaced by y’s:

When the ball is 5.00 m above the origin we have so

We get two values of because the ball passes through the point
twice, once on the way up (so is positive) and

once on the way down (so is negative) (see Figs. 2.24 and
2.25a).

vy

vyy = +5.00 m
vy

vy = �11.3 m>s

v 2
y = 115.0 m>s22 + 21-9.80 m>s2215.00 m2 = 127 m2>s2

y = +5.00 m,

= 115.0 m>s22 + 21-9.80 m>s22y

v 2
y = v 2

0y + 2ay1y - y02 = v 2
0y + 21-g21y - 02

15.0-m >s

24.2 m>s.vy

vy = -24.2 m>sy = -18.4 m
t = 4.00 s,

5.2 m>s.
vy

vy = +5.2 m>s
y = +10.1 mt = 1.00 s, (c) At the instant at which the ball reaches its maximum height

, its y-velocity is momentarily zero: We use Eq. (2.13) to
find . With and , we get

(d) CAUTION A free-fall misconception It’s a common mis-
conception that at the highest point of free-fall motion, where the
velocity is zero, the acceleration is also zero. If this were so, once
the ball reached the highest point it would hang there suspended in
midair! Remember that acceleration is the rate of change of veloc-
ity, and the ball’s velocity is continuously changing. At every
point, including the highest point, and at any velocity, including
zero, the acceleration in free fall is always

.

EVALUATE: A useful way to check any free-fall problem is to draw
the y-t and graphs as we did in Fig. 2.25. Note that these are
graphs of Eqs. (2.12) and (2.8), respectively. Given the numerical
values of the initial position, initial velocity, and acceleration, you
can easily create these graphs using a graphing calculator or an
online mathematics program.

vy-t

-9.80 m>s2
ay = -g =

y1 =
v 2

0y

2g
=
115.0 m>s22

219.80 m>s22
= +11.5 m

0 = v 2
0y + 21-g21y1 - 02

ay = -gy0 = 0,vy = 0,y1

vy = 0.y1

Before t 5 1.53 s
the y-velocity is
positive.

Before t 5 1.53 s the
ball moves upward.

After t 5 1.53 s
the ball moves
downward.

(a) y-t graph (curvature is
downward because ay 5 2g
is negative)

5

10

15

220

215

210

25

225

0

(b) vy-t graph (straight line with
negative slope because ay 5 2g
is constant and negative)

431
t (s)

2

vy (m/s)

431
t (s)

2

5

10

15

y (m)

220

215

210

25

0
After t 5 1.53 s
the y-velocity is
negative.

2.25 (a) Position and (b) velocity as functions of time for a
ball thrown upward with an initial speed of 15 m>s.

Example 2.8 Two solutions or one?

At what time after being released has the ball in Example 2.7 fallen
5.00 m below the roof railing?

SOLUTION

IDENTIFY and SET UP: We treat this as in Example 2.7, so 
and have the same values as there. In this example, how-
ever, the target variable is the time at which the ball is at y = -5.00 m.

ay = -g
v0y,y0,

The best equation to use is Eq. (2.12), which gives the position y as
a function of time t:

This is a quadratic equation for t, which we want to solve for the
value of t when y = -5.00 m.

y = y0 + v0yt + 1
2 ayt

2 = y0 + v0yt + 1
2 1-g2t 2

The ball actually moves straight up and
then straight down; we show 
a U-shaped path for clarity.

t 5 0, v0y 5 15.0 m/s

t 5 1.00 s, vy 5 ?
y 5 ?
y 5 ?

y 5 ?

y 5 5.00 m

y 5 0

y

t 5 4.00 s
vy 5 ?

vy 5 ?
t 5 ?

t 5 ?
vy 5 0

ay 5 2g

t 5 ?, vy 5 ?

5 29.80 m/s2

2.24 Position and velocity of a ball thrown vertically upward.
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2.6 Velocity and Position by Integration
This section is intended for students who have already learned a little integral
calculus. In Section 2.4 we analyzed the special case of straight-line motion with
constant acceleration. When is not constant, as is frequently the case, the equa-
tions that we derived in that section are no longer valid (Fig. 2.26). But even
when varies with time, we can still use the relationship to find the
x-velocity as a function of time if the position x is a known function of time.
And we can still use to find the x-acceleration as a function of
time if the x-velocity is a known function of time.

In many situations, however, position and velocity are not known functions of
time, while acceleration is (Fig. 2.27). How can we find the position and velocity
in straight-line motion from the acceleration function 

We first consider a graphical approach. Figure 2.28 is a graph of x-acceleration
versus time for a body whose acceleration is not constant. We can divide the time
interval between times and into many smaller intervals, calling a typical one

Let the average x-acceleration during be From Eq. (2.4) the change
in x-velocity during is

Graphically, equals the area of the shaded strip with height and width
—that is, the area under the curve between the left and right sides of The

total change in x-velocity during any interval (say, to is the sum of the x-
velocity changes in the small subintervals. So the total x-velocity change is
represented graphically by the total area under the curve between the verticalax-t

¢vx

t2)t1

¢t.¢t
aav-x¢vx

¢vx = aav-x ¢t

¢t¢vx

aav-x.¢t¢t.
t2t1

ax1t2?

vx

axax = dvx>dt
vx

vx = dx>dtax

ax

Substituting the values 
and m, we findy = -5.00

g = 9.80 m>s2,v0y = +15.0 m>s,y0 = 0,

EXECUTE: We rearrange the equation so that is has the standard form
of a quadratic equation for an unknown x,

By comparison, we identify and 
The quadratic formula (see Appendix B) tells us that this equation
has two solutions:

=
v0y � 2v 2

0y - 2g1y - y02

g

=
-1-v0y2 � 21-v0y2

2 - 4112g21y - y022

2112g2

t =
-B � 2B2 - 4AC

2A

C = y - y0.B = -v0y,A = 1
2g,

112 g2t 2 + 1-v0y2t + 1y - y02 = At 2 + Bt + C = 0

Ax2 + Bx + C = 0:

Test Your Understanding of Section 2.5 If you toss a ball upward with
a certain initial speed, it falls freely and reaches a maximum height h a time t after
it leaves your hand. (a) If you throw the ball upward with double the initial speed,
what new maximum height does the ball reach? (i) (ii) 2h; (iii) 4h; (iv) 8h; (v) 16h.
(b) If you throw the ball upward with double the initial speed, how long does it take to
reach its new maximum height? (i) (ii) (iii) t; (iv) (v) 2t.

❚
t12 ;t>12 ;t>2;

h12 ;

2.26 When you push your car’s acceler-
ator pedal to the floorboard, the resulting
acceleration is not constant: The greater
the car’s speed, the more slowly it gains
additional speed. A typical car takes twice
as long to accelerate from to

as it does to accelerate from 0 to
50 km>h.
100 km>h

50 km>h

sense, since it refers to a time before the ball left your hand at
. So the correct answer is .

EVALUATE: Why did we get a second, fictitious solution? The
explanation is that constant-acceleration equations like Eq. (2.12)
are based on the assumption that the acceleration is constant for all
values of time, whether positive, negative, or zero. Hence the solu-
tion refers to an imaginary moment when a freely
falling ball was 5.00 m below the roof railing and rising to meet
your hand. Since the ball didn’t leave your hand and go into free
fall until , this result is pure fiction.

You should repeat these calculations to find the times when the
ball is 5.00 m above the origin The two answers
are and These are both positive values
of t, and both refer to the real motion of the ball after leaving your
hand. At the earlier time the ball passes through 
moving upward; at the later time it passes through this point mov-
ing downward. [Compare this with part (b) of Example 2.7, and
again refer to Fig. 2.25a.]

You should also solve for the times when In this
case, both solutions involve the square root of a negative number, so
there are no real solutions. Again Fig. 2.25a shows why; we found in
part (c) of Example 2.7 that the ball’s maximum height is

so it never reaches While a quadratic
equation such as Eq. (2.12) always has two solutions, in some situa-
tions one or both of the solutions will not be physically reasonable.

y = +15.0 m.y = +11.5 m,

y = +15.0 m.

y = +5.00 m

t = +2.68 s.t = +0.38 s
1y = +5.00 m2.

t = 0

t = -0.30 s

t = +3.36 st = 0

t =
115.0 m>s2 � 2115.0 m>s22 - 219.80 m >s221-5.00 m - 02

9.80 m>s2

You can confirm that the numerical answers are 
and . The answer doesn’t make physicalt = -0.30 st = -0.30 s

t = +3.36 s



lines and (In Section 2.4 we showed this for the special case in which the
acceleration is constant.)

In the limit that all the become very small and their number very large,
the value of for the interval from any time t to approaches the instan-
taneous x-acceleration at time t. In this limit, the area under the curve is
the integral of (which is in general a function of t) from to If is the 
x-velocity of the body at time and is the velocity at time then

(2.15)

The change in the x-velocity is the time integral of the x-acceleration
We can carry out exactly the same procedure with the curve of x-velocity ver-

sus time. If is a body’s position at time and is its position at time from
Eq. (2.2) the displacement during a small time interval is equal to 
where is the average x-velocity during The total displacement 
during the interval is given by

(2.16)

The change in position x—that is, the displacement—is the time integral of 
x-velocity . Graphically, the displacement between times and is the area
under the curve between those two times. [This is the same result that we
obtained in Section 2.4 for the special case in which is given by Eq. (2.8).]

If and is any later time t, and if and are the position and
velocity, respectively, at time then we can rewrite Eqs. (2.15) and (2.16)
as follows:

(2.17)

(2.18)

Here x and are the position and x-velocity at time t. If we know the x-acceleration
as a function of time and we know the initial velocity we can use Eq. (2.17)

to find the x-velocity at any time; in other words, we can find as a function 
of time. Once we know this function, and given the initial position we can use 
Eq. (2.18) to find the position x at any time.

x0,
vxvx

v0x,ax

vx

x = x0 + L
t

0
vx dt

vx = v0x + L
t

0
ax dt

t = 0,
v0xx0t2t1 = 0

vx

vx-t
t2t1vx

x2 - x1 = L
x2

x1

dx = L
t2

t1

vx dt

t2 - t1

x2 - x1¢t.vav-x

vav-x ¢t,¢t¢x
t2,x2t1x1

ax.vx

v2x - v1x = L
v2x

v1x

dvx = L
t2

t1

ax dt

t2,v2xt1

v1xt2.t1ax

ax-tax

t + ¢taav-x

¢t’s

t2.t1
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Total area under the x-t graph from t1 to t2
5 Net change in x-velocity from t1 to t2

Area of this strip 5 Dvx
5 Change in x-velocity
during time interval Dt

O

aav-x

ax

t1 t2
t

Dt

2.28 An graph for a body whose 
x-acceleration is not constant.

ax-t

Example 2.9 Motion with changing acceleration

Sally is driving along a straight highway in her 1965 Mustang. At
when she is moving at in the positive x-direction,

she passes a signpost at Her x-acceleration as a func-
tion of time is

(a) Find her x-velocity and position x as functions of time. 
(b) When is her x-velocity greatest? (c) What is that maximum 
x-velocity? (d) Where is the car when it reaches that maximum 
x-velocity?

vx

ax = 2.0 m>s2 - 10.10 m>s32t

x = 50 m.
10 m>st = 0,

SOLUTION

IDENTIFY and SET UP: The x-acceleration is a function of time, so
we cannot use the constant-acceleration formulas of Section 2.4.
Instead, we use Eq. (2.17) to obtain an expression for as a func-
tion of time, and then use that result in Eq. (2.18) to find an expres-
sion for x as a function of t. We’ll then be able to answer a variety
of questions about the motion.

vx

2.27 The inertial navigation system
(INS) on board a long-range airliner keeps
track of the airliner’s acceleration. The
pilots input the airliner’s initial position
and velocity before takeoff, and the INS
uses the acceleration data to calculate the
airliner’s position and velocity throughout
the flight.
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EXECUTE: (a) At Sally’s position is and her 
x-velocity is To use Eq. (2.17), we note that the inte-
gral of (except for ) is . Hence we
find

= 10 m>s + 12.0 m>s22t - 1
2 10.10 m>s32t 2

vx = 10 m>s + L
t

0
32.0 m>s2 - 10.10 m>s32t4dt

1t ndt = 1
n + 1 t n+1n = -1t n

v0x = 10 m>s.
x0 = 50 mt = 0, (c) We find the maximum x-velocity by substituting ,

the time from part (b) when velocity is maximum, into the equa-
tion for from part (a):

(d) To find the car’s position at the time that we found in part
(b), we substitute into the expression for x from part (a):

EVALUATE: Figure 2.29 helps us interpret our results. The top
graph shows that is positive between and and
negative after that. It is zero at the time at which is
maximum (the high point in the middle graph). The car speeds up
until (because and have the same sign) and slows
down after (because and have opposite signs).

Since is maximum at , the x-t graph (the bottom
graph in Fig. 2.29) has its maximum positive slope at this time.
Note that the x-t graph is concave up (curved upward) from 
to when is positive. The graph is concave down
(curved downward) after when is negative.axt = 20 s,

axt = 20 s,
t = 0

t = 20 svx

axvxt = 20 s
axvxt = 20 s

vxt = 20 s,
t = 20 st = 0ax

= 517 m

- 1
6 10.10 m>s32120 s23

x = 50 m + 110 m>s2120 s2 + 1
2 12.0 m>s22120 s22

t = 20 s

= 30 m>s

vmax-x = 10 m>s + 12.0 m>s22120 s2 - 1
2 10.10 m>s32120 s22

vx

t = 20 s

Now we use Eq. (2.18) to find x as a function of t:

= 50 m + 110 m>s2t + 1
2 12.0 m>s22t 2 - 1

6 10.10 m>s32t 3

x = 50 m + L
t

0
310 m>s + 12.0 m>s22t - 1

2 10.10 m>s32t 24 dt

Figure 2.29 shows graphs of , and x as functions of time as
given by the equations above. Note that for any time t, the slope of
the graph equals the value of and the slope of the x-t graph
equals the value of .

(b) The maximum value of occurs when the x-velocity stops
increasing and begins to decrease. At that instant, 
So we set the expression for equal to zero and solve for t :

t =
2.0 m>s2

0.10 m>s3
= 20 s

0 = 2.0 m>s2 - 10.10 m>s32t

ax

dvx>dt = ax = 0.
vx

vx

axvx-t

vxax,

25

x-t graph curves
downward after
t 5 20 s.

x-t graph curves
upward before
t 5 20 s.

x-velocity
increases before
t 5 20 s.

x-velocity
decreases after
t 5 20 s.

x-acceleration is
positive before t 5 20 s.

x-acceleration is
negative after t 5 20 s.

vx (m/s)

O

10

20

30

5 10 15 20 25 30
t (s)

x (m)

t (s)
O

200

400

600

800

5 10 15 20 25 30

ax (m/s2)

O

1.0

2.0

5 10 15 20 30

�1.0

t (s)

2.29 The position, velocity, and acceleration of the car in Example 2.9 as functions of time. Can you show that if this motion contin-
ues, the car will stop at t = 44.5 s?

Test Your Understanding of Section 2.6 If the x-acceleration
is increasing with time, will the graph be (i) a straight line, (ii) concave up
(i.e., with an upward curvature), or (iii) concave down (i.e., with a downward 
curvature)? ❚

vx-t
ax
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Straight-line motion with constant acceleration: When
the x-acceleration is constant, four equations relate the
position x and the x-velocity at any time t to the 
initial position the initial x-velocity (both 
measured at time and the x-acceleration
(See Examples 2.4 and 2.5.)

ax.t = 0),
v0xx0,

vx

Freely falling bodies: Free fall is a case of motion with
constant acceleration. The magnitude of the acceleration
due to gravity is a positive quantity, g. The acceleration
of a body in free fall is always downward. (See Exam-
ples 2.6–2.8.)

(2.4)

(2.5)ax = lim
¢tS0

¢vx

¢t
=

dvx

dt

aav-x =
v2x - v1x

t2 - t1
=

¢vx

¢t

Constant x-acceleration only:

(2.8)

(2.12)

(2.13)

(2.14)x - x0 = a
v0x + vx

2
b t

vx
2 = v0x

2 + 2ax1x - x02

x = x0 + v0xt + 1
2 axt 2

vx = v0x + axt

Straight-line motion with varying acceleration: When the
acceleration is not constant but is a known function of
time, we can find the velocity and position as functions
of time by integrating the acceleration function. (See
Example 2.9.)

(2.17)

(2.18)x = x0 + L
t

0
vx dt

vx = v0x + L
t

0
ax dt

Straight-line motion, average and instantaneous 
x-velocity: When a particle moves along a straight line,
we describe its position with respect to an origin O by
means of a coordinate such as x. The particle’s average
x-velocity during a time interval is
equal to its displacement divided by 
The instantaneous x-velocity at any time t is equal to
the average x-velocity for the time interval from t to

in the limit that goes to zero. Equivalently, 
is the derivative of the position function with respect to
time. (See Example 2.1.)

vx¢tt + ¢t

vx

¢t.¢x = x2 - x1

¢t = t2 - t1vav-x

(2.2)

(2.3)vx = lim
¢tS0

¢x

¢t
=

dx

dt

vav-x =
x2 - x1

t2 - t1
=

¢x

¢t

x

p1

p2

O
t

�
x

5
x 2

2
x 1

�t 5 t2 2 t1
t2t1

x1

x2

Sl
op

e 5
v av

-x

Slope 5 v x

vx

v2x

v1x

t2t1
t

O

p1

p2

Dt 5 t2 2 t1

D
v x

5
v 2

x
2

v 1
x

Slope 5
a av

-x

Slope 5 ax

0

0

0

0

0

t 5 2Dt

t 5 3Dt

t 5 Dt

t 5 4Dt

t 5 0
v

a

v
a

v
a

v
a

v
a

x

x

x

x

x

ay 5 2g
     5 29.80 m/s2

O

aav-x

ax

t1 t2
t

Dt

Average and instantaneous x-acceleration: The average
x-acceleration during a time interval is equal 
to the change in velocity during
that time interval divided by The instantaneous 
x-acceleration is the limit of as goes to zero,
or the derivative of with respect to t. (See Examples
2.2 and 2.3.)

vx

¢taav-xax

¢t.
¢vx = v2x - v1x

¢taav-x

CHAPTER 2 SUMMARY
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The superhero Green Lantern steps from the top of a tall building.
He falls freely from rest to the ground, falling half the total dis-
tance to the ground during the last 1.00 s of his fall. What is the
height h of the building?

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. You’re told that Green Lantern falls freely from rest. What does

this imply about his acceleration? About his initial velocity?
2. Choose the direction of the positive y-axis. It’s easiest to make

the same choice we used for freely falling objects in Section 2.5.
3. You can divide Green Lantern’s fall into two parts: from the top

of the building to the halfway point and from the halfway point
to the ground. You know that the second part of the fall lasts
1.00 s. Decide what you would need to know about Green

BRIDGING PROBLEM The Fall of a Superhero

Lantern’s motion at the halfway point in order to solve for the
target variable h. Then choose two equations, one for the first
part of the fall and one for the second part, that you’ll use
together to find an expression for h. (There are several pairs of
equations that you could choose.)

EXECUTE
4. Use your two equations to solve for the height h. Note that

heights are always positive numbers, so your answer should be
positive.

EVALUATE
5. To check your answer for h, use one of the free-fall equations to

find how long it takes Green Lantern to fall (i) from the top of
the building to half the height and (ii) from the top of the build-
ing to the ground. If your answer for h is correct, time (ii)
should be 1.00 s greater than time (i). If it isn’t, you’ll need to
go back and look for errors in how you found h.

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q2.1 Does the speedometer of a car measure speed or velocity?
Explain.
Q2.2 The top diagram in Fig. Q2.2 represents a series of high-
speed photographs of an insect flying in a straight line from left to
right (in the positive x-direction). Which of the graphs in Fig. Q2.2
most plausibly depicts this insect’s motion?

the BMW reaches Elwood’s Car Wash. How are the cars’ average
velocities between these two times related?
Q2.8 A driver in Massachusetts was sent to traffic court for speeding.
The evidence against the driver was that a policewoman observed the
driver’s car alongside a second car at a certain moment, and the
policewoman had already clocked the second car as going faster than
the speed limit. The driver argued, “The second car was passing me. 
I was not speeding.” The judge ruled against the driver because, in
the judge’s words, “If two cars were side by side, you were both
speeding.” If you were a lawyer representing the accused driver, how
would you argue this case?
Q2.9 Can you have a zero displacement and a nonzero average
velocity? A nonzero velocity? Illustrate your answers on an x-t graph.
Q2.10 Can you have zero acceleration and nonzero velocity?
Explain using a graph.
Q2.11 Can you have zero velocity and nonzero average accelera-
tion? Zero velocity and nonzero acceleration? Explain using a 
graph, and give an example of such motion.
Q2.12 An automobile is traveling west. Can it have a velocity
toward the west and at the same time have an acceleration toward
the east? Under what circumstances?
Q2.13 The official’s truck in Fig. 2.2 is at at

and is at at (a) Sketch two
different possible x-t graphs for the motion of the truck. (b) Does
the average velocity during the time interval from to 
have the same value for both of your graphs? Why or why not?
Q2.14 Under constant acceleration the average velocity of a parti-
cle is half the sum of its initial and final velocities. Is this still true
if the acceleration is not constant? Explain.

t2t1vav-x

t2 = 25.0 s.x2 = 19 mt1 = 16.0 s
x1 = 277 m

vx-t

vx-t

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.

(a)

vx

t
O

(b)

ax

t
O

(c)

x

t
O

(d)

vx

t
O

(e)

vx

t
O

Figure Q2.2

Q2.3 Can an object with constant acceleration reverse its direction
of travel? Can it reverse its direction twice? In each case, explain
your reasoning.
Q2.4 Under what conditions is average velocity equal to instanta-
neous velocity?
Q2.5 Is it possible for an object (a) to be slowing down while its
acceleration is increasing in magnitude; (b) to be speeding up
while its acceleration is decreasing? In each case, explain your 
reasoning.
Q2.6 Under what conditions does the magnitude of the average
velocity equal the average speed?
Q2.7 When a Dodge Viper is at Elwood’s Car Wash, a BMW Z3 is
at Elm and Main. Later, when the Dodge reaches Elm and Main,

www.masteringphysics.com
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Q2.15 You throw a baseball straight up in the air so that it rises to
a maximum height much greater than your height. Is the magni-
tude of the acceleration greater while it is being thrown or after it
leaves your hand? Explain.
Q2.16 Prove these statements: (a) As long as you can neglect the
effects of the air, if you throw anything vertically upward, it will
have the same speed when it returns to the release point as when it
was released. (b) The time of flight will be twice the time it takes
to get to its highest point.
Q2.17 A dripping water faucet steadily releases drops 1.0 s apart.
As these drops fall, will the distance between them increase,
decrease, or remain the same? Prove your answer.
Q2.18 If the initial position and initial velocity of a vehicle are
known and a record is kept of the acceleration at each instant, can
you compute the vehicle’s position after a certain time from these
data? If so, explain how this might be done.
Q2.19 From the top of a tall building you throw one ball straight
up with speed and one ball straight down with speed .
(a) Which ball has the greater speed when it reaches the ground?
(b) Which ball gets to the ground first? (c) Which ball has a greater
displacement when it reaches the ground? (d) Which ball has trav-
eled the greater distance when it hits the ground?
Q2.20 A ball is dropped from rest from the top of a building of
height h. At the same instant, a second ball is projected vertically
upward from ground level, such that it has zero speed when it
reaches the top of the building. When the two balls pass each other,
which ball has the greater speed, or do they have the same speed?
Explain. Where will the two balls be when they are alongside each
other: at height above the ground, below this height, or above
this height? Explain.
Q2.21 An object is thrown straight up into the air and feels no air
resistance. How is it possible for the object to have an acceleration
when it has stopped moving at its highest point?
Q2.22 When you drop an object from a certain height, it takes time
T to reach the ground with no air resistance. If you dropped it from
three times that height, how long (in terms of T ) would it take to
reach the ground?

EXERCISES
Section 2.1 Displacement, Time, and Average Velocity
2.1 . A car travels in the �x-direction on a straight and level
road. For the first 4.00 s of its motion, the average velocity of the
car is . How far does the car travel in 4.00 s?
2.2 .. In an experiment, a shearwater (a seabird) was taken from
its nest, flown 5150 km away, and released. The bird found its way
back to its nest 13.5 days after release. If we place the origin in the
nest and extend the to the release point, what was the
bird’s average velocity in (a) for the return flight, and (b) for
the whole episode, from leaving the nest to returning?
2.3 .. Trip Home. You normally drive on the freeway between
San Diego and Los Angeles at an average speed of 

and the trip takes 2 h and 20 min. On a Friday after-
noon, however, heavy traffic slows you down and you drive the
same distance at an average speed of only 
How much longer does the trip take?
2.4 .. From Pillar to Post. Starting from a pillar, you run 200 m
east (the ) at an average speed of and then
run 280 m west at an average speed of to a post. Calculate
(a) your average speed from pillar to post and (b) your average
velocity from pillar to post.

4.0 m>s
5.0 m>s,+x-direction

143 mi>h2.70 km>h

165 mi>h2,
105 km>h

m>s
+x-axis

vav-x = 6.25 m>s

h>2

v0v0

2.5 . Starting from the front door of your ranch house, you walk
60.0 m due east to your windmill, and then you turn around and
slowly walk 40.0 m west to a bench where you sit and watch the
sunrise. It takes you 28.0 s to walk from your house to the wind-
mill and then 36.0 s to walk from the windmill to the bench. For
the entire trip from your front door to the bench, what are (a) your
average velocity and (b) your average speed?
2.6 .. A Honda Civic travels in a straight line along a road. Its
distance x from a stop sign is given as a function of time t by the
equation where and 

Calculate the average velocity of the car for each
time interval: (a) to (b) to 
(c) to 

Section 2.2 Instantaneous Velocity
2.7 . CALC A car is stopped at a traffic light. It then travels along
a straight road so that its distance from the light is given by

where and (a)
Calculate the average velocity of the car for the time interval 
to (b) Calculate the instantaneous velocity of the car at

and (c) How long after starting from
rest is the car again at rest?
2.8 . CALC A bird is flying due east. Its distance from a tall build-
ing is given by 
What is the instantaneous velocity of the bird when ?
2.9 .. A ball moves in a straight line (the x-axis). The graph in 
Fig. E2.9 shows this ball’s velocity as a function of time. (a) What are
the ball’s average speed and average velocity during the first 3.0 s?
(b) Suppose that the ball moved in such a way that the graph seg-
ment after 2.0 s was instead of Find the ball’s
average speed and average velocity in this case.

+3.0 m>s.-3.0 m>s

t = 8.00 s
x1t2 = 28.0 m + 112.4 m>s2t - 10.0450 m>s32t3.

t = 10.0 s.t = 5.0 s,t = 0,
t = 10.0 s.

t = 0
c = 0.120 m>s3.b = 2.40 m>s2x1t2 = bt 2 - ct 3,

t = 4.00 s.t = 2.00 s
t = 4.00 s;t = 0t = 2.00 s;t = 0

0.0500 m>s3.
b =a = 1.50 m>s2x1t2 = at 2 - bt 3,
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2.10 . A physics professor leaves her house and walks along the
sidewalk toward campus. After 5 min it starts to rain and she
returns home. Her distance from her house as a function of time is
shown in Fig. E2.10. At which of the labeled points is her velocity
(a) zero? (b) constant and positive? (c) constant and negative? 
(d) increasing in magnitude? (e) decreasing in magnitude?
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is the velocity of the turtle zero? (c) How long after starting does it
take the turtle to return to its starting point? (d) At what times t is
the turtle a distance of 10.0 cm from its starting point? What is the
velocity (magnitude and direction) of the turtle at each of these
times? (e) Sketch graphs of x versus t, versus t, and versus t,
for the time interval to 
2.16 . An astronaut has left the International Space Station to test
a new space scooter. Her partner measures the following velocity
changes, each taking place in a 10-s interval. What are the magni-
tude, the algebraic sign, and the direction of the average accelera-
tion in each interval? Assume that the positive direction is to the
right. (a) At the beginning of the interval the astronaut is moving
toward the right along the x-axis at and at the end of the
interval she is moving toward the right at (b) At the
beginning she is moving toward the left at and at the end
she is moving toward the left at (c) At the beginning she
is moving toward the right at and at the end she is mov-
ing toward the left at 
2.17 . CALC A car’s velocity as a function of time is given by

where and (a)
Calculate the average acceleration for the time interval to

(b) Calculate the instantaneous acceleration for 
and (c) Draw and graphs for the car’s motion
between and 
2.18 .. CALC The position of the front bumper of a test car 
under microprocessor control is given by 

(a) Find its position and accel-
eration at the instants when the car has zero velocity. (b) Draw x-t,

and graphs for the motion of the bumper between 
and

Section 2.4 Motion with Constant Acceleration
2.19 .. An antelope moving with constant acceleration covers the
distance between two points 70.0 m apart in 7.00 s. Its speed as it
passes the second point is (a) What is its speed at the
first point? (b) What is its acceleration?
2.20 .. BIO Blackout? A jet fighter pilot wishes to accelerate
from rest at a constant acceleration of 5g to reach Mach 3 (three
times the speed of sound) as quickly as possible. Experimental
tests reveal that he will black out if this acceleration lasts for more
than 5.0 s. Use for the speed of sound. (a) Will the period
of acceleration last long enough to cause him to black out? (b)
What is the greatest speed he can reach with an acceleration of 5g
before blacking out?
2.21 . A Fast Pitch. The fastest measured pitched baseball left
the pitcher’s hand at a speed of If the pitcher was in
contact with the ball over a distance of 1.50 m and produced con-
stant acceleration, (a) what acceleration did he give the ball, and
(b) how much time did it take him to pitch it?
2.22 .. A Tennis Serve. In the fastest measured tennis serve,
the ball left the racquet at A served tennis ball is typi-
cally in contact with the racquet for 30.0 ms and starts from rest.
Assume constant acceleration. (a) What was the ball’s accelera-
tion during this serve? (b) How far did the ball travel during the
serve?
2.23 .. BIO Automobile Airbags. The human body can survive
an acceleration trauma incident (sudden stop) if the magnitude
of the acceleration is less than If you are in an auto-
mobile accident with an initial speed of 
and you are stopped by an airbag that inflates from the dashboard,
over what distance must the airbag stop you for you to survive
the crash?

165 mi>h2105 km>h
250 m>s2.

73.14 m>s.

45.0 m>s.

331 m>s

15.0 m>s.

t = 2.00 s.
t = 0ax-tvx-t,

10.100 m>s62t 6.14.80 m>s22t 2 -
x1t2 = 2.17 m +

t = 5.00 s.t = 0
ax-tvx-tt = 5.00 s.

t = 0t = 5.00 s.
t = 0

b = 0.100 m>s3.a = 3.00 m>sa + bt 2,vx1t2 =

15.0 m>s.
15.0 m>s,

15.0 m>s.
5.0 m>s,

5.0 m>s.
15.0 m>s,
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2.11 .. A test car travels in a straight line along the x-axis. The
graph in Fig. E2.11 shows the car’s position x as a function of
time. Find its instantaneous velocity at points A through G.

2.13 . The Fastest (and Most Expensive) Car! The table
shows test data for the Bugatti Veyron, the fastest car made. The
car is moving in a straight line (the x-axis).

O 10 20 30
t (s)

405 15 25 35

vx (km/h)

20

30

40

60

10

50

Time (s) 0 2.1 20.0 53
Speed (mi h) 0 60 200 253>

(a) Make a graph of this car’s velocity (in ) as a function
of time. Is its acceleration constant? (b) Calculate the car’s average
acceleration (in ) between (i) 0 and 2.1 s; (ii) 2.1 s and 20.0 s;
(iii) 20.0 s and 53 s. Are these results consistent with your graph in
part (a)? (Before you decide to buy this car, it might be helpful to
know that only 300 will be built, it runs out of gas in 12 minutes at
top speed, and it costs $1.25 million!)
2.14 .. CALC A race car starts from rest and travels east along 
a straight and level track. For the first 5.0 s of the car’s motion, 
the eastward component of the car’s velocity is given by

. What is the acceleration of the car when
?

2.15 . CALC A turtle crawls along a straight line, which we will
call the x-axis with the positive direction to the right. The equation
for the turtle’s position as a function of time is 

(a) Find the turtle’s initial
velocity, initial position, and initial acceleration. (b) At what time t
12.00 cm>s2t - 10.0625 cm>s22t 2.

x1t2 = 50.0 cm +

vx = 16.0 m>s
vx1t2 = 10.860 m/s32t 2

m>s2

mi>hvx-t

Section 2.3 Average and Instantaneous Acceleration
2.12 . Figure E2.12 shows the velocity of a solar-powered car as
a function of time. The driver accelerates from a stop sign, cruises
for 20 s at a constant speed of and then brakes to come
to a stop 40 s after leaving the stop sign. (a) Compute the average
acceleration during the following time intervals: (i) to

(ii) to (iii) to (iv)
to (b) What is the instantaneous acceleration at

and at t = 35 s?t = 20 s
t = 40 s.t = 0

t = 30 s;t = 10 st = 40 s;t = 30 st = 10 s;
t = 0

60 km>h,

Figure E2.12



62 CHAPTER 2 Motion Along a Straight Line

2.24 . BIO If a pilot accelerates at more than 4g, he begins to
“gray out” but doesn’t completely lose consciousness. (a) Assum-
ing constant acceleration, what is the shortest time that a jet pilot
starting from rest can take to reach Mach 4 (four times the speed of
sound) without graying out? (b) How far would the plane travel
during this period of acceleration? (Use 331 m s for the speed of
sound in cold air.)
2.25 . BIO Air-Bag Injuries. During an auto accident, the
vehicle’s air bags deploy and slow down the passengers more gen-
tly than if they had hit the windshield or steering wheel. According
to safety standards, the bags produce a maximum acceleration of
60g that lasts for only 36 ms (or less). How far (in meters) does a
person travel in coming to a complete stop in 36 ms at a constant
acceleration of 60g?
2.26 . BIO Prevention of Hip Fractures. Falls resulting in hip
fractures are a major cause of injury and even death to the elderly.
Typically, the hip’s speed at impact is about If this can be
reduced to or less, the hip will usually not fracture. One
way to do this is by wearing elastic hip pads. (a) If a typical pad is
5.0 cm thick and compresses by 2.0 cm during the impact of a fall,
what constant acceleration (in and in g’s) does the hip
undergo to reduce its speed from 2.0 m s to (b) The
acceleration you found in part (a) may seem rather large, but to
fully assess its effects on the hip, calculate how long it lasts.
2.27 . BIO Are We Martians? It has been suggested, and not
facetiously, that life might have originated on Mars and been car-
ried to the earth when a meteor hit Mars and blasted pieces of rock
(perhaps containing primitive life) free of the surface. Astronomers
know that many Martian rocks have come to the earth this way.
(For information on one of these, search the Internet for “ALH
84001.”) One objection to this idea is that microbes would have to
undergo an enormous lethal acceleration during the impact. Let us
investigate how large such an acceleration might be. To escape
Mars, rock fragments would have to reach its escape velocity of

and this would most likely happen over a distance of
about 4.0 m during the meteor impact. (a) What would be the
acceleration (in and g’s) of such a rock fragment, if the accel-
eration is constant? (b) How long would this acceleration last? (c)
In tests, scientists have found that over 40% of Bacillius subtilis
bacteria survived after an acceleration of 450,000g. In light of your
answer to part (a), can we rule out the hypothesis that life might
have been blasted from Mars to the earth?
2.28 . Entering the Freeway. A car sits in an entrance ramp to
a freeway, waiting for a break in the traffic. The driver accelerates
with constant acceleration along the ramp and onto the freeway.
The car starts from rest, moves in a straight line, and has a speed of

when it reaches the end of the 120-m-long
ramp. (a) What is the acceleration of the car? (b) How much time
does it take the car to travel the length of the ramp? (c) The traffic
on the freeway is moving at a constant speed of What dis-
tance does the traffic travel while the car is moving the length of
the ramp?
2.29 .. Launch of the Space Shuttle. At launch the space
shuttle weighs 4.5 million pounds. When it is launched from rest, it
takes 8.00 s to reach and at the end of the first 1.00 min
its speed is (a) What is the average acceleration (in

) of the shuttle (i) during the first 8.00 s, and (ii) between 8.00 s
and the end of the first 1.00 min? (b) Assuming the acceleration is
constant during each time interval (but not necessarily the same in
both intervals), what distance does the shuttle travel (i) during the
first 8.00 s, and (ii) during the interval from 8.00 s to 1.00 min?

m>s2
1610 km>h.

161 km>h,

20 m>s.

145 mi>h220 m>s

m>s2

5.0 km>s,

1.3 m>s?>
m>s2

1.3 m>s
2.0 m>s.

>

2.30 .. A cat walks in a straight line, which we shall call the 
x-axis with the positive direction to the right. As an observant
physicist, you make measurements of this cat’s motion and con-
struct a graph of the feline’s velocity as a function of time 
(Fig. E2.30). (a) Find the cat’s velocity at and at

(b) What is the cat’s acceleration at At
At (c) What distance does the cat move dur-

ing the first 4.5 s? From to (d) Sketch clear graphs
of the cat’s acceleration and position as functions of time, assuming
that the cat started at the origin.

t = 7.5 s?t = 0
t = 7.0 s?t = 6.0 s?

t = 3.0 s?t = 7.0 s.
t = 4.0 s

2.31 .. The graph in Fig. E2.31 shows the velocity of a motorcycle
police officer plotted as a function of time. (a) Find the instantaneous
acceleration at at and at (b) How far
does the officer go in the first 5 s? The first 9 s? The first 13 s?

t = 11 s.t = 7 s,t = 3 s,

2.32 . Two cars, A and B, move
along the x-axis. Figure E2.32 is
a graph of the positions of A and
B versus time. (a) In motion dia-
grams (like Figs. 2.13b and
2.14b), show the position, veloc-
ity, and acceleration of each of
the two cars at 
and (b) At what time(s),
if any, do A and B have the same
position? (c) Graph velocity ver-
sus time for both A and B. (d) At what time(s), if any, do A and B
have the same velocity? (e) At what time(s), if any, does car A pass
car B? (f) At what time(s), if any, does car B pass car A?

t = 3 s.
t = 1 s,t = 0,
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2.33 .. Mars Landing. In January 2004, NASA landed explo-
ration vehicles on Mars. Part of the descent consisted of the fol-
lowing stages:

Stage A: Friction with the atmosphere reduced the speed from
to in 4.0 min.

Stage B: A parachute then opened to slow it down to in
94 s.
Stage C: Retro rockets then fired to reduce its speed to zero over a
distance of 75 m.

Assume that each stage followed immediately after the preceding
one and that the acceleration during each stage was constant. 
(a) Find the rocket’s acceleration (in ) during each stage. 
(b) What total distance (in km) did the rocket travel during stages
A, B, and C?
2.34 . At the instant the traffic light turns green, a car that has been
waiting at an intersection starts ahead with a constant acceleration
of At the same instant a truck, traveling with a constant
speed of overtakes and passes the car. (a) How far
beyond its starting point does the car overtake the truck? (b) How
fast is the car traveling when it overtakes the truck? (c) Sketch an
x-t graph of the motion of both vehicles. Take at the inter-
section. (d) Sketch a graph of the motion of both vehicles.

Section 2.5 Freely Falling Bodies
2.35 .. (a) If a flea can jump straight up to a height of 0.440 m,
what is its initial speed as it leaves the ground? (b) How long is it
in the air?
2.36 .. A small rock is thrown vertically upward with a speed of

from the edge of the roof of a 30.0-m-tall building. The
rock doesn’t hit the building on its way back down and lands in the
street below. Air resistance can be neglected. (a) What is the speed
of the rock just before it hits the street? (b) How much time elapses
from when the rock is thrown until it hits the street?
2.37 . A juggler throws a bowling pin straight up with an initial
speed of 8.20 m s. How much time elapses until the bowling pin
returns to the juggler’s hand?
2.38 .. You throw a glob of putty straight up toward the ceiling,
which is 3.60 m above the point where the putty leaves your hand.
The initial speed of the putty as it leaves your hand is . 
(a) What is the speed of the putty just before it strikes the ceiling?
(b) How much time from when it leaves your hand does it take the
putty to reach the ceiling?
2.39 .. A tennis ball on Mars, where the acceleration due to grav-
ity is 0.379g and air resistance is negligible, is hit directly upward
and returns to the same level 8.5 s later. (a) How high above its
original point did the ball go? (b) How fast was it moving just after
being hit? (c) Sketch graphs of the ball’s vertical position, vertical
velocity, and vertical accelera-
tion as functions of time while
it’s in the Martian air.
2.40 .. Touchdown on the
Moon. A lunar lander is
making its descent to Moon
Base I (Fig. E2.40). The lander
descends slowly under the retro-
thrust of its descent engine. The
engine is cut off when the lan-
der is 5.0 m above the surface
and has a downward speed of

With the engine off,0.8 m>s.

9.50 m>s

>

18.0 m>s

vx-t
x = 0

20.0 m>s,
3.20 m>s2.

m>s2

321 km>h
1600 km>h19,300 km>h

the lander is in free fall. What is the speed of the lander just
before it touches the surface? The acceleration due to gravity on
the moon is 
2.41 .. A Simple Reaction-Time Test. A meter stick is held ver-
tically above your hand, with the lower end between your thumb
and first finger. On seeing the meter stick released, you grab it with
these two fingers. You can calculate your reaction time from the
distance the meter stick falls, read directly from the point where
your fingers grabbed it. (a) Derive a relationship for your reaction
time in terms of this measured distance, d. (b) If the measured dis-
tance is 17.6 cm, what is the reaction time?
2.42 .. A brick is dropped (zero initial speed) from the roof of a
building. The brick strikes the ground in 2.50 s. You may ignore air
resistance, so the brick is in free fall. (a) How tall, in meters, is the
building? (b) What is the magnitude of the brick’s velocity just
before it reaches the ground? (c) Sketch and y-t graphs
for the motion of the brick.
2.43 .. Launch Failure. A 7500-kg rocket blasts off vertically
from the launch pad with a constant upward acceleration of

and feels no appreciable air resistance. When it has
reached a height of 525 m, its engines suddenly fail so that the
only force acting on it is now gravity. (a) What is the maximum
height this rocket will reach above the launch pad? (b) How much
time after engine failure will elapse before the rocket comes crash-
ing down to the launch pad, and how fast will it be moving just
before it crashes? (c) Sketch and y-t graphs of the
rocket’s motion from the instant of blast-off to the instant just
before it strikes the launch pad.
2.44 .. A hot-air balloonist, ris-
ing vertically with a constant
velocity of magnitude 
releases a sandbag at an instant
when the balloon is 40.0 m above
the ground (Fig. E2.44). After it is
released, the sandbag is in free fall.
(a) Compute the position and
velocity of the sandbag at 0.250 s
and 1.00 s after its release. (b) How
many seconds after its release will
the bag strike the ground? (c) With
what magnitude of velocity does it
strike the ground? (d) What is the
greatest height above the ground
that the sandbag reaches? (e)
Sketch and y-t graphs for
the motion.

2.45 . BIO The rocket-driven sled Sonic Wind No. 2, used for
investigating the physiological effects of large accelerations, runs
on a straight, level track 1070 m (3500 ft) long. Starting from rest,
it can reach a speed of in 0.900 s. (a) Com-
pute the acceleration in assuming that it is constant. (b)
What is the ratio of this acceleration to that of a freely falling body
(g)? (c) What distance is covered in 0.900 s? (d) A magazine article
states that at the end of a certain run, the speed of the sled
decreased from to zero in 1.40 s and that
during this time the magnitude of the acceleration was greater than
40g. Are these figures consistent?
2.46 . An egg is thrown nearly vertically upward from a point
near the cornice of a tall building. It just misses the cornice on the
way down and passes a point 30.0 m below its starting point 5.00 s
after it leaves the thrower’s hand. Air resistance may be ignored.

1632 mi>h2283 m>s

m>s2,
1500 mi>h2224 m>s

vy-t,ay-t,

5.00 m>s,

vy-t,ay-t,

2.25 m>s2

vy-t,ay-t,

1.6 m>s2.

5.0 m

40.0 m to ground

v 5 5.00 m/s
Figure E2.44

Figure E2.40
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(a) What is the initial speed of the egg? (b) How high does it rise
above its starting point? (c) What is the magnitude of its velocity at
the highest point? (d) What are the magnitude and direction of its
acceleration at the highest point? (e) Sketch and y-t
graphs for the motion of the egg.
2.47 .. A 15-kg rock is dropped from rest on the earth and
reaches the ground in 1.75 s. When it is dropped from the same
height on Saturn’s satellite Enceladus, it reaches the ground in 
18.6 s. What is the acceleration due to gravity on Enceladus?
2.48 . A large boulder is ejected vertically upward from a volcano
with an initial speed of Air resistance may be ignored. 
(a) At what time after being ejected is the boulder moving at

upward? (b) At what time is it moving at down-
ward? (c) When is the displacement of the boulder from its initial
position zero? (d) When is the velocity of the boulder zero? (e) What
are the magnitude and direction of the acceleration while the boulder
is (i) moving upward? (ii) Moving downward? (iii) At the highest
point? (f) Sketch and y-t graphs for the motion.

2.49 .. Two stones are thrown vertically upward from the
ground, one with three times the initial speed of the other. (a) If the
faster stone takes 10 s to return to the ground, how long will it take
the slower stone to return? (b) If the slower stone reaches a maxi-
mum height of H, how high (in terms of H) will the faster stone
go? Assume free fall.

Section 2.6 Velocity and Position by Integration
2.50 . CALC For constant use Eqs. (2.17) and (2.18) to find 
and x as functions of time. Compare your results to Eqs. (2.8) 
and (2.12).
2.51 . CALC A rocket starts from rest and moves upward from the
surface of the earth. For the first 10.0 s of its motion, the vertical
acceleration of the rocket is given by , where
the y-direction is upward. (a) What is the height of the rocket
above the surface of the earth at ? (b) What is the speed
of the rocket when it is 325 m above the surface of the earth?
2.52 .. CALC The acceleration of a bus is given by 
where (a) If the bus’s velocity at time is

what is its velocity at time (b) If the bus’s
position at time is 6.0 m, what is its position at time

(c) Sketch and x-t graphs for the motion.
2.53 .. CALC The acceleration of a motorcycle is given by

where and 
The motorcycle is at rest at the origin at time (a) Find its
position and velocity as functions of time. (b) Calculate the maxi-
mum velocity it attains.
2.54 .. BIO Flying Leap of the Flea. High-speed motion pic-
tures of a jumping, flea yielded the
data used to plot the graph given in Fig. E2.54. (See “The Flying
Leap of the Flea” by M. Rothschild, Y. Schlein, K. Parker, 
C. Neville, and S. Sternberg in the November 1973 Scientific

210-mg13500 frames>second2

t = 0.
B = 0.120 m>s4.A = 1.50 m>s3ax1t2 = At - Bt 2,

vx-t,ax-t,t = 2.0 s?
t = 1.0 s

t = 2.0 s?5.0 m>s,
t = 1.0 sa = 1.2 m>s3.
ax1t2 = at,

t = 10.0 s
+

ay = 12.80 m>s32t

vxax,

vy-t,ay-t,

20.0 m>s20.0 m>s

40.0 m>s.

vy-t,ay-t,

American.) This flea was about 2 mm long and jumped at a nearly
vertical takeoff angle. Use the graph to answer the questions. (a) Is
the acceleration of the flea ever zero? If so, when? Justify your
answer. (b) Find the maximum height the flea reached in the first
2.5 ms. (c) Find the flea’s acceleration at 0.5 ms, 1.0 ms, and 
1.5 ms. (d) Find the flea’s height at 0.5 ms, 1.0 ms, and 1.5 ms.

PROBLEMS
2.55 . BIO A typical male sprinter can maintain his maximum
acceleration for 2.0 s and his maximum speed is After
reaching this maximum speed, his acceleration becomes zero and
then he runs at constant speed. Assume that his acceleration is con-
stant during the first 2.0 s of the race, that he starts from rest, and
that he runs in a straight line. (a) How far has the sprinter run when
he reaches his maximum speed? (b) What is the magnitude of his
average velocity for a race of the following lengths: (i) 50.0 m, 
(ii) 100.0 m, (iii) 200.0 m?
2.56 .. On a 20-mile bike ride, you ride the first 10 miles at an
average speed of What must your average speed over the
next 10 miles be to have your average speed for the total 20 miles
be (a) (b) (c) Given this average speed for the
first 10 miles, can you possibly attain an average speed of 
for the total 20-mile ride? Explain.
2.57 .. CALC The position of a particle between and

is given by 
(a) Draw the x-t, and graphs of this particle.

(b) At what time(s) between and is the particle
instantaneously at rest? Does your numerical result agree with 
the graph in part (a)? (c) At each time calculated in part (b), is the
acceleration of the particle positive or negative? Show that in each
case the same answer is deduced from and from the graph.
(d) At what time(s) between and is the velocity of
the particle instantaneously not changing? Locate this point on the

and graphs of part (a). (e) What is the particle’s greatest dis-
tance from the origin between and (f) At
what time(s) between and is the particle speeding
up at the greatest rate? At what time(s) between and

is the particle slowing down at the greatest rate? Locate
these points on the and graphs of part (a).
2.58 .. CALC A lunar lander is descending toward the moon’s
surface. Until the lander reaches the surface, its height above 
the surface of the moon is given by , where

is the initial height of the lander above the surface,
, and . (a) What is the initial velocity

of the lander, at ? (b) What is the velocity of the lander just
before it reaches the lunar surface?
2.59 ... Earthquake Analysis. Earthquakes produce several
types of shock waves. The most well known are the P-waves (P for
primary or pressure) and the S-waves (S for secondary or shear).
In the earth’s crust, the P-waves travel at around while
the S-waves move at about The actual speeds vary
depending on the type of material they are going through. The time
delay between the arrival of these two waves at a seismic record-
ing station tells geologists how far away the earthquake occurred.
If the time delay is 33 s, how far from the seismic station did the
earthquake occur?
2.60 .. Relay Race. In a relay race, each contestant runs 25.0 m
while carrying an egg balanced on a spoon, turns around, and
comes back to the starting point. Edith runs the first 25.0 m in 
20.0 s. On the return trip she is more confident and takes only
15.0 s. What is the magnitude of her average velocity for (a) the

3.5 km>s.
6.5 km>s,

t = 0
d = 1.05 m>s2c = 60.0 m>s

b = 800 m
y1t2 = b - ct + dt 2

ax-tvx-t
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t = 2.00 st = 0

t = 2.00 s?t = 01x = 02
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t = 2.00 st = 0
vx-tax1t2

vx-t

t = 2.00 st = 0
ax-tvx-t,19.00 m>s2t.
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first 25.0 m? (b) The return trip? (c) What is her average velocity
for the entire round trip? (d) What is her average speed for the
round trip?
2.61 ... A rocket carrying a satellite is accelerating straight up
from the earth’s surface. At 1.15 s after liftoff, the rocket clears the
top of its launch platform, 63 m above the ground. After an addi-
tional 4.75 s, it is 1.00 km above the ground. Calculate the magni-
tude of the average velocity of the rocket for (a) the 4.75-s part of
its flight and (b) the first 5.90 s of its flight.
2.62 ... The graph in Fig. P2.62 describes the acceleration as a
function of time for a stone rolling down a hill starting from rest.
(a) Find the stone’s velocity at and at 
(b) Sketch a graph of the stone’s velocity as a function of time.

t = 7.5 s.t = 2.5 s

acceleration during the last 5.1 s? (c) What is his average accelera-
tion for the entire race? (d) Explain why your answer to part (c) is
not the average of the answers to parts (a) and (b).
2.66 .. A sled starts from rest at the top of a hill and slides down
with a constant acceleration. At some later time the sled is 14.4 m
from the top, 2.00 s after that it is 25.6 m from the top, 2.00 s later 
40.0 m from the top, and 2.00 s later it is 57.6 m from the top. (a)
What is the magnitude of the average velocity of the sled during
each of the 2.00-s intervals after passing the 14.4-m point? 
(b) What is the acceleration of the sled? (c) What is the speed of
the sled when it passes the 14.4-m point? (d) How much time
did it take to go from the top to the 14.4-m point? (e) How far
did the sled go during the first second after passing the 14.4-m
point?
2.67 . A gazelle is running in a straight line (the x-axis). The
graph in Fig. P2.67 shows this animal’s velocity as a function of
time. During the first 12.0 s, find (a) the total distance moved and
(b) the displacement of the gazelle. (c) Sketch an graph
showing this gazelle’s acceleration as a function of time for the
first 12.0 s.
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Figure P2.62

2.63 .. Dan gets on Interstate Highway I–80 at Seward,
Nebraska, and drives due west in a straight line and at an average
velocity of magnitude After traveling 76 km, he reaches
the Aurora exit (Fig. P2.63). Realizing he has gone too far, he turns
around and drives due east 34 km back to the York exit at an aver-
age velocity of magnitude For his whole trip from
Seward to the York exit, what are (a) his average speed and (b) the
magnitude of his average velocity?

72 km>h.

88 km>h.

Y

34 km
76 km

Aurora ork Seward

N E B R A S K A

Figure P2.63

2.64 ... A subway train starts from rest at a station and acceler-
ates at a rate of for 14.0 s. It runs at constant speed for
70.0 s and slows down at a rate of until it stops at the
next station. Find the total distance covered.
2.65 .. A world-class sprinter accelerates to his maximum speed
in 4.0 s. He then maintains this speed for the remainder of a 100-m
race, finishing with a total time of 9.1 s. (a) What is the runner’s
average acceleration during the first 4.0 s? (b) What is his average

3.50 m>s2
1.60 m>s2

t (s)
O

4.00

12.0

8.00

2.00 4.00 6.00 8.00 12.010.0

vx (m/s)

Figure P2.67

2.68 . A rigid ball traveling in a straight line (the x-axis) hits a
solid wall and suddenly rebounds during a brief instant. The 
graph in Fig. P2.68 shows this ball’s velocity as a function of time.
During the first 20.0 s of its motion, find (a) the total distance the
ball moves and (b) its displacement. (c) Sketch a graph of for
this ball’s motion. (d) Is the graph shown really vertical at 5.00 s?
Explain.
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Figure P2.68

2.69 ... A ball starts from rest and rolls down a hill with uniform
acceleration, traveling 150 m during the second 5.0 s of its motion.
How far did it roll during the first 5.0 s of motion?
2.70 .. Collision. The engineer of a passenger train traveling at

sights a freight train whose caboose is 200 m ahead on25.0 m>s
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the same track (Fig. P2.70). The freight train is traveling at
in the same direction as the passenger train. The engi-

neer of the passenger train immediately applies the brakes, causing
a constant acceleration of in a direction opposite to the
train’s velocity, while the freight train continues with constant
speed. Take at the location of the front of the passenger train
when the engineer applies the brakes. (a) Will the cows nearby wit-
ness a collision? (b) If so, where will it take place? (c) On a single
graph, sketch the positions of the front of the passenger train and
the back of the freight train.
2.71 ... Large cockroaches can run as fast as in short
bursts. Suppose you turn on the light in a cheap motel and see one
scurrying directly away from you at a constant If you
start 0.90 m behind the cockroach with an initial speed of

toward it, what minimum constant acceleration would
you need to catch up with it when it has traveled 1.20 m, just short
of safety under a counter?
2.72 .. Two cars start 200 m apart and drive toward each other at
a steady On the front of one of them, an energetic
grasshopper jumps back and forth between the cars (he has strong
legs!) with a constant horizontal velocity of relative to the
ground. The insect jumps the instant he lands, so he spends no time
resting on either car. What total distance does the grasshopper
travel before the cars hit?
2.73 . An automobile and a truck start from rest at the same
instant, with the automobile initially at some distance behind the
truck. The truck has a constant acceleration of and the
automobile an acceleration of The automobile over-
takes the truck after the truck has moved 40.0 m. (a) How much
time does it take the automobile to overtake the truck? (b) How far
was the automobile behind the truck initially? (c) What is the
speed of each when they are abreast? (d) On a single graph, sketch
the position of each vehicle as a function of time. Take at
the initial location of the truck.
2.74 ... Two stunt drivers drive directly toward each other. At
time the two cars are a distance D apart, car 1 is at rest, and
car 2 is moving to the left with speed Car 1 begins to move at

speeding up with a constant acceleration Car 2 contin-
ues to move with a constant velocity. (a) At what time do the two
cars collide? (b) Find the speed of car 1 just before it collides with
car 2. (c) Sketch x-t and graphs for car 1 and car 2. For each
of the two graphs, draw the curves for both cars on the same set 
of axes.
2.75 .. A marble is released from one rim of a hemispherical
bowl of diameter 50.0 cm and rolls down and up to the opposite
rim in 10.0 s. Find (a) the average speed and (b) the average veloc-
ity of the marble.
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2.76 .. CALC An object’s velocity is measured to be 
where and At the

object is at (a) Calculate the object’s position and acceleration
as functions of time. (b) What is the object’s maximum positive dis-
placement from the origin?
2.77 .. Passing. The driver of a car wishes to pass a truck that is
traveling at a constant speed of (about ). Ini-
tially, the car is also traveling at and its front bumper is
24.0 m behind the truck’s rear bumper. The car accelerates at a
constant then pulls back into the truck’s lane when the
rear of the car is 26.0 m ahead of the front of the truck. The car is
4.5 m long and the truck is 21.0 m long. (a) How much time is
required for the car to pass the truck? (b) What distance does the
car travel during this time? (c) What is the final speed of the car?
2.78 .. On Planet X, you drop a
25-kg stone from rest and measure
its speed at various times. Then
you use the data you obtained to
construct a graph of its speed as a
function of time t (Fig. P2.78).
From the information in the graph,
answer the following questions: (a)
What is g on Planet X? (b) An
astronaut drops a piece of equip-
ment from rest out of the landing
module, 3.5 m above the surface of Planet X. How long will it take
this equipment to reach the ground, and how fast will it be moving
when it gets there? (c) How fast would an astronaut have to project
an object straight upward to reach a height of 18.0 m above the
release point, and how long would it take to reach that height?
2.79 ... CALC The acceleration of a particle is given by 

(a) Find the initial velocity such
that the particle will have the same x-coordinate at as it
had at (b) What will be the velocity at 
2.80 . Egg Drop. You are on
the roof of the physics building,
46.0 m above the ground (Fig.
P2.80). Your physics professor,
who is 1.80 m tall, is walking
alongside the building at a con-
stant speed of If you
wish to drop an egg on your pro-
fessor’s head, where should the
professor be when you release
the egg? Assume that the egg is
in free fall.
2.81 . A certain volcano on
earth can eject rocks vertically to
a maximum height H. (a) How
high (in terms of H) would these rocks go if a volcano on Mars
ejected them with the same initial velocity? The acceleration due
to gravity on Mars is and you can neglect air resistance
on both planets. (b) If the rocks are in the air for a time T on earth,
for how long (in terms of T) will they be in the air on Mars?
2.82 .. An entertainer juggles balls while doing other activities.
In one act, she throws a ball vertically upward, and while it is in
the air, she runs to and from a table 5.50 m away at a constant
speed of returning just in time to catch the falling ball.
(a) With what minimum initial speed must she throw the ball
upward to accomplish this feat? (b) How high above its initial
position is the ball just as she reaches the table?
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2.83 . Visitors at an amusement park watch divers step off a plat-
form 21.3 m above a pool of water. According to the
announcer, the divers enter the water at a speed of 

Air resistance may be ignored. (a) Is the announcer cor-
rect in this claim? (b) Is it possible for a diver to leap directly
upward off the board so that, missing the board on the way down,
she enters the water at If so, what initial upward speed
is required? Is the required initial speed physically attainable?
2.84 ... A flowerpot falls off a windowsill and falls past the win-
dow below. You may ignore air resistance. It takes the pot 0.420 s to
pass from the top to the bottom of this window, which is 1.90 m
high. How far is the top of the window below the windowsill from
which the flowerpot fell?
2.85 ... Look Out Below. Sam heaves a 16-lb shot straight
upward, giving it a constant upward acceleration from rest of

for 64.0 cm. He releases it 2.20 m above the ground.
You may ignore air resistance. (a) What is the speed of the shot
when Sam releases it? (b) How high above the ground does it go?
(c) How much time does he have to get out of its way before it
returns to the height of the top of his head, 1.83 m above the
ground?
2.86 ... A Multistage Rocket. In the first stage of a two-stage
rocket, the rocket is fired from the launch pad starting from rest but
with a constant acceleration of upward. At 25.0 s after
launch, the second stage fires for 10.0 s, which boosts the rocket’s
velocity to upward at 35.0 s after launch. This firing
uses up all the fuel, however, so after the second stage has finished
firing, the only force acting on the rocket is gravity. Air resistance
can be neglected. (a) Find the maximum height that the stage-two
rocket reaches above the launch pad. (b) How much time after the
end of the stage-two firing will it take for the rocket to fall back to
the launch pad? (c) How fast will the stage-two rocket be moving
just as it reaches the launch pad?
2.87 .. Juggling Act. A juggler performs in a room whose ceil-
ing is 3.0 m above the level of his hands. He throws a ball upward
so that it just reaches the ceiling. (a) What is the initial velocity of
the ball? (b) What is the time required for the ball to reach the ceil-
ing? At the instant when the first ball is at the ceiling, the juggler
throws a second ball upward with two-thirds the initial velocity of
the first. (c) How long after the second ball is thrown do the two
balls pass each other? (d) At what distance above the juggler’s
hand do they pass each other?
2.88 .. A physics teacher performing an outdoor demonstration
suddenly falls from rest off a high cliff and simultaneously shouts
“Help.” When she has fallen for 3.0 s, she hears the echo of her
shout from the valley floor below. The speed of sound is 
(a) How tall is the cliff? (b) If air resistance is neglected, how fast
will she be moving just before she hits the ground? (Her actual
speed will be less than this, due to air resistance.)
2.89 ... A helicopter carrying Dr. Evil takes off with a constant
upward acceleration of Secret agent Austin Powers
jumps on just as the helicopter lifts off the ground. After the two
men struggle for 10.0 s, Powers shuts off the engine and steps out
of the helicopter. Assume that the helicopter is in free fall after its
engine is shut off, and ignore the effects of air resistance. (a) What
is the maximum height above ground reached by the helicopter?
(b) Powers deploys a jet pack strapped on his back 7.0 s after leav-
ing the helicopter, and then he has a constant downward accelera-
tion with magnitude How far is Powers above the
ground when the helicopter crashes into the ground?
2.90 .. Cliff Height. You are climbing in the High Sierra where
you suddenly find yourself at the edge of a fog-shrouded cliff. To
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132.5 m>s

3.50 m>s2

35.0 m>s2

25.0 m>s?
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find the height of this cliff, you drop a rock from the top and 10.0 s
later hear the sound of it hitting the ground at the foot of the cliff.
(a) Ignoring air resistance, how high is the cliff if the speed of
sound is (b) Suppose you had ignored the time it takes
the sound to reach you. In that case, would you have overestimated
or underestimated the height of the cliff? Explain your reasoning.
2.91 ... Falling Can. A painter is standing on scaffolding that is
raised at constant speed. As he travels upward, he accidentally
nudges a paint can off the scaffolding and it falls 15.0 m to the
ground. You are watching, and measure with your stopwatch that it
takes 3.25 s for the can to reach the ground. Ignore air resistance.
(a) What is the speed of the can just before it hits the ground? (b)
Another painter is standing on a ledge, with his hands 4.00 m above
the can when it falls off. He has lightning-fast reflexes and if the
can passes in front of him, he can catch it. Does he get the chance?
2.92 .. Determined to test the law of gravity for himself, a student
walks off a skyscraper 180 m high, stopwatch in hand, and starts his
free fall (zero initial velocity). Five seconds later, Superman arrives
at the scene and dives off the roof to save the student. Superman
leaves the roof with an initial speed that he produces by pushing
himself downward from the edge of the roof with his legs of steel.
He then falls with the same acceleration as any freely falling body.
(a) What must the value of be so that Superman catches the stu-
dent just before they reach the ground? (b) On the same graph,
sketch the positions of the student and of Superman as functions of
time. Take Superman’s initial speed to have the value calculated in
part (a). (c) If the height of the skyscraper is less than some mini-
mum value, even Superman can’t reach the student before he hits the
ground. What is this minimum height?
2.93 ... During launches, rockets often discard unneeded parts. A
certain rocket starts from rest on the launch pad and accelerates
upward at a steady When it is 235 m above the launch
pad, it discards a used fuel canister by simply disconnecting it.
Once it is disconnected, the only force acting on the canister is
gravity (air resistance can be ignored). (a) How high is the rocket
when the canister hits the launch pad, assuming that the rocket does
not change its acceleration? (b) What total distance did the canister
travel between its release and its crash onto the launch pad?
2.94 .. A ball is thrown straight up from the ground with speed

. At the same instant, a second ball is dropped from rest from a
height H, directly above the point where the first ball was thrown
upward. There is no air resistance. (a) Find the time at which the
two balls collide. (b) Find the value of H in terms of and g so
that at the instant when the balls collide, the first ball is at the high-
est point of its motion.
2.95 . CALC Two cars, A and B, travel in a straight line. The dis-
tance of A from the starting point is given as a function of time by

with and The
distance of B from the starting point is with 

and (a) Which car is ahead just
after they leave the starting point? (b) At what time(s) are the cars
at the same point? (c) At what time(s) is the distance from A to B
neither increasing nor decreasing? (d) At what time(s) do A and B
have the same acceleration?

CHALLENGE PROBLEMS
2.96 ... In the vertical jump, an athlete starts from a crouch and
jumps upward to reach as high as possible. Even the best athletes
spend little more than 1.00 s in the air (their “hang time”). Treat
the athlete as a particle and let be his maximum height above
the floor. To explain why he seems to hang in the air, calculate the

ymax

d = 0.20 m>s3.g = 2.80 m>s2
xB1t2 = gt 2 - dt 3,
b = 1.20 m>s2.a = 2.60 m>sxA1t2 = at + bt 2,

v0

v0

3.30 m>s2.

v0

v0

330 m>s?
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ratio of the time he is above to the time it takes him to go
from the floor to that height. You may ignore air resistance.
2.97 ... Catching the Bus. A student is running at her top speed
of to catch a bus, which is stopped at the bus stop. When
the student is still 40.0 m from the bus, it starts to pull away, mov-
ing with a constant acceleration of (a) For how much
time and what distance does the student have to run at 
before she overtakes the bus? (b) When she reaches the bus, how
fast is the bus traveling? (c) Sketch an x-t graph for both the stu-
dent and the bus. Take at the initial position of the student.
(d) The equations you used in part (a) to find the time have a sec-
ond solution, corresponding to a later time for which the student
and bus are again at the same place if they continue their specified
motions. Explain the significance of this second solution. How fast
is the bus traveling at this point? (e) If the student’s top speed is

will she catch the bus? (f) What is the minimum speed
the student must have to just catch up with the bus? For what time
and what distance does she have to run in that case?
2.98 ... An alert hiker sees a boulder fall from the top of a distant
cliff and notes that it takes 1.30 s for the boulder to fall the last
third of the way to the ground. You may ignore air resistance. 

3.5 m>s,

x = 0

5.0 m>s
0.170 m>s2.

5.0 m>s

ymax>2 (a) What is the height of the cliff in meters? (b) If in part (a) you
get two solutions of a quadratic equation and you use one for your
answer, what does the other solution represent?
2.99 ... A ball is thrown straight up from the edge of the roof of a
building. A second ball is dropped from the roof 1.00 s later. You
may ignore air resistance. (a) If the height of the building is 
20.0 m, what must the initial speed of the first ball be if both are to
hit the ground at the same time? On the same graph, sketch the
position of each ball as a function of time, measured from when
the first ball is thrown. Consider the same situation, but now let the
initial speed of the first ball be given and treat the height h of
the building as an unknown. (b) What must the height of the build-
ing be for both balls to reach the ground at the same time (i) if is

and (ii) if is (c) If is greater than some
value a value of h does not exist that allows both balls to hit
the ground at the same time. Solve for The value has a
simple physical interpretation. What is it? (d) If is less than
some value a value of h does not exist that allows both balls
to hit the ground at the same time. Solve for The value 
also has a simple physical interpretation. What is it?
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Chapter Opening Question ?
Yes. Acceleration refers to any change in velocity, including both
speeding up and slowing down.

Test Your Understanding Questions
2.1 Answer to (a): (iv), (i) and (iii) (tie), (v), (ii); answer to (b): (i)
and (iii); answer to (c): (v) In (a) the average x-velocity is

For all five trips, For the individual trips,
we have (i) (ii) 

(iii)
(iv)

(v) In (b) both have

2.2 Answers: (a) P, Q and S (tie), R The x-velocity is (b) positive
when the slope of the x-t graph is positive (P), (c) negative when
the slope is negative (R), and (d) zero when the slope is zero 
(Q and S). (e) R, P, Q and S (tie) The speed is greatest when the
slope of the x-t graph is steepest (either positive or negative) and
zero when the slope is zero.
2.3 Answers: (a) S, where the x-t graph is curved upward (con-
cave up). (b) Q, where the x-t graph is curved downward (concave
down). (c) P and R, where the x-t graph is not curved either up or
down. (d) At (velocity is not changing); at Q, ax 6 0P, ax = 0

vav-x = +50 km>h.
vav-x = 0.¢x = -20 km + 20 km = 0,

vav-x = +70 km>h;¢x = +70 km,+50 km>h;vav-x =
¢x = 60 km - 10 km = +50 km,vav-x = -50 km>h;

¢x = -50 km,vav-x = +50 km>h;¢x = +50 km,
¢t = 1 h.vav-x = ¢x>¢t.

(velocity is decreasing, i.e., changing from positive to zero to neg-
ative); at (velocity is not changing); and at 
(velocity is increasing, i.e., changing from negative to zero to pos-
itive).
2.4 Answer: (b) The officer’s x-acceleration is constant, so her

graph is a straight line, and the officer’s motorcycle is moving
faster than the motorist’s car when the two vehicles meet at

2.5 Answers: (a) (iii) Use Eq. (2.13) with x replaced by y and
The starting height is 

and the y-velocity at the maximum height is so 
and If the initial y-velocity is increased by

a factor of 2, the maximum height increases by a factor of 
and the ball goes to height 4h. (b) (v) Use Eq. (2.8) with x replaced
by y and The y-velocity at the maximum
height is so and If the initial 
y-velocity is increased by a factor of 2, the time to reach the maxi-
mum height increases by a factor of 2 and becomes 2t.
2.6 Answer: (ii) The acceleration is equal to the slope of the

graph. If is increasing, the slope of the graph is also
increasing and the graph is concave up.

Bridging Problem
Answer: h = 57.1 m

vx-taxvx-t
ax

t = v0y>g.0 = v0y - gtvy = 0,
vy = v0y - gt.ay = g;

22 = 4
h = v0y

2>2g.v0y
2 - 2gh

0 =vy = 0,y = h
y0 = 0vy

2 = v0y
2   - 2g1y - y02.ay = g;

t = 10 s.

vx-t

S, ax 7 0R, ax = 0

Answers


