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LEARNING GOALS

By studying this chapter, you will

learn:

• Three fundamental quantities of

physics and the units physicists 

use to measure them.

• How to keep track of significant 

figures in your calculations.

• The difference between scalars and

vectors, and how to add and sub-

tract vectors graphically.

• What the components of a vector

are, and how to use them in 

calculations.

• What unit vectors are, and how 

to use them with components to

describe vectors.

• Two ways of multiplying vectors.

UNITS, PHYSICAL
QUANTITIES, 
AND VECTORS

Physics is one of the most fundamental of the sciences. Scientists of all dis-
ciplines use the ideas of physics, including chemists who study the struc-
ture of molecules, paleontologists who try to reconstruct how dinosaurs

walked, and climatologists who study how human activities affect the atmos-
phere and oceans. Physics is also the foundation of all engineering and technol-
ogy. No engineer could design a flat-screen TV, an interplanetary spacecraft, or
even a better mousetrap without first understanding the basic laws of physics.

The study of physics is also an adventure. You will find it challenging, some-
times frustrating, occasionally painful, and often richly rewarding. If you’ve ever
wondered why the sky is blue, how radio waves can travel through empty space,
or how a satellite stays in orbit, you can find the answers by using fundamental
physics. You will come to see physics as a towering achievement of the human
intellect in its quest to understand our world and ourselves.

In this opening chapter, we’ll go over some important preliminaries that we’ll
need throughout our study. We’ll discuss the nature of physical theory and the use
of idealized models to represent physical systems. We’ll introduce the systems of
units used to describe physical quantities and discuss ways to describe the accu-
racy of a number. We’ll look at examples of problems for which we can’t (or
don’t want to) find a precise answer, but for which rough estimates can be useful
and interesting. Finally, we’ll study several aspects of vectors and vector algebra.
Vectors will be needed throughout our study of physics to describe and analyze
physical quantities, such as velocity and force, that have direction as well as
magnitude.

? Being able to predict the path of a thunderstorm is essential for minimizing
the damage it does to lives and property. If a thunderstorm is moving at 
20 km h in a direction 53° north of east, how far north does the thunderstorm
move in 1 h?

>



1.1 The Nature of Physics
Physics is an experimental science. Physicists observe the phenomena of nature
and try to find patterns that relate these phenomena. These patterns are called
physical theories or, when they are very well established and widely used, physi-
cal laws or principles.

CAUTION The meaning of the word “theory” Calling an idea a theory does not mean that
it’s just a random thought or an unproven concept. Rather, a theory is an explanation of
natural phenomena based on observation and accepted fundamental principles. An exam-
ple is the well-established theory of biological evolution, which is the result of extensive
research and observation by generations of biologists. ❙

To develop a physical theory, a physicist has to learn to ask appropriate ques-
tions, design experiments to try to answer the questions, and draw appropriate
conclusions from the results. Figure 1.1 shows two famous facilities used for
physics experiments.

Legend has it that Galileo Galilei (1564–1642) dropped light and heavy
objects from the top of the Leaning Tower of Pisa (Fig. 1.1a) to find out whether
their rates of fall were the same or different. From examining the results of his
experiments (which were actually much more sophisticated than in the legend),
he made the inductive leap to the principle, or theory, that the acceleration of a
falling body is independent of its weight.

The development of physical theories such as Galileo’s often takes an indirect
path, with blind alleys, wrong guesses, and the discarding of unsuccessful theo-
ries in favor of more promising ones. Physics is not simply a collection of facts
and principles; it is also the process by which we arrive at general principles that
describe how the physical universe behaves.

No theory is ever regarded as the final or ultimate truth. The possibility always
exists that new observations will require that a theory be revised or discarded. It is
in the nature of physical theory that we can disprove a theory by finding behavior
that is inconsistent with it, but we can never prove that a theory is always correct.

Getting back to Galileo, suppose we drop a feather and a cannonball. They
certainly do not fall at the same rate. This does not mean that Galileo was wrong;
it means that his theory was incomplete. If we drop the feather and the cannon-
ball in a vacuum to eliminate the effects of the air, then they do fall at the same
rate. Galileo’s theory has a range of validity: It applies only to objects for which
the force exerted by the air (due to air resistance and buoyancy) is much less than
the weight. Objects like feathers or parachutes are clearly outside this range.

Often a new development in physics extends a principle’s range of validity.
Galileo’s analysis of falling bodies was greatly extended half a century later by
Newton’s laws of motion and law of gravitation.

1.2 Solving Physics Problems
At some point in their studies, almost all physics students find themselves think-
ing, “I understand the concepts, but I just can’t solve the problems.” But in
physics, truly understanding a concept means being able to apply it to a variety of
problems. Learning how to solve problems is absolutely essential; you don’t
know physics unless you can do physics.

How do you learn to solve physics problems? In every chapter of this book
you will find Problem-Solving Strategies that offer techniques for setting up and
solving problems efficiently and accurately. Following each Problem-Solving
Strategy are one or more worked Examples that show these techniques in action.
(The Problem-Solving Strategies will also steer you away from some incorrect
techniques that you may be tempted to use.) You’ll also find additional examples
that aren’t associated with a particular Problem-Solving Strategy. In addition, 
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(a)

(b)

1.1 Two research laboratories. (a) Accord-
ing to legend, Galileo investigated falling
bodies by dropping them from the Leaning
Tower in Pisa, Italy, and he studied pendu-
lum motion by observing the swinging of
the chandelier in the adjacent cathedral. 
(b) The Large Hadron Collider (LHC) in
Geneva, Switzerland, the world’s largest
particle accelerator, is used to explore the
smallest and most fundamental con-
stituents of matter. This photo shows a 
portion of one of the LHC’s detectors 
(note the worker on the yellow platform).
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at the end of each chapter you’ll find a Bridging Problem that uses more than one
of the key ideas from the chapter. Study these strategies and problems carefully,
and work through each example for yourself on a piece of paper.

Different techniques are useful for solving different kinds of physics prob-
lems, which is why this book offers dozens of Problem-Solving Strategies. No
matter what kind of problem you’re dealing with, however, there are certain key
steps that you’ll always follow. (These same steps are equally useful for prob-
lems in math, engineering, chemistry, and many other fields.) In this book we’ve
organized these steps into four stages of solving a problem.

All of the Problem-Solving Strategies and Examples in this book will follow
these four steps. (In some cases we will combine the first two or three steps.) We
encourage you to follow these same steps when you solve problems yourself.
You may find it useful to remember the acronym I SEE—short for Identify, 
Set up, Execute, and Evaluate.

Problem-Solving Strategy 1.1 Solving Physics Problems

IDENTIFY the relevant concepts: Use the physical conditions
stated in the problem to help you decide which physics concepts
are relevant. Identify the target variables of the problem—that is,
the quantities whose values you’re trying to find, such as the speed
at which a projectile hits the ground, the intensity of a sound made
by a siren, or the size of an image made by a lens. Identify the
known quantities, as stated or implied in the problem. This step is
essential whether the problem asks for an algebraic expression or a
numerical answer.

SET UP the problem: Given the concepts you have identified and
the known and target quantities, choose the equations that you’ll
use to solve the problem and decide how you’ll use them. Make
sure that the variables you have identified correlate exactly with
those in the equations. If appropriate, draw a sketch of the situation
described in the problem. (Graph paper, ruler, protractor, and com-
pass will help you make clear, useful sketches.) As best you can,

estimate what your results will be and, as appropriate, predict what
the physical behavior of a system will be. The worked examples in
this book include tips on how to make these kinds of estimates and
predictions. If this seems challenging, don’t worry—you’ll get
better with practice!

EXECUTE the solution: This is where you “do the math.” Study the
worked examples to see what’s involved in this step.

EVALUATE your answer: Compare your answer with your esti-
mates, and reconsider things if there’s a discrepancy. If your
answer includes an algebraic expression, assure yourself that it
represents what would happen if the variables in it were taken to
extremes. For future reference, make note of any answer that rep-
resents a quantity of particular significance. Ask yourself how you
might answer a more general or more difficult version of the prob-
lem you have just solved.

Idealized Models
In everyday conversation we use the word “model” to mean either a small-scale
replica, such as a model railroad, or a person who displays articles of clothing (or
the absence thereof). In physics a model is a simplified version of a physical sys-
tem that would be too complicated to analyze in full detail.

For example, suppose we want to analyze the motion of a thrown baseball
(Fig. 1.2a). How complicated is this problem? The ball is not a perfect sphere (it
has raised seams), and it spins as it moves through the air. Wind and air resistance
influence its motion, the ball’s weight varies a little as its distance from the center
of the earth changes, and so on. If we try to include all these things, the analysis
gets hopelessly complicated. Instead, we invent a simplified version of the prob-
lem. We neglect the size and shape of the ball by representing it as a point object,
or particle. We neglect air resistance by making the ball move in a vacuum, and
we make the weight constant. Now we have a problem that is simple enough to
deal with (Fig. 1.2b). We will analyze this model in detail in Chapter 3.

We have to overlook quite a few minor effects to make an idealized model, but
we must be careful not to neglect too much. If we ignore the effects of gravity
completely, then our model predicts that when we throw the ball up, it will go in
a straight line and disappear into space. A useful model is one that simplifies a
problem enough to make it manageable, yet keeps its essential features.

Direction of
motion

Direction of
motion

Baseball is treated as a point object (particle).

No air resistance.

Baseball spins and has a complex shape.

Air resistance and
wind exert forces
on the ball.

Gravitational force on ball
depends on altitude.

Gravitational force
on ball is constant.

(a) A real baseball in flight

(b) An idealized model of the baseball

1.2 To simplify the analysis of (a) a base-
ball in flight, we use (b) an idealized model.



The validity of the predictions we make using a model is limited by the valid-
ity of the model. For example, Galileo’s prediction about falling bodies (see Sec-
tion 1.1) corresponds to an idealized model that does not include the effects of air
resistance. This model works fairly well for a dropped cannonball, but not so well
for a feather.

Idealized models play a crucial role throughout this book. Watch for them in
discussions of physical theories and their applications to specific problems.

1.3 Standards and Units
As we learned in Section 1.1, physics is an experimental science. Experiments
require measurements, and we generally use numbers to describe the results of
measurements. Any number that is used to describe a physical phenomenon
quantitatively is called a physical quantity. For example, two physical quantities
that describe you are your weight and your height. Some physical quantities are
so fundamental that we can define them only by describing how to measure them.
Such a definition is called an operational definition. Two examples are measur-
ing a distance by using a ruler and measuring a time interval by using a stop-
watch. In other cases we define a physical quantity by describing how to
calculate it from other quantities that we can measure. Thus we might define the
average speed of a moving object as the distance traveled (measured with a ruler)
divided by the time of travel (measured with a stopwatch).

When we measure a quantity, we always compare it with some reference stan-
dard. When we say that a Ferrari 458 Italia is 4.53 meters long, we mean that it is
4.53 times as long as a meter stick, which we define to be 1 meter long. Such a
standard defines a unit of the quantity. The meter is a unit of distance, and the
second is a unit of time. When we use a number to describe a physical quantity,
we must always specify the unit that we are using; to describe a distance as
simply “4.53” wouldn’t mean anything.

To make accurate, reliable measurements, we need units of measurement that
do not change and that can be duplicated by observers in various locations. The
system of units used by scientists and engineers around the world is commonly
called “the metric system,” but since 1960 it has been known officially as the
International System, or SI (the abbreviation for its French name, Système
International). Appendix A gives a list of all SI units as well as definitions of the
most fundamental units.

Time
From 1889 until 1967, the unit of time was defined as a certain fraction of the
mean solar day, the average time between successive arrivals of the sun at its high-
est point in the sky. The present standard, adopted in 1967, is much more precise.
It is based on an atomic clock, which uses the energy difference between the two
lowest energy states of the cesium atom. When bombarded by microwaves of pre-
cisely the proper frequency, cesium atoms undergo a transition from one of these
states to the other. One second (abbreviated s) is defined as the time required for
9,192,631,770 cycles of this microwave radiation (Fig. 1.3a).

Length
In 1960 an atomic standard for the meter was also established, using the wave-
length of the orange-red light emitted by atoms of krypton in a glow dis-
charge tube. Using this length standard, the speed of light in vacuum was
measured to be 299,792,458 m s. In November 1983, the length standard was
changed again so that the speed of light in vacuum was defined to be precisely

>
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Light
source

Cesium-133
atom

Cesium-133
atom

Microwave radiation with a frequency of
exactly 9,192,631,770 cycles per second ...

... causes the outermost electron of a
cesium-133 atom to reverse its spin direction.

An atomic clock uses this phenomenon to tune
microwaves to this exact frequency. It then
counts 1 second for each 9,192,631,770 cycles.

Light travels exactly
299,792,458 m in 1 s.

(a) Measuring the second

(b) Measuring the meter

0:00 s 0:01 s

Outermost
electron

1.3 The measurements used to determine
(a) the duration of a second and (b) the
length of a meter. These measurements are
useful for setting standards because they
give the same results no matter where they
are made.
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299,792,458 m s. Hence the new definition of the meter (abbreviated m) is the
distance that light travels in vacuum in 1 299,792,458 second (Fig. 1.3b). This
provides a much more precise standard of length than the one based on a wave-
length of light.

Mass
The standard of mass, the kilogram (abbreviated kg), is defined to be the mass of
a particular cylinder of platinum–iridium alloy kept at the International Bureau
of Weights and Measures at Sèvres, near Paris (Fig. 1.4). An atomic standard of
mass would be more fundamental, but at present we cannot measure masses on
an atomic scale with as much accuracy as on a macroscopic scale. The gram
(which is not a fundamental unit) is 0.001 kilogram.

Unit Prefixes
Once we have defined the fundamental units, it is easy to introduce larger and
smaller units for the same physical quantities. In the metric system these other
units are related to the fundamental units (or, in the case of mass, to the gram) by
multiples of 10 or Thus one kilometer is 1000 meters, and one cen-
timeter is meter. We usually express multiples of 10 or in exponential
notation: and so on. With this notation, 
and

The names of the additional units are derived by adding a prefix to the name
of the fundamental unit. For example, the prefix “kilo-,” abbreviated k, always
means a unit larger by a factor of 1000; thus

A table on the inside back cover of this book lists the standard SI prefixes, with
their meanings and abbreviations.

Table 1.1 gives some examples of the use of multiples of 10 and their prefixes
with the units of length, mass, and time. Figure 1.5 shows how these prefixes are
used to describe both large and small distances.

The British System
Finally, we mention the British system of units. These units are used only in the
United States and a few other countries, and in most of these they are being replaced
by SI units. British units are now officially defined in terms of SI units, as follows:

Force:  1 pound = 4.448221615260 newtons (exactly)

Length: 1 inch = 2.54 cm (exactly)

 1 kilowatt  = 1 kW = 103 watts  = 103 W

 1 kilogram  = 1 kg  = 103 grams  = 103 g

 1 kilometer = 1 km  = 103 meters = 103 m

1 cm = 10-2 m.
1 km = 103 m1

1000 = 10-3,1000 = 103,

1
10

1
10011 cm2

11 km21
10 .

>
>

1.4 The international standard kilogram
is the metal object carefully enclosed
within these nested glass containers.

Table 1.1 Some Units of Length, Mass, and Time

Length Mass Time

(a few times the size of the largest atom)

(size of some bacteria and living cells)

(diameter of the point of a ballpoint pen)

(diameter of your little finger)

(a 10-minute walk)
 1 kilometer  = 1 km  = 103 m 

 1 centimeter  = 1 cm  = 10-2 m 

 1 millimeter  = 1 mm = 10-3 m 

 1 micrometer = 1 mm = 10-6 m 

 1 nanometer  = 1 nm  = 10-9 m 
(mass of a very small dust particle)

(mass of a grain of salt)

(mass of a paper clip)
 1 gram  = 1 g  = 10-3 kg 

 1 milligram  = 1 mg  = 10-3 g = 10-6 kg 

 1 microgram  = 1 mg = 10-6 g = 10-9 kg 
(time for light to travel 0.3 m)

(time for space station to move 8 mm)

(time for sound to travel 0.35 m)
 1 millisecond  = 1 ms = 10-3 s 

 1 microsecond = 1 ms = 10-6 s 

 1 nanosecond  = 1 ns  = 10-9 s 



The newton, abbreviated N, is the SI unit of force. The British unit of time is the
second, defined the same way as in SI. In physics, British units are used only in
mechanics and thermodynamics; there is no British system of electrical units.

In this book we use SI units for all examples and problems, but we occasion-
ally give approximate equivalents in British units. As you do problems using
SI units, you may also wish to convert to the approximate British equivalents if
they are more familiar to you (Fig. 1.6). But you should try to think in SI units as
much as you can.

1.4 Unit Consistency and Conversions
We use equations to express relationships among physical quantities, represented
by algebraic symbols. Each algebraic symbol always denotes both a number and
a unit. For example, d might represent a distance of 10 m, t a time of 5 s, and a
speed of 

An equation must always be dimensionally consistent. You can’t add apples
and automobiles; two terms may be added or equated only if they have the same
units. For example, if a body moving with constant speed travels a distance d in
a time t, these quantities are related by the equation

If d is measured in meters, then the product must also be expressed in meters.
Using the above numbers as an example, we may write

Because the unit on the right side of the equation cancels the unit s, the prod-
uct has units of meters, as it must. In calculations, units are treated just like alge-
braic symbols with respect to multiplication and division.

CAUTION Always use units in calculations When a problem requires calculations using
numbers with units, always write the numbers with the correct units and carry the units
through the calculation as in the example above. This provides a very useful check. If at
some stage in a calculation you find that an equation or an expression has inconsistent
units, you know you have made an error somewhere. In this book we will always carry
units through all calculations, and we strongly urge you to follow this practice when you
solve problems. ❙

1>s

10 m = a2 
m
s
b15 s2

vt

d = vt

v

2 m>s.
v
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(g)10214 m
Radius of an
atomic nucleus

(f)10210 m
Radius of an
atom

(e)1025 m
Diameter of a
red blood cell

(d)1 m
Human
dimensions

(c)107 m
Diameter of
the earth

(b)1011 m
Distance to
the sun

(a)1026 m
Limit of the
observable
universe

1.5 Some typical lengths in the universe. (f) is a scanning tunneling microscope image of atoms on a crystal surface; (g) is an artist’s
impression.

1.6 Many everyday items make use of
both SI and British units. An example is
this speedometer from a U.S.-built auto-
mobile, which shows the speed in both
kilometers per hour (inner scale) and miles
per hour (outer scale).
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Problem-Solving Strategy 1.2 Solving Physics Problems

IDENTIFY the relevant concepts: In most cases, it’s best to use the
fundamental SI units (lengths in meters, masses in kilograms, and
times in seconds) in every problem. If you need the answer to be in
a different set of units (such as kilometers, grams, or hours), wait
until the end of the problem to make the conversion.

SET UP the problem and EXECUTE the solution: Units are multi-
plied and divided just like ordinary algebraic symbols. This gives
us an easy way to convert a quantity from one set of units to
another: Express the same physical quantity in two different units
and form an equality.

For example, when we say that we don’t mean
that the number 1 is equal to the number 60; rather, we mean that 
1 min represents the same physical time interval as 60 s. For this
reason, the ratio equals 1, as does its reciprocal

We may multiply a quantity by either of these160 s2>11 min2.
11 min2>160 s2

1 min = 60 s,

factors (which we call unit multipliers) without changing that
quantity’s physical meaning. For example, to find the number of
seconds in 3 min, we write

EVALUATE your answer: If you do your unit conversions correctly,
unwanted units will cancel, as in the example above. If, instead, you
had multiplied 3 min by your result would have

been the nonsensical . To be sure you convert units prop-
erly, you must write down the units at all stages of the calculation.

Finally, check whether your answer is reasonable. For example,
the result is reasonable because the second is a
smaller unit than the minute, so there are more seconds than min-
utes in the same time interval.

3 min = 180 s

1
20 min2>s

11 min2>160 s2,

3 min = 13 min2a
60 s

1 min
b = 180 s

Example 1.1 Converting speed units

The world land speed record is 763.0 mi h, set on October 15,
1997, by Andy Green in the jet-engine car Thrust SSC. Express
this speed in meters per second.

SOLUTION

IDENTIFY, SET UP, and EXECUTE: We need to convert the units of a
speed from mi h to We must therefore find unit multipliers
that relate (i) miles to meters and (ii) hours to seconds. In Appen-
dix E (or inside the front cover of this book) we find the equalities

and We set up
the conversion as follows, which ensures that all the desired can-
cellations by division take place:

 = 341.0 m>s

 763.0 mi>h = a763.0 
mi

h
b a

1.609 km
1 mi

b a
1000 m

1 km
b a

1 h

3600 s
b

1 h = 3600 s.1 km = 1000 m,1 mi = 1.609 km,

m>s.>

> EVALUATE: Green’s was the first supersonic land speed record (the
speed of sound in air is about 340 m s). This example shows a use-
ful rule of thumb: A speed expressed in m s is a bit less than half
the value expressed in mi h, and a bit less than one-third the value
expressed in km h. For example, a normal freeway speed is about

and a typical walking speed is
about 1.4 m>s = 3.1 mi>h = 5.0 km>h.
30 m>s = 67 mi>h = 108 km>h,

>
>

>
>

Example 1.2 Converting volume units

The world’s largest cut diamond is the First Star of Africa
(mounted in the British Royal Sceptre and kept in the Tower of
London). Its volume is 1.84 cubic inches. What is its volume in
cubic centimeters? In cubic meters?

SOLUTION

IDENTIFY, SET UP, and EXECUTE: Here we are to convert the units
of a volume from cubic inches to both cubic centimeters

and cubic meters Appendix E gives us the equality
from which we obtain . We

then have

 = 11.84212.5423 
in.3 cm3

in.3
= 30.2 cm3

 1.84 in.3 = 11.84 in.32a
2.54 cm

1 in.
b

3

1 in.3 = 12.54 cm231 in. = 2.540 cm,
1m32.1cm32

1in.32

Appendix F also gives us so

EVALUATE: Following the pattern of these conversions, you can
show that and that . These
approximate unit conversions may be useful for future reference.

1 m3 L 60,000 in.31 in.3 L 16 cm3

 = 3.02 * 10-5 m3

 = 130.22a
1

100
b

3

 
cm3 m3

cm3
= 30.2 * 10-6 m3

 30.2 cm3 = 130.2 cm32a
1 m

100 cm
b

3

1 m = 100 cm,



1.5 Uncertainty and Significant Figures
Measurements always have uncertainties. If you measure the thickness of the
cover of a hardbound version of this book using an ordinary ruler, your measure-
ment is reliable only to the nearest millimeter, and your result will be 3 mm. It
would be wrong to state this result as 3.00 mm; given the limitations of the meas-
uring device, you can’t tell whether the actual thickness is 3.00 mm, 2.85 mm, or
3.11 mm. But if you use a micrometer caliper, a device that measures distances
reliably to the nearest 0.01 mm, the result will be 2.91 mm. The distinction
between these two measurements is in their uncertainty. The measurement using
the micrometer caliper has a smaller uncertainty; it’s a more accurate measure-
ment. The uncertainty is also called the error because it indicates the maximum
difference there is likely to be between the measured value and the true value.
The uncertainty or error of a measured value depends on the measurement tech-
nique used.

We often indicate the accuracy of a measured value—that is, how close it is
likely to be to the true value—by writing the number, the symbol and a sec-
ond number indicating the uncertainty of the measurement. If the diameter of a
steel rod is given as this means that the true value is unlikely
to be less than 56.45 mm or greater than 56.49 mm. In a commonly used short-
hand notation, the number means The numbers in
parentheses show the uncertainty in the final digits of the main number.

We can also express accuracy in terms of the maximum likely fractional
error or percent error (also called fractional uncertainty and percent uncer-
tainty). A resistor labeled probably has a true resistance that
differs from 47 ohms by no more than 10% of 47 ohms—that is, by about 5 ohms.
The resistance is probably between 42 and 52 ohms. For the diameter of the steel
rod given above, the fractional error is or about 0.0004;
the percent error is or about 0.04%. Even small percent errors
can sometimes be very significant (Fig. 1.7).

In many cases the uncertainty of a number is not stated explicitly. Instead, the
uncertainty is indicated by the number of meaningful digits, or significant figures,
in the measured value. We gave the thickness of the cover of this book as 2.91 mm,
which has three significant figures. By this we mean that the first two digits are
known to be correct, while the third digit is uncertain. The last digit is in the hun-
dredths place, so the uncertainty is about 0.01 mm. Two values with the same
number of significant figures may have different uncertainties; a distance given as
137 km also has three significant figures, but the uncertainty is about 1 km.

When you use numbers that have uncertainties to compute other numbers, the
computed numbers are also uncertain. When numbers are multiplied or divided,
the number of significant figures in the result can be no greater than in the factor
with the fewest significant figures. For example, 
When we add and subtract numbers, it’s the location of the decimal point that mat-
ters, not the number of significant figures. For example, 
Although 123.62 has an uncertainty of about 0.01, 8.9 has an uncertainty of about
0.1. So their sum has an uncertainty of about 0.1 and should be written as 132.5,
not 132.52. Table 1.2 summarizes these rules for significant figures.

As an application of these ideas, suppose you want to verify the value of 
the ratio of the circumference of a circle to its diameter. The true value of this
ratio to ten digits is 3.141592654. To test this, you draw a large circle and meas-
ure its circumference and diameter to the nearest millimeter, obtaining the values
424 mm and 135 mm (Fig. 1.8). You punch these into your calculator and obtain
the quotient . This may seem to disagree
with the true value of but keep in mind that each of your measurements has
three significant figures, so your measured value of can have only three signif-
icant figures. It should be stated simply as 3.14. Within the limit of three signifi-
cant figures, your value does agree with the true value.

p

p,
1424 mm2>1135 mm2 = 3.140740741

p,

123.62 + 8.9 = 132.5.

3.1416 * 2.34 * 0.58 = 4.3.

10.000421100%2,
10.02 mm2>156.47 mm2,

“47 ohms � 10%”

1.6454 � 0.0021.1.64541212

56.47 � 0.02 mm,

� ,
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1.7 This spectacular mishap was the result
of a very small percent error—traveling a
few meters too far at the end of a journey of
hundreds of thousands of meters.

Table 1.2 Using Significant 
Figures

Multiplication or division:
Result may have no more significant figures
than the starting number with the fewest 
significant figures:

Addition or subtraction:
Number of significant figures is determined by
the starting number with the largest uncertainty
(i.e., fewest digits to the right of the decimal
point):

27.153 + 138.2 - 11.74 = 153.6

1.32578 * 107 * 4.11 * 10-3 = 5.45 * 104

0.745 * 2.2

3.885
= 0.42

The measured values have only three significant
figures, so their calculated  ratio (p) also has
only three significant figures.

424 mm

135 mm

1.8 Determining the value of from the
circumference and diameter of a circle.

p
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In the examples and problems in this book we usually give numerical values
with three significant figures, so your answers should usually have no more than
three significant figures. (Many numbers in the real world have even less accu-
racy. An automobile speedometer, for example, usually gives only two significant
figures.) Even if you do the arithmetic with a calculator that displays ten digits, it
would be wrong to give a ten-digit answer because it misrepresents the accuracy
of the results. Always round your final answer to keep only the correct number of
significant figures or, in doubtful cases, one more at most. In Example 1.1 it
would have been wrong to state the answer as Note that when
you reduce such an answer to the appropriate number of significant figures, you
must round, not truncate. Your calculator will tell you that the ratio of 525 m to
311 m is 1.688102894; to three significant figures, this is 1.69, not 1.68.

When we calculate with very large or very small numbers, we can show sig-
nificant figures much more easily by using scientific notation, sometimes called
powers-of-10 notation. The distance from the earth to the moon is about
384,000,000 m, but writing the number in this form doesn’t indicate the number
of significant figures. Instead, we move the decimal point eight places to the left
(corresponding to dividing by 108) and multiply by that is,

In this form, it is clear that we have three significant figures. The number
also has three significant figures, even though two of them are

zeros. Note that in scientific notation the usual practice is to express the quantity
as a number between 1 and 10 multiplied by the appropriate power of 10.

When an integer or a fraction occurs in a general equation, we treat that
number as having no uncertainty at all. For example, in the equation

which is Eq. (2.13) in Chapter 2, the coefficient 2 is
exactly 2. We can consider this coefficient as having an infinite number of signif-
icant figures The same is true of the exponent 2 in and 

Finally, let’s note that precision is not the same as accuracy. A cheap digital
watch that gives the time as 10:35:17 A.M. is very precise (the time is given to the
second), but if the watch runs several minutes slow, then this value isn’t very
accurate. On the other hand, a grandfather clock might be very accurate (that is,
display the correct time), but if the clock has no second hand, it isn’t very precise.
A high-quality measurement is both precise and accurate.

v0x
2.vx

212.000000 Á 2.

vx
2 = v0x

2 + 2ax1x - x02,

4.00 * 10-7

384,000,000 m = 3.84 * 108 m

108;

341.01861 m>s.

Example 1.3 Significant figures in multiplication

The rest energy E of an object with rest mass m is given by 
Einstein’s famous equation , where c is the speed of light
in vacuum. Find E for an electron for which (to three significant
figures) . The SI unit for E is the joule (J);

SOLUTION

IDENTIFY and SET UP: Our target variable is the energy E. We are
given the value of the mass m; from Section 1.3 (or Appendix F)
the speed of light is 

EXECUTE: Substituting the values of m and c into Einstein’s equa-
tion, we find

= 8.187659678 * 10-14 kg # m2>s2

= 181.8765967821103-31+12*8242 kg # m2>s2

= 19.11212.9979245822110-312110822 kg # m2>s2

E = 19.11 * 10-31 kg212.99792458 * 108 m>s22

c = 2.99792458 * 108 m>s.

1 J = 1 kg # m2>s2.
m = 9.11 * 10-31 kg

E = mc2
Since the value of m was given to only three significant figures, we
must round this to

EVALUATE: While the rest energy contained in an electron may
seem ridiculously small, on the atomic scale it is tremendous.
Compare our answer to the energy gained or lost by a
single atom during a typical chemical reaction. The rest energy of
an electron is about 1,000,000 times larger! (We’ll discuss the sig-
nificance of rest energy in Chapter 37.)

10-19 J,

E = 8.19 * 10-14 kg # m2>s2 = 8.19 * 10-14 J



1.6 Estimates and Orders of Magnitude
We have stressed the importance of knowing the accuracy of numbers that repre-
sent physical quantities. But even a very crude estimate of a quantity often gives
us useful information. Sometimes we know how to calculate a certain quantity,
but we have to guess at the data we need for the calculation. Or the calculation
might be too complicated to carry out exactly, so we make some rough approxi-
mations. In either case our result is also a guess, but such a guess can be useful
even if it is uncertain by a factor of two, ten, or more. Such calculations are often
called order-of-magnitude estimates. The great Italian-American nuclear physi-
cist Enrico Fermi (1901–1954) called them “back-of-the-envelope calculations.”

Exercises 1.16 through 1.25 at the end of this chapter are of the estimating, or
order-of-magnitude, variety. Most require guesswork for the needed input data.
Don’t try to look up a lot of data; make the best guesses you can. Even when they
are off by a factor of ten, the results can be useful and interesting.

10 CHAPTER 1 Units, Physical Quantities, and Vectors

Test Your Understanding of Section 1.5 The density of a material is
equal to its mass divided by its volume. What is the density of a rock of
mass 1.80 kg and volume (i) (ii) 
(iii) (iv) (v) any of these—all of these answers
are mathematically equivalent. ❙

3.000 * 103 kg >m3;3.00 * 103 kg >m3;
103 kg >m3;3.0 *3 * 103 kg>m3;6.0 * 10-4 m3?

(in kg>m3)

Example 1.4 An order-of-magnitude estimate

You are writing an adventure novel in which the hero escapes
across the border with a billion dollars’ worth of gold in his suit-
case. Could anyone carry that much gold? Would it fit in a suit-
case?

SOLUTION

IDENTIFY, SET UP, and EXECUTE: Gold sells for around $400 an
ounce. (The price has varied between $200 and $1000 over the
past decade or so.) An ounce is about 30 grams; that’s worth
remembering. So ten dollars’ worth of gold has a mass of 
ounce, or around one gram. A billion dollars’ worth of gold 11092

1
40

is a hundred million grams, or a hundred thousand 
kilograms. This corresponds to a weight in British units of
around 200,000 lb, or 100 tons. No human hero could lift that
weight!

Roughly what is the volume of this gold? The density of gold is
much greater than that of water , or ; if its
density is 10 times that of water, this much gold will have a vol-
ume of , many times the volume of a suitcase.

EVALUATE: Clearly your novel needs rewriting. Try the calculation
again with a suitcase full of five-carat (1-gram) diamonds, each
worth $100,000. Would this work?

10 m3

1000 kg >m311 g>cm32

1105211082

Test Your Understanding of Section 1.6 Can you estimate the total number
of teeth in all the mouths of everyone (students, staff, and faculty) on your campus?
(Hint: How many teeth are in your mouth? Count them!) ❙

1.7 Vectors and Vector Addition
Some physical quantities, such as time, temperature, mass, and density, can be
described completely by a single number with a unit. But many other important
quantities in physics have a direction associated with them and cannot be
described by a single number. A simple example is describing the motion of an
airplane: We must say not only how fast the plane is moving but also in what
direction. The speed of the airplane combined with its direction of motion
together constitute a quantity called velocity. Another example is force, which in
physics means a push or pull exerted on a body. Giving a complete description of
a force means describing both how hard the force pushes or pulls on the body and
the direction of the push or pull.

Application Scalar Temperature,
Vector Wind
This weather station measures temperature, a
scalar quantity that can be positive or negative
(say, ) but has no direction. It
also measures wind velocity, which is a vector
quantity with both magnitude and direction (for
example, 15 km/h from the west).

+20°C or -5°C

PhET: Estimation
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When a physical quantity is described by a single number, we call it a scalar
quantity. In contrast, a vector quantity has both a magnitude (the “how much”
or “how big” part) and a direction in space. Calculations that combine scalar quan-
tities use the operations of ordinary arithmetic. For example, 
or However, combining vectors requires a different set of operations.

To understand more about vectors and how they combine, we start with the
simplest vector quantity, displacement. Displacement is simply a change in the
position of an object. Displacement is a vector quantity because we must state not
only how far the object moves but also in what direction. Walking 3 km north
from your front door doesn’t get you to the same place as walking 3 km southeast;
these two displacements have the same magnitude but different directions.

We usually represent a vector quantity such as displacement by a single letter,
such as in Fig. 1.9a. In this book we always print vector symbols in boldface
italic type with an arrow above them. We do this to remind you that vector quan-
tities have different properties from scalar quantities; the arrow is a reminder that
vectors have direction. When you handwrite a symbol for a vector, always write
it with an arrow on top. If you don’t distinguish between scalar and vector quan-
tities in your notation, you probably won’t make the distinction in your thinking
either, and hopeless confusion will result.

We always draw a vector as a line with an arrowhead at its tip. The length of
the line shows the vector’s magnitude, and the direction of the line shows the
vector’s direction. Displacement is always a straight-line segment directed from
the starting point to the ending point, even though the object’s actual path may be
curved (Fig. 1.9b). Note that displacement is not related directly to the total
distance traveled. If the object were to continue on past and then return to 
the displacement for the entire trip would be zero (Fig. 1.9c).

If two vectors have the same direction, they are parallel. If they have the same
magnitude and the same direction, they are equal, no matter where they are located
in space. The vector from point to point in Fig. 1.10 has the same length
and direction as the vector from to These two displacements are equal,
even though they start at different points. We write this as in Fig. 1.10;
the boldface equals sign emphasizes that equality of two vector quantities is not
the same relationship as equality of two scalar quantities. Two vector quantities
are equal only when they have the same magnitude and the same direction.

The vector in Fig. 1.10, however, is not equal to because its direction is
opposite to that of We define the negative of a vector as a vector having the
same magnitude as the original vector but the opposite direction. The negative of
vector quantity is denoted as and we use a boldface minus sign to empha-
size the vector nature of the quantities. If is 87 m south, then is 87 m
north. Thus we can write the relationship between and in Fig. 1.10 as

or When two vectors and have opposite directions,
whether their magnitudes are the same or not, we say that they are antiparallel.

We usually represent the magnitude of a vector quantity (in the case of a dis-
placement vector, its length) by the same letter used for the vector, but in light
italic type with no arrow on top. An alternative notation is the vector symbol with
vertical bars on both sides:

(1.1)

The magnitude of a vector quantity is a scalar quantity (a number) and is always
positive. Note that a vector can never be equal to a scalar because they are
different kinds of quantities. The expression is just as wrong as

!
When drawing diagrams with vectors, it’s best to use a scale similar to those

used for maps. For example, a displacement of 5 km might be represented in a
diagram by a vector 1 cm long, and a displacement of 10 km by a vector 2 cm
long. In a diagram for velocity vectors, a vector that is 1 cm long might represent

“2 oranges = 3 apples”
“A
S

= 6 m”

1Magnitude of A
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S
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P2.P1A
S

P4P3A
S
¿

P1,P2

A
S

4 * 2 s = 8 s.
6 kg + 3 kg = 9 kg,

Ending position: P2

Displacement A

Starting position: P1

P2

P1

P1

S

A

Path taken

S

Handwritten notation:

Displacement depends only on the starting
and ending positions—not on the path taken.

We represent a displacement by an arrow
pointing in the direction of displacement.

Total displacement for a round trip
is 0, regardless of the distance traveled.

(a)

(b)

(c)

1.9 Displacement as a vector quantity. A
displacement is always a straight-line seg-
ment directed from the starting point to the
ending point, even if the path is curved.

P2 P4 P5

P1 P3 P6

A� 5 B 5 2AA
S

A
S S S

Displacement B has
the same magnitude
as A but opposite
direction; B is the
negative of A.

S

S

S

S
Displacements A and A�
are equal because they
have the same length
and direction.

S S

S

1.10 The meaning of vectors that have
the same magnitude and the same or oppo-
site direction.



a velocity of magnitude 5 m s. A velocity of 20 m s would then be represented
by a vector 4 cm long.

Vector Addition and Subtraction
Suppose a particle undergoes a displacement followed by a second displace-
ment . The final result is the same as if the particle had started at the same initial
point and undergone a single displacement (Fig. 1.11a). We call displacement

the vector sum, or resultant, of displacements and We express this rela-
tionship symbolically as

(1.2)

The boldface plus sign emphasizes that adding two vector quantities requires a
geometrical process and is not the same operation as adding two scalar quantities
such as In vector addition we usually place the tail of the second
vector at the head, or tip, of the first vector (Fig. 1.11a).

If we make the displacements and in reverse order, with first and sec-
ond, the result is the same (Fig. 1.11b). Thus

(1.3)

This shows that the order of terms in a vector sum doesn’t matter. In other words,
vector addition obeys the commutative law.

Figure 1.11c shows another way to represent the vector sum: If vectors and
are both drawn with their tails at the same point, vector is the diagonal of a

parallelogram constructed with and as two adjacent sides.

CAUTION Magnitudes in vector addition It’s a common error to conclude that if
then the magnitude C should equal the magnitude A plus the magnitude B. In

general, this conclusion is wrong; for the vectors shown in Fig. 1.11, you can see that
The magnitude of depends on the magnitudes of and and on the 

angle between and (see Problem 1.90). Only in the special case in which and are 
parallel is the magnitude of equal to the sum of the magnitudes of and 
(Fig. 1.12a). When the vectors are antiparallel (Fig. 1.12b), the magnitude of equals 
the difference of the magnitudes of and Be careful about distinguishing between
scalar and vector quantities, and you’ll avoid making errors about the magnitude of a vec-
tor sum. ❙

When we need to add more than two vectors, we may first find the vector sum
of any two, add this vectorially to the third, and so on. Figure 1.13a shows three
vectors and In Fig. 1.13b we first add and to give a vector 
sum we then add vectors and by the same process to obtain the vector 
sum

R
S

� 1A
S

� B
S
2 � C

S
� D

S
� C

S

R
S

:
D
S

C
S

D
S

;
B
S

A
S

C
S

.B
S

,A
S

,

B
S

.A
S

C
S

B
S

A
S

C
S

� A
S

� B
S

B
S

A
S

B
S

A
S

B
S

A
S

A
S

� B
S

C 6 A + B.

C
S

� A
S

� B
S

,

B
S

A
S

C
S

B
S

A
S

C
S

� B
S

� A
S and A

S
� B

S
� B

S
� A

S

A
S

B
S

B
S

A
S

2 + 3 = 5.

C
S

� A
S

� B
S

B
S

.A
S

C
S

C
S

B
S

A
S

>>

12 CHAPTER 1 Units, Physical Quantities, and Vectors

(a) We can add two vectors by placing them
head to tail.

A
S

B
S

C 5 A 1 B
S S S

(b) Adding them in reverse order gives the
same result.

A
S

B
S

C 5 B 1 A
S S S

(c) We can also add them by constructing a
parallelogram.

A
S

B
S

C 5 A 1 B
S S S

1.11 Three ways to add two vectors. 
As shown in (b), the order in vector addi-
tion doesn’t matter; vector addition is
commutative.

(a) The sum of two parallel vectors

(b) The sum of two antiparallel vectors

A
S

B
S

C � A � B
S S S

A
S

B
S

C � A � B
S S S

1.12 (a) Only when two vectors and
are parallel does the magnitude of their

sum equal the sum of their magnitudes:
(b) When and are

antiparallel, the magnitude of their sum
equals the difference of their magnitudes:
C = ƒA - B ƒ .

B
S

A
S

C = A + B.

B
S A

S

(a) To find the sum of
these three vectors ...

A
S

B
S

C
S

(b) we could add A and B
to get D and then add
C to D to get the final
sum (resultant) R, ...

S S

S

S

SS

A
S

D
S

B
S

R
S

C
S

(c) or we could add B and C
to get E and then add
A to E to get R, ...

S S

S

SSS

A
S

B
S

R
S

E
S

C
S

(d) or we could add A, B,
and C to get R directly, ...

S S

S S

A
S

B
S

R
S

C
S

(e) or we could add A, B,
and C in any other order
and still get R.

S S

S

S

A
SB

S

R
S

C
S

1.13 Several constructions for finding the vector sum A
S

� B
S

� C
S

.
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Alternatively, we can first add and to obtain vector (Fig. 1.13c), and then add
and to obtain 

We don’t even need to draw vectors and all we need to do is draw and
in succession, with the tail of each at the head of the one preceding it. The 

sum vector extends from the tail of the first vector to the head of the last vector
(Fig. 1.13d). The order makes no difference; Fig. 1.13e shows a different order, and
we invite you to try others. We see that vector addition obeys the associative law.

We can subtract vectors as well as add them. To see how, recall that vector
has the same magnitude as but the opposite direction. We define the dif-

ference of two vectors and to be the vector sum of and 

(1.4)

Figure 1.14 shows an example of vector subtraction.
A vector quantity such as a displacement can be multiplied by a scalar quan-

tity (an ordinary number). The displacement is a displacement (vector quan-
tity) in the same direction as the vector but twice as long; this is the same as
adding to itself (Fig. 1.15a). In general, when a vector is multiplied by a
scalar c, the result has magnitude (the absolute value of c multiplied by 
the magnitude of the vector ). If c is positive, is in the same direction as 
if c is negative, is in the direction opposite to Thus is parallel to 
while is antiparallel to (Fig. 1.15b).

A scalar used to multiply a vector may also be a physical quantity. For exam-
ple, you may be familiar with the relationship the net force (a vector
quantity) that acts on a body is equal to the product of the body’s mass m (a scalar
quantity) and its acceleration (a vector quantity). The direction of is the same
as that of because m is positive, and the magnitude of is equal to the mass m
(which is positive) multiplied by the magnitude of The unit of force is the unit
of mass multiplied by the unit of acceleration.
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With A and 2B head to tail,
A 2 B is the vector from the
tail of A to the head of 2B .

With A and B head to head,
A 2 B is the vector from the
tail of A to the tail of B .

2 B
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Subtracting B from A ... ... is equivalent to adding 2B to A.

SSS

S S

S S

S

S S

S S

S S

S

1.14 To construct the vector difference you can either place the tail of at the head of or place the two vectors and 
head to head.
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A
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2A
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23A
S

(a) Multiplying a vector by a positive scalar
changes the magnitude (length) of the vector,
but not its direction.

(b) Multiplying a vector by a negative scalar
changes its magnitude and reverses its direction.

S

2A is twice as long as A.
S S

S
23A is three times as long as A and points
in the opposite direction.

1.15 Multiplying a vector (a) by a posi-
tive scalar and (b) by a negative scalar.

Example 1.5 Addition of two vectors at right angles

A cross-country skier skis 1.00 km north and then 2.00 km east on
a horizontal snowfield. How far and in what direction is she from
the starting point?

SOLUTION

IDENTIFY and SET UP: The problem involves combining two dis-
placements at right angles to each other. In this case, vector addi-
tion amounts to solving a right triangle, which we can do using the
Pythagorean theorem and simple trigonometry. The target vari-
ables are the skier’s straight-line distance and direction from her

starting point. Figure 1.16 is a scale diagram of the two displace-
ments and the resultant net displacement. We denote the direction
from the starting point by the angle (the Greek letter phi). The
displacement appears to be about 2.4 km. Measurement with a pro-
tractor indicates that is about 63°.

EXECUTE: The distance from the starting point to the ending point
is equal to the length of the hypotenuse:

211.00 km22 + 12.00 km22 = 2.24 km

f

f

Continued

PhET: Vector Addition



1.8 Components of Vectors
In Section 1.7 we added vectors by using a scale diagram and by using properties
of right triangles. Measuring a diagram offers only very limited accuracy, and
calculations with right triangles work only when the two vectors are perpendicu-
lar. So we need a simple but general method for adding vectors. This is called the
method of components.

To define what we mean by the components of a vector we begin with a
rectangular (Cartesian) coordinate system of axes (Fig. 1.17a). We then draw the
vector with its tail at O, the origin of the coordinate system. We can represent any
vector lying in the xy-plane as the sum of a vector parallel to the x-axis and a vec-
tor parallel to the y-axis. These two vectors are labeled and in Fig. 1.17a; 
they are called the component vectors of vector and their vector sum is equal
to In symbols,

(1.5)

Since each component vector lies along a coordinate-axis direction, we need
only a single number to describe each one. When points in the positive 
x-direction, we define the number to be equal to the magnitude of When

points in the negative x-direction, we define the number to be equal to the
negative of that magnitude (the magnitude of a vector quantity is itself never neg-
ative). We define the number in the same way. The two numbers and 
are called the components of (Fig. 1.17b).

CAUTION Components are not vectors The components and of a vector are just
numbers; they are not vectors themselves. This is why we print the symbols for compo-
nents in light italic type with no arrow on top instead of in boldface italic with an arrow,
which is reserved for vectors. ❙

We can calculate the components of the vector if we know its magni-
tude A and its direction. We’ll describe the direction of a vector by its angle
relative to some reference direction. In Fig. 1.17b this reference direction is
the positive x-axis, and the angle between vector and the positive x-axis A
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A little trigonometry (from Appendix B) allows us to find angle :

We can describe the direction as 63.4° east of north or
north of east.

EVALUATE: Our answers 2.24 km and are close to our
predictions. In the more general case in which you have to add two
vectors not at right angles to each other, you can use the law of
cosines in place of the Pythagorean theorem and use the law of
sines to find an angle corresponding to in this example. (You’ll
find these trigonometric rules in Appendix B.) We’ll see more
techniques for vector addition in Section 1.8.

f

2f = 63.4°1

90° - 63.4° = 26.6°

 f = 63.4°

 tan f =
Opposite side

Adjacent side
=

2.00 km

1.00 km

f

0 1 km 2 km

1.00 km

2.00 km

Resultant displacement
f

N

EW

S

1.16 The vector diagram, drawn to scale, for a ski trip.

Test Your Understanding of Section 1.7 Two displacement vectors, 
and have magnitudes and Which of the following  could

be the magnitude of the difference vector (There may be more than one
correct answer.) (i) 9 m; (ii) 7 m; (iii) 5 m; (iv) 1 m; (v) 0 m; (vi) ❙-1 m.
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1.17 Representing a vector in terms 
of (a) component vectors and and 
(b) components and (which in this
case are both positive).
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is (the Greek letter theta). Imagine that the vector originally lies along the
and that you then rotate it to its correct direction, as indicated by the

arrow in Fig. 1.17b on the angle If this rotation is from the toward
the as shown in Fig. 1.17b, then is positive; if the rotation is from the

toward the is negative. Thus the is at an angle of 90°,
the at 180°, and the at 270° (or If is measured in this
way, then from the definition of the trigonometric functions,

(1.6)

In Fig. 1.17b and are positive. This is consistent with Eqs. (1.6); is in
the first quadrant (between 0° and 90°), and both the cosine and the sine of an
angle in this quadrant are positive. But in Fig. 1.18a the component is nega-
tive. Again, this agrees with Eqs. (1.6); the cosine of an angle in the second quad-
rant is negative. The component is positive is positive in the second
quadrant). In Fig. 1.18b both and are negative (both and are
negative in the third quadrant).

CAUTION Relating a vector’s magnitude and direction to its components Equations (1.6)
are correct only when the angle is measured from the positive x-axis as described above.
If the angle of the vector is given from a different reference direction or using a different
sense of rotation, the relationships are different. Be careful! Example 1.6 illustrates this
point. ❙

u

sinucosuCyCx

(sinuBy

Bx

uAyAx

1u measured from the +x-axis, rotating toward the +y-axis2

Ax = Acosu  and  Ay = A sinu

Ax

A
= cosu  and   Ay

A
= sinu

u-90°).-y-axis-x-axis
+y-axisu-y-axis,+x-axis

u+y-axis,
+x-axisu.

+x-axis
A
S

u

Example 1.6 Finding components

(a) What are the x- and y-components of vector in Fig. 1.19a?
The magnitude of the vector is , and the angle

(b) What are the x- and y-components of vector in 
Fig. 1.19b? The magnitude of the vector is , and the
angle

SOLUTION

IDENTIFY and SET UP: We can use Eqs. (1.6) to find the compo-
nents of these vectors, but we have to be careful: Neither of the
angles or in Fig. 1.19 is measured from the toward the

We estimate from the figure that the lengths of the com-+y-axis.
+x-axisba

b = 37.0°.
E = 4.50 m

E
S

a = 45°.
D = 3.00 m

D
S

ponents in part (a) are both roughly 2 m, and that those in part (b)
are 3m and 4 m. We’ve indicated the signs of the components in
the figure.

EXECUTE: (a) The angle (the Greek letter alpha) between the posi-
tive x-axis and is measured toward the negative y-axis. The angle
we must use in Eqs. (1.6) is We then find

Had you been careless and substituted for in Eqs. (1.6),
your result for would have had the wrong sign.

(b) The x- and y-axes in Fig. 1.19b are at right angles, so it
doesn’t matter that they aren’t horizontal and vertical, respec-
tively. But to use Eqs. (1.6), we must use the angle

Then we find

EVALUATE: Our answers to both parts are close to our predictions.
But ask yourself this: Why do the answers in part (a) correctly
have only two significant figures?

Ey = E sin 53.0° = 14.50 m21sin 53.0°2 = +3.59 m

Ex = E cos 53.0° = 14.50 m21cos 53.0°2 = +2.71 m

u = 90.0° - b = 90.0° - 37.0° = 53.0°.

Dy

u+45°

Dy = D sin u = 13.00 m21sin1-45°22 = -2.1 m

Dx = D cos u = 13.00 m21cos1-45°22 = +2.1 m

u = -a = -45°.
D
S

a

(a) (b)

Dy (�)

Dx (1)

y

x
a

D
S

Ex (1)
Ey (1)

y

x

b

E
S

1.19 Calculating the x- and y-components of vectors.

By is positive:
Its component
vector points in
the 1y-direction.

Bx is negative: Its component
vector points in the 2x-direction.

Both components of C are negative.

(a)
y

x
Bx (2)

By (1)
B
S

S

u

(b)
y

x
Cx (2)

Cy (2)
C
S

u

1.18 The components of a vector may
be positive or negative numbers.



Doing Vector Calculations Using Components
Using components makes it relatively easy to do various calculations involving
vectors. Let’s look at three important examples.

1. Finding a vector’s magnitude and direction from its components. We
can describe a vector completely by giving either its magnitude and direction or
its x- and y-components. Equations (1.6) show how to find the components if we
know the magnitude and direction. We can also reverse the process: We can find
the magnitude and direction if we know the components. By applying the
Pythagorean theorem to Fig. 1.17b, we find that the magnitude of vector is

(1.7)

(We always take the positive root.) Equation (1.7) is valid for any choice of x-
axis and y-axis, as long as they are mutually perpendicular. The expression for
the vector direction comes from the definition of the tangent of an angle. If is
measured from the positive x-axis, and a positive angle is measured toward the
positive y-axis (as in Fig. 1.17b), then

(1.8)

We will always use the notation arctan for the inverse tangent function. The nota-
tion is also commonly used, and your calculator may have an INV or 2ND
button to be used with the TAN button.

CAUTION Finding the direction of a vector from its components There’s one slight com-
plication in using Eqs. (1.8) to find : Any two angles that differ by 180° have the same
tangent. Suppose and as in Fig. 1.20; then But both

and or have tangents of . To decide which is correct, we have to
look at the individual components. Because is positive and is negative, the angle
must be in the fourth quadrant; thus or is the correct value. Most pocket
calculators give In this case that is correct; but if instead we have

and then the correct angle is 135°. Similarly, when and 
are both negative, the tangent is positive, but the angle is in the third quadrant. You 
should always draw a sketch like Fig. 1.20 to check which of the two possibilities is the
correct one. ❙

2. Multiplying a vector by a scalar. If we multiply a vector by a scalar c,
each component of the product is the product of c and the corresponding
component of 

components of (1.9)

For example, Eq. (1.9) says that each component of the vector is twice as
great as the corresponding component of the vector so is in the same direc-
tion as but has twice the magnitude. Each component of the vector is
three times as great as the corresponding component of the vector but has the
opposite sign, so is in the opposite direction from and has three times the
magnitude. Hence Eqs. (1.9) are consistent with our discussion in Section 1.7 of
multiplying a vector by a scalar (see Fig. 1.15).

3. Using components to calculate the vector sum (resultant) of two or
more vectors. Figure 1.21 shows two vectors and and their vector sum 
along with the x- and y-components of all three vectors. You can see from the
diagram that the x-component of the vector sum is simply the sum 1Ax + Bx2Rx

R
S

,B
S

A
S

A
S

-3A
S

A
S

-3A
S

A
S

2A
S

A
S

,
2A
S

D
S

� cA
S
21Dx = cAx  Dy = cAy

A
S

:
D
S

� cA
S

A
S

AyAxAy = 2 m,Ax = -2 m
arctan1-12 = -45°.

-45°21u = 315°
AyAx

-1-45°21315°135°
tanu = -1.Ay = -2 mAx = 2 m

u

tan-1

tanu =
Ay

Ax
  and  u = arctan

Ay

Ax

u

A = 2Ax
2 + Ay

2

A
S

16 CHAPTER 1 Units, Physical Quantities, and Vectors

Suppose that tanu 5

Two angles have tangents of 21: 135° and 315°.
Inspection of the diagram shows that u must be
315°.

5 21. What is u?

y

x

Ay 5 22 m

Ax

135°

315°

Ax 5 2 m

Ay

A
S

1.20 Drawing a sketch of a vector reveals
the signs of its x- and y-components.
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of the x-components of the vectors being added. The same is true for the 
y-components. In symbols,

(1.10)

Figure 1.21 shows this result for the case in which the components 
and are all positive. You should draw additional diagrams to verify for your-
self that Eqs. (1.10) are valid for any signs of the components of and 

If we know the components of any two vectors and perhaps by using
Eqs. (1.6), we can compute the components of the vector sum Then if we need
the magnitude and direction of we can obtain them from Eqs. (1.7) and (1.8)
with the A’s replaced by R’s.

We can extend this procedure to find the sum of any number of vectors. If is
the vector sum of the components of are

(1.11)

We have talked only about vectors that lie in the xy-plane, but the component
method works just as well for vectors having any direction in space. We can
introduce a z-axis perpendicular to the xy-plane; then in general a vector has
components and in the three coordinate directions. Its magnitude A is

(1.12)

Again, we always take the positive root. Also, Eqs. (1.11) for the components of
the vector sum have an additional member:

We’ve focused on adding displacement vectors, but the method is applicable
to all vector quantities. When we study the concept of force in Chapter 4, we’ll
find that forces are vectors that obey the same rules of vector addition that we’ve
used with displacement.

Rz = Az + Bz + Cz + Dz + Ez + Á
R
S

A = 2Ax
2 + Ay

2 + Az
2

AzAy ,Ax ,
A
S

 Ry = Ay + By + Cy + Dy + Ey + Á
 Rx = Ax + Bx + Cx + Dx + Ex + Á

R
S

E
S

, Á ,D
S

,C
S

,B
S

,A
S

,
R
S

R
S

,
R
S

.
B
S

,A
S

B
S

.A
S

By

Bx ,Ay ,Ax ,

Rx = Ax + Bx  Ry = Ay + By  1components of R
S

� A
S

� B
S
2

O
x

y

By

BxAx

Rx

Ry

Ry 5 Ay 1 By Rx 5 Ax 1 Bx

Ay A
S

B
S

R
S

The components of R are the sums
of the components of A and B:

S

S S

R is the vector sum
(resultant) of A and B.

S

S S

1.21 Finding the vector sum (resultant)
of and using components.B

S
A
S

Problem-Solving Strategy 1.3 Vector Addition

IDENTIFY the relevant concepts: Decide what the target variable
is. It may be the magnitude of the vector sum, the direction, or
both.

SET UP the problem: Sketch the vectors being added, along with
suitable coordinate axes. Place the tail of the first vector at the
origin of the coordinates, place the tail of the second vector at the
head of the first vector, and so on. Draw the vector sum from
the tail of the first vector (at the origin) to the head of the last
vector. Use your sketch to estimate the magnitude and direction
of . Select the mathematical tools you’ll use for the full calcula-
tion: Eqs. (1.6) to obtain the components of the vectors given, if
necessary, Eqs. (1.11) to obtain the components of the vector
sum, Eq. (1.12) to obtain its magnitude, and Eqs. (1.8) to obtain
its direction.

EXECUTE the solution as follows:
1. Find the x- and y-components of each individual vector and

record your results in a table, as in Example 1.7 below. If a
vector is described by a magnitude A and an angle measuredu,

R
S

R
S

from the toward the then its components
are given by Eqs. 1.6:

If the angles of the vectors are given in some other way, per-
haps using a different reference direction, convert them to
angles measured from the as in Example 1.6 above.

2. Add the individual x-components algebraically (including
signs) to find the x-component of the vector sum. Do the
same for the y-components to find See Example 1.7 below.

3. Calculate the magnitude R and direction of the vector sum
using Eqs. (1.7) and (1.8):

EVALUATE your answer: Confirm that your results for the magni-
tude and direction of the vector sum agree with the estimates you
made from your sketch. The value of that you find with a calcula-
tor may be off by 180°; your drawing will indicate the correct value.

u

R = 2R 2
x + R 2

y  u = arctan 

Ry

Rx

u

Ry.
Rx,

+x-axis

Ax = A cos u  Ay = A sin u

+y-axis,+x-axis
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57.3 m

y (north)

36.0°

x (east)
O

17.8 m
72.4 m

32.0°

u

R
S

A
S

B
r

C
S

1.22 Three successive displacements and and the
resultant (vector sum) displacement R

S
� A

S
� B

S
� C

S
.

C
S

B
S

,A
S

,

Example 1.7 Adding vectors using their components

Three players on a reality TV show are brought to the center of a
large, flat field. Each is given a meter stick, a compass, a calcula-
tor, a shovel, and (in a different order for each contestant) the fol-
lowing three displacements:

72.4 m, 32.0° east of north

57.3 m, 36.0° south of west

17.8 m due south

The three displacements lead to the point in the field where the
keys to a new Porsche are buried. Two players start measuring
immediately, but the winner first calculates where to go. What
does she calculate?

SOLUTION

IDENTIFY and SET UP: The goal is to find the sum (resultant) of
the three displacements, so this is a problem in vector addition.
Figure 1.22 shows the situation. We have chosen the as+x-axis

C
S

:

B
S

:

A
S

:

Comparing to Fig. 1.22 shows that the calculated angle is clearly
off by 180°. The correct value is , or 
west of north.

EVALUATE: Our calculated answers for R and agree with our esti-
mates. Notice how drawing the diagram in Fig. 1.22 made it easy
to avoid a 180° error in the direction of the vector sum.

u

39°u = 180° - 51° = 129°

u = arctan
9.92 m

-7.99 m
= -51°

R = 21-7.99 m22 + 19.92 m22 = 12.7 m

Example 1.8 A simple vector addition in three dimensions

After an airplane takes off, it travels 10.4 km west, 8.7 km north, and 2.1 km up. How far
is it from the takeoff point?

SOLUTION

Let the be east, the north, and the up. Then the components of
the airplane’s displacement are and From
Eq. (1.12), the magnitude of the displacement is

A = 21-10.4 km22 + 18.7 km22 + 12.1 km22 = 13.7 km

Az = 2.1 km.Ay = 8.7 km,Ax = -10.4 km,
+z-axis+y-axis+x-axis

Distance Angle x-component y-component
58.0° 38.37 m 61.40 m

216.0°
270.0° 0.00 m

Ry = 9.92 mRx = -7.99 m
-17.80 mC = 17.8 m
-33.68 m-46.36 mB = 57.3 m

A = 72.4 m

east and the as north. We estimate from the diagram that 
the vector sum is about 10 m, 40° west of north (which corre-
sponds to 130°).

EXECUTE: The angles of the vectors, measured from the 
toward the are 

and , respectively. We may now use 
Eqs. (1.6) to find the components of :

We’ve kept an extra significant figure in the components; we’ll
round to the correct number of significant figures at the end of
our calculation. The table below shows the components of all the
displacements, the addition of the components, and the other cal-
culations.

Ay = A sin uA = 172.4 m21sin 58.0°2 = 61.40 m

Ax = A cos uA = 172.4 m21cos 58.0°2 = 38.37 m

A
S

270.0°36.0°2 = 216.0°,
1180.0° +190.0° - 32.0°2 = 58.0°,+y-axis,

+x-axis

u L
R
S

+y-axis
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1.9 Unit Vectors
A unit vector is a vector that has a magnitude of 1, with no units. Its only pur-
pose is to point—that is, to describe a direction in space. Unit vectors provide a
convenient notation for many expressions involving components of vectors. We
will always include a caret or “hat” in the symbol for a unit vector to distin-
guish it from ordinary vectors whose magnitude may or may not be equal to 1.

In an x-y coordinate system we can define a unit vector that points in the
direction of the positive x-axis and a unit vector that points in the direction of
the positive y-axis (Fig. 1.23a). Then we can express the relationship between
component vectors and components, described at the beginning of Section 1.8, as
follows:

(1.13)

Similarly, we can write a vector in terms of its components as

(1.14)

Equations (1.13) and (1.14) are vector equations; each term, such as is a vec-
tor quantity (Fig. 1.23b).

Using unit vectors, we can express the vector sum of two vectors and as
follows:

(1.15)

Equation (1.15) restates the content of Eqs. (1.10) in the form of a single vector
equation rather than two component equations.

If the vectors do not all lie in the xy-plane, then we need a third component.
We introduce a third unit vector that points in the direction of the positive 
z-axis (Fig. 1.24). Then Eqs. (1.14) and (1.15) become

(1.16)

(1.17) � Rx ın � Ry   ≥n � Rz kN

 R
S

� 1Ax + Bx2ın � 1Ay + By2 ≥n � 1Az + Bz2 kN

B
S

� Bx ın � By ≥n � Bz kN

A
S

� Ax ın � Ay ≥n � Az kN

kN

 � Rx ın � Ry ≥n

 � 1Ax + Bx2ın � 1Ay + By2 ≥n

 � 1Ax ın � Ay ≥n2 � 1Bx ın � By ≥n2

 R
S

� A
S

� B
S

 B
S

� Bx  ın � By  ≥n

 A
S

� Ax  ın � Ay ≥n

B
S

A
S

R
S

Ax ın,

A
S

� Ax ın � Ay ≥n

A
S

A
S

y � Ay ≥n

A
S

x � Ax ın

≥n
ın

1^2

Test Your Understanding of Section 1.8 Two vectors and both lie in 
the xy-plane. (a) Is it possible for to have the same magnitude as but different
components? (b) Is it possible for to have the same components as but a different
magnitude? ❙

B
S

A
S

B
S

A
S

B
S

A
S

y

x
O

Ax i

Ay j

j

i

A
S

^^

^

^

y

x
O

j

î

^

A 5 Ax i 1 Ay j
S

S
We can express a vector A in
terms of its components as

(b)

^ ^

(a)
The unit vectors i and j point in the
directions of the x- and y-axes and
have a magnitude of 1.

^ ^

1.23 (a) The unit vectors and 
(b) Expressing a vector in
terms of its components.

A
S ≥n.ın

y

x
z

O

î

ĵ

k̂

1.24 The unit vectors and kN .≥n,ın,



1.10 Products of Vectors
Vector addition develops naturally from the problem of combining displacements
and will prove useful for calculating many other vector quantities. We can also
express many physical relationships by using products of vectors. Vectors are not
ordinary numbers, so ordinary multiplication is not directly applicable to vectors.
We will define two different kinds of products of vectors. The first, called the
scalar product, yields a result that is a scalar quantity. The second, the vector
product, yields another vector.

Scalar Product
The scalar product of two vectors and is denoted by Because of this
notation, the scalar product is also called the dot product. Although and are
vectors, the quantity is a scalar.

To define the scalar product we draw the two vectors and with their
tails at the same point (Fig. 1.25a). The angle (the Greek letter phi) between their
directions ranges from 0° to Figure 1.25b shows the projection of the vector

onto the direction of this projection is the component of in the direction of
and is equal to (We can take components along any direction that’s con-

venient, not just the x- and y-axes.) We define to be the magnitude of multi-
plied by the component of in the direction of Expressed as an equation,

(1.18)

Alternatively, we can define to be the magnitude of multiplied by 
the component of in the direction of as in Fig. 1.25c. Hence 

which is the same as Eq. (1.18).
The scalar product is a scalar quantity, not a vector, and it may be positive, neg-

ative, or zero. When is between 0° and and the scalar product iscosf 7 090°,f

B1Acosf2 = AB cosf,
A
S # BS =B

S
,A

S
B
S

A
S # BS

A
S # BS = AB cosf = ƒ A

S
ƒ ƒ B
S
ƒ cosf

(definition of the scalar
(dot) product)

A
S

.B
S

A
S

A
S # BS

Bcosf.A
S

B
S

A
S

;B
S

180°.
f

B
S

A
S

A
S # BS

A
S # BS

B
S

A
S

A
S # BS.B

S
A
S
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Test Your Understanding of Section 1.9 Arrange the following vectors
in order of their magnitude, with the vector of largest magnitude first. (i) 

(ii) (iii) (iv) 
❙13ın � 5≥n � 2kN2 m.

D
S

�C
S

� 13ın � 5≥n � 2kN2 m;B
S

� 1-3ın � 5≥n � 2kN2 m;5≥n � 2kN2 m;
A
S

� 13ın �

Place the vectors tail to tail.

(Magnitude of A) times (Component of B
                                       in direction of A)

(a)

f

B
S

A
S

S S

(b) A # B equals A(B cos f).
SS

(c) A # B also equals B(A cos f)
SS

S

(Magnitude of B) times (Component of A
                                       in direction of B)

S S

S

B cos f

f

B
S

A
S

A cos f

f

B
S

A
S

1.25 Calculating the scalar product of
two vectors, A

S # BS = AB cosf.

Example 1.9 Using unit vectors

Given the two displacements

find the magnitude of the displacement 

SOLUTION

IDENTIFY and SET UP: We are to multiply the vector by 2 (a scalar)
and subtract the vector from the result, so as to obtain the vector

. Equation (1.9) says that to multiply by 2, we
multiply each of its components by 2. We can use Eq. (1.17) to do
the subtraction; recall from Section 1.7 that subtracting a vector is
the same as adding the negative of that vector.

D
S

F
S

� 2D
S

� E
S

E
S

D
S

2D
S

� E
S

.

E
S

� 14.00 ın � 5.00 ≥n � 8.00kN2m

D
S

� 16.00 ın � 3.00 ≥n � 1.00kN2m and

EXECUTE: We have

From Eq. (1.12) the magnitude of is

EVALUATE: Our answer is of the same order of magnitude as the
larger components that appear in the sum. We wouldn’t expect our
answer to be much larger than this, but it could be much smaller.

= 16.9 m

= 218.00 m22 + 111.00 m22 + 1-10.00 m22

F = 2F 2
x + F 2

y + F 2
z

F
S

� 18.00ın � 11.00 ≥n � 10.00kN2 m

� 3112.00 - 4.002ın � 16.00 + 5.002 ≥n � (-2.00 - 8.00)kN4 m

F
S

� 216.00ın � 3.00 ≥n � 1.00kN2 m � 14.00ın � 5.00 ≥n � 8.00kN2 m
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positive (Fig. 1.26a). When is between 90° and so that 
the component of in the direction of is negative, and is negative
(Fig. 1.26b). Finally, when (Fig. 1.26c). The scalar product
of two perpendicular vectors is always zero.

For any two vectors and This means that
The scalar product obeys the commutative law of multiplication;

the order of the two vectors does not matter.
We will use the scalar product in Chapter 6 to describe work done by a force.

When a constant force is applied to a body that undergoes a displacement 
the work W (a scalar quantity) done by the force is given by

The work done by the force is positive if the angle between and is between
0° and negative if this angle is between 90° and and zero if and are
perpendicular. (This is another example of a term that has a special meaning in
physics; in everyday language, “work” isn’t something that can be positive or
negative.) In later chapters we’ll use the scalar product for a variety of purposes,
from calculating electric potential to determining the effects that varying mag-
netic fields have on electric circuits.

Calculating the Scalar Product Using Components
We can calculate the scalar product directly if we know the x-, y-, and z-
components of and To see how this is done, let’s first work out the scalar
products of the unit vectors. This is easy, since and all have magnitude 1
and are perpendicular to each other. Using Eq. (1.18), we find

(1.19)

Now we express and in terms of their components, expand the product, and
use these products of unit vectors:

(1.20)

From Eqs. (1.19) we see that six of these nine terms are zero, and the three that
survive give simply

(1.21)

Thus the scalar product of two vectors is the sum of the products of their respec-
tive components.

The scalar product gives a straightforward way to find the angle between
any two vectors and whose components are known. In this case we can use
Eq. (1.21) to find the scalar product of and Example 1.11 on the next page
shows how to do this.

B
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.A
S

B
S

A
S

f

A
S # BS = AxBx + AyBy + AzBz

(scalar (dot) product in
terms of components)

+ AzBx kN # ın + AzBy kN # ≥n + AzBz kN # kN
+ AyBx≥n # ın + AyBy ≥n # ≥n + AyBz ≥n # kN

= AxBx ın # ın + AxBy ın # ≥n + AxBz ın # kN
+ Az kN # Bx ın + Az kN # By ≥n + Az kN # Bz kN

+ Ay ≥n # Bx ın + Ay ≥n # By ≥n + Ay ≥n # Bz kN

= Ax ın # Bx ın + Ax ın # By ≥n + Ax ın # Bz kN

A
S # BS = 1Ax ın � Ay ≥n � Az kN2 # 1Bx ın � By ≥n � Bz kN2

B
S

A
S

ın # ≥n = ın # kN = ≥n # kN = 112112cos90° = 0

ın # ın = ≥n # ≥n = kN # kN = 112112cos0° = 1
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S # BS

sSF
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180°,90°,
sSF
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A
S # BS = B

S # AS.
AB cosf = BA cosf.B

S
,A

S

A
S # BS = 0f = 90°,

A
S # BSA

S
B
S

cosf 6 0,180°f

If f is between
0° and 90°, A # B
is positive ...

... because B cos f . 0.

S S

(a)

f

B
S

A
S

If f is between 90° and 180°,
A # B is negative ...

... because B cos f , 0.

S S

(b)

f
B
S

A
S

If f 5 90°, A # B 5 0
because B has zero component
in the direction of A.

S

S S

S

(c)

f 5 90°

B
S

A
S

1.26 The scalar product 
can be positive, negative, or zero, depend-
ing on the angle between and B

S
.A

S

A
S # BS = AB cosf
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130.0°

53.0°

y

x

f

B
S

A
S

j

î

^

1.27 Two vectors in two dimensions.

Example 1.10 Calculating a scalar product

Find the scalar product of the two vectors in Fig. 1.27. The
magnitudes of the vectors are and 

SOLUTION

IDENTIFY and SET UP: We can calculate the scalar product in two
ways: using the magnitudes of the vectors and the angle between
them (Eq. 1.18), and using the components of the vectors 
(Eq. 1.21). We’ll do it both ways, and the results will check each
other.

B = 5.00.A = 4.00
A
S # BS EXECUTE: The angle between the two vectors is 

so Eq. (1.18) gives us

To use Eq. (1.21), we must first find the components of the vectors.
The angles of and are given with respect to the and
are measured in the sense from the to the so we
can use Eqs. (1.6):

As in Example 1.7, we keep an extra significant figure in the com-
ponents and round at the end. Equation (1.21) now gives us

EVALUATE: Both methods give the same result, as they should.

= 12.40721-3.2142 + 13.195213.8302 + 102102 = 4.50

A
S # BS = AxBx + AyBy + AzBz

By = 15.002 sin 130.0° = 3.830

Bx = 15.002 cos 130.0° = -3.214

Ay = 14.002 sin 53.0° = 3.195

Ax = 14.002 cos 53.0° = 2.407

+y-axis,+x-axis
+x-axisB

S
A
S

A
S # BS = AB cos f = 14.00215.002 cos 77.0° = 4.50

130.0° - 53.0° = 77.0°,
f =

Example 1.11 Finding an angle with the scalar product

Find the angle between the vectors

SOLUTION

IDENTIFY and SET UP: We’re given the x-, y-, and z-components
of two vectors. Our target variable is the angle between 
them (Fig. 1.28). To find this, we’ll solve Eq. (1.18), 

, for in terms of the scalar product and the magni-
tudes A and B. We can evaluate the scalar product using Eq. (1.21),

A
S # BSfAB cos f

A
S # BS =

f

B
S

� -4.00ın � 2.00 ≥n � 1.00kN
A
S

� 2.00ın � 3.00 ≥n � 1.00kN and

, and we can find A and B using
Eq. (1.7).

EXECUTE: We solve Eq. (1.18) for and write using
Eq. (1. 21). Our result is

We can use this formula to find the angle between any two vectors
and Here we have and and

and Thus

EVALUATE: As a check on this result, note that the scalar product
is negative. This means that is between 90° and (see

Fig. 1.26), which agrees with our answer.
180°fA

S # BS

f = 100°

 cos f =
AxBx + AyBy + AzBz

AB
=

-3.00

214.00 221.00
= -0.175

= 221.00

B = 2B 2
x + B 2

y + B 2
z = 21-4.0022 + 12.0022 + 1-1.0022

= 214.00

A = 2A 2
x + A 2

y + A 2
z = 212.0022 + 13.0022 + 11.0022

= -3.00

= 12.0021-4.002 + 13.00212.002 + 11.0021-1.002

A
S # BS = AxBx + AyBy + AzBz

Bz = -1.00.By = 2.00,Bx = -4.00,
Az = 1.00,Ay = 3.00,Ax = 2.00,B

S
.A

S

cos f =
A
S # BS
AB

=
AxBx + AyBy + AzBz

AB

A
S # BScos f

A
S # BS = AxBx + AyBy + AzBz

S
A extends from origin
to near corner of red box.

S
B extends from origin
to far corner of blue box.

y

x

z

j

î

^

k̂

A
S

B
S

1.28 Two vectors in three dimensions.
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Vector Product
The vector product of two vectors and also called the cross product, is
denoted by As the name suggests, the vector product is itself a vector.
We’ll use this product in Chapter 10 to describe torque and angular momentum;
in Chapters 27 and 28 we’ll use it to describe magnetic fields and forces.

To define the vector product , we again draw the two vectors and 
with their tails at the same point (Fig. 1.29a). The two vectors then lie in a plane.
We define the vector product to be a vector quantity with a direction perpendicu-
lar to this plane (that is, perpendicular to both and and a magnitude equal to

That is, if then

(magnitude of the vector (cross) product of and (1.22)

We measure the angle from toward and take it to be the smaller of the two
possible angles, so ranges from 0° to Then and C in Eq. (1.22)
is never negative, as must be the case for a vector magnitude. Note also that when

and are parallel or antiparallel, or 180° and That is, the vector
product of two parallel or antiparallel vectors is always zero. In particular, the
vector product of any vector with itself is zero.

CAUTION Vector product vs. scalar product Be careful not to confuse the expression
for the magnitude of the vector product with the similar expression 

for the scalar product To see the difference between these two expressions,
imagine that we vary the angle between and while keeping their magnitudes constant.
When and are parallel, the magnitude of the vector product will be zero and the scalar
product will be maximum. When and are perpendicular, the magnitude of the vector
product will be maximum and the scalar product will be zero. ❙

There are always two directions perpendicular to a given plane, one on each
side of the plane. We choose which of these is the direction of as follows.
Imagine rotating vector about the perpendicular line until it is aligned with 
choosing the smaller of the two possible angles between and Curl the fin-
gers of your right hand around the perpendicular line so that the fingertips point
in the direction of rotation; your thumb will then point in the direction of 
Figure 1.29a shows this right-hand rule and describes a second way to think
about this rule.

Similarly, we determine the direction of by rotating into as in 
Fig. 1.29b. The result is a vector that is opposite to the vector The vector
product is not commutative! In fact, for any two vectors and 

(1.23)

Just as we did for the scalar product, we can give a geometrical interpretation
of the magnitude of the vector product. In Fig. 1.30a, is the component of
vector that is perpendicular to the direction of vector . From Eq. (1.22) the
magnitude of equals the magnitude of multiplied by the component of 
perpendicular to Figure 1.30b shows that the magnitude of also equals
the magnitude of multiplied by the component of perpendicular to Note
that Fig. 1.30 shows the case in which is between 0° and 90°; you should draw a
similar diagram for between 90° and 180° to show that the same geometrical 
interpretation of the magnitude of still applies.

Calculating the Vector Product Using Components
If we know the components of and we can calculate the components of the
vector product using a procedure similar to that for the scalar product. First we
work out the multiplication table for the unit vectors and all three of whichkN ,≥n,ın,
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,A
S

Same magnitude but
opposite direction

S S S S
(b) B 3 A 5 2A 3 B (the vector product is
anticommutative)

S S
B 3 A

B
S

f

S S
(a) Using the right-hand rule to find the
direction of A 3 B

Place A and B tail to tail.
S S

1

S S
Thumb points in
direction of A 3 B.

Point fingers of right hand
along A, with palm facing B.

S S
2

Curl fingers toward B.3

4

S

S S
A 3 B

A
S

B
S

f

A
S

1.29 (a) The vector product 
determined by the right-hand rule.
(b) the vector product
is anticommutative.
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B sin f
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S

B
S

f

(a)

(b)

A sin f

f

B
S

A
S

(Magnitude of A) times (Component of B
                                       perpendicular to A)

S S

S

(Magnitude of A � B ) equals A(B sin f).
S S

(Magnitude of B) times (Component of A
                                       perpendicular to B)

S S

S

(Magnitude of A � B) also equals B(A sin f).
S S

1.30 Calculating the magnitude 
of the vector product of two vectors,
A
S

: B
S

.

AB sinf



are perpendicular to each other (Fig. 1.31a). The vector product of any vector
with itself is zero, so

The boldface zero is a reminder that each product is a zero vector—that is, one
with all components equal to zero and an undefined direction. Using Eqs. (1.22)
and (1.23) and the right-hand rule, we find

(1.24)

You can verify these equations by referring to Fig. 1.31a.
Next we express and in terms of their components and the corresponding

unit vectors, and we expand the expression for the vector product:

(1.25)

We can also rewrite the individual terms in Eq. (1.25) as 
and so on. Evaluating these by using the multiplication table for

the unit vectors in Eqs. (1.24) and then grouping the terms, we get

(1.26)

Thus the components of are given by

(1.27)

The vector product can also be expressed in determinant form as

If you aren’t familiar with determinants, don’t worry about this form.
With the axis system of Fig. 1.31a, if we reverse the direction of the z-axis, we

get the system shown in Fig. 1.31b. Then, as you may verify, the definition of the
vector product gives instead of In fact, all vector prod-
ucts of the unit vectors and would have signs opposite to those in Eqs. (1.24).
We see that there are two kinds of coordinate systems, differing in the signs of
the vector products of unit vectors. An axis system in which as in
Fig. 1.31a, is called a right-handed system. The usual practice is to use only
right-handed systems, and we will follow that practice throughout this book.

ın : ≥n � kN ,

kN≥n,ın,
ın : ≥n � kN .ın : ≥n � �kN

A
S

: B
S

� 3 ın ≥n kN

Ax Ay Az

Bx By Bz

3

Cx = AyBz - AzBy  Cy = AzBx - AxBz  Cz = AxBy - AyBx

1components of C
S
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S
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� A
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A
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S
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A
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S

� 1Ax ın � Ay ≥n � AzkN2 : 1Bx ın � By ≥n � BzkN2
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S

A
S

kN : ın � � ın : kN � ≥n

≥n : kN � �kN : ≥n � ın

ın : ≥n � � ≥n : ın � kN

ın : ın � ≥n : ≥n � kN : kN � 0
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^

^

^i � j 5 k^ ^

j � k 5 i^ ^

k � i 5 j^ ^

(b) A left-handed coordinate system;
we will not use these.

(a) A right-handed coordinate system

y

x
z

O

i

j

k̂

y

z

x

O

i

j

k̂

^

^

^

^

1.31 (a) We will always use a right-
handed coordinate system, like this one.
(b) We will never use a left-handed coordi-
nate system (in which and 
so on).

ıN : ≥N � �kN ,
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Example 1.12 Calculating a vector product

Vector has magnitude 6 units and is in the direction of the
Vector has magnitude 4 units and lies in the xy-plane,

making an angle of 30° with the (Fig. 1.32). Find the vec-
tor product 

SOLUTION

IDENTIFY and SET UP: We’ll find the vector product in two ways,
which will provide a check of our calculations. First we’ll use
Eq. (1.22) and the right-hand rule; then we’ll use Eqs. (1.27) to
find the vector product using components.

C
S

� A
S

: B
S

.
+x-axis

B
S

+x-axis.
A
S

EXECUTE: From Eq. (1.22) the magnitude of the vector product is

By the right-hand rule, the direction of is along the 
(the direction of the unit vector ), so we have

To use Eqs. (1.27), we first determine the components of 
and

Then Eqs. (1.27) yield

Thus again we have .

EVALUATE: Both methods give the same result. Depending on the
situation, one or the other of the two approaches may be the more
convenient one to use.

C
S

� 12kN

Cz = 162122 - 10212232 = 12

Cy = 10212232 - 162102 = 0

Cx = 102102 - 102122 = 0

Bx = 4 cos 30° = 223 By = 4 sin 30° = 2 Bz = 0

Az = 0Ay = 0Ax = 6

B
S

:
A
S

C
S

� A
S

: B
S

� 12kN .
kN+z-axis

A
S
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S

AB sin f = 1621421sin 30°2 = 12

y

x

z

O f 5 30°
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S

1.32 Vectors and and their vector product 
The vector lies in the xy-plane.B
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S

.B
S

A
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Test Your Understanding of Section 1.10 Vector has magnitude 2 and
vector has magnitude 3. The angle between and is known to be 0°, 90°, or 180°.
For each of the following situations, state what the value of must be. (In each situation 
there may be more than one correct answer.) (a) (b) (c) 
(d) (e) ❙(Magnitude of A

S
: B

S
) = 6.A

S # BS = -6;
A
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CHAPTER 1 SUMMARY

Significant figures: The accuracy of a measurement can be indicated by the number of significant
figures or by a stated uncertainty. The result of a calculation usually has no more significant figures
than the input data. When only crude estimates are available for input data, we can often make use-
ful order-of-magnitude estimates. (See Examples 1.3 and 1.4.)

Scalars, vectors, and vector addition: Scalar quantities are numbers and combine with the usual
rules of arithmetic. Vector quantities have direction as well as magnitude and combine according 
to the rules of vector addition. The negative of a vector has the same magnitude but points in the
opposite direction. (See Example 1.5.)

Scalar product: The scalar product of two
vectors and is a scalar quantity. It can be expressed
in terms of the magnitudes of and and the angle 
between the two vectors, or in terms of the components
of and The scalar product is commutative;

The scalar product of two perpendicular
vectors is zero. (See Examples 1.10 and 1.11.)
A
S # BS � B

S # AS.
B
S

.A
S

fB
S

A
S

B
S

A
S

C = A
S # BS (1.18)

(1.21)A
S # BS = Ax Bx + Ay By + Az Bz

A
S # BS = AB cos f = ƒ  A

S
ƒ ƒ  B
S
ƒ  cos f

Vector components and vector addition: Vector addi-
tion can be carried out using components of vectors.
The x-component of is the sum of the 
x-components of and and likewise for the y- and 
z-components. (See Examples 1.6–1.8.)

B
S

,A
S

R
S

� A
S

� B
S (1.10)

 Rz = Az + Bz

 Ry = Ay + By

 Rx = Ax + Bx

Unit vectors: Unit vectors describe directions in space.
A unit vector has a magnitude of 1, with no units. The
unit vectors and aligned with the x-, y-, and 
z-axes of a rectangular coordinate system, are espe-
cially useful. (See Example 1.9.)

kN ,≥n,ıN,

(1.16)A
S

� Ax ın � Ay ≥n � Az kN

Vector product: The vector product of two
vectors and is another vector The magnitude of

depends on the magnitudes of and and 
theangle between the two vectors. The direction of

is perpendicular to the plane of the two vectors
being multiplied, as given by the right-hand rule. The
components of can be expressed in terms
of the components of and The vector product is not
commutative; The vector product
of two parallel or antiparallel vectors is zero. (See
Example 1.12.)
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(1.22)

(1.27)

 Cz = Ax By - Ay Bx

 Cy = Az Bx - Ax Bz

 Cx = Ay Bz - Az By

C = AB sin f

Physical quantities and units: Three fundamental physical quantities are mass, length, and time. 
The corresponding basic SI units are the kilogram, the meter, and the second. Derived units for
other physical quantities are products or quotients of the basic units. Equations must be dimension-
ally consistent; two terms can be added only when they have the same units. (See Examples 1.1 
and 1.2.)

Significant figures in magenta

p 5  5  5 3.14
C
2r

0.424 m
2(0.06750 m)

123.62 1 8.9 5 132.5
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A 5 Ax i 1 Ay j
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f
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S S

A
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A � B is perpendicular
to the plane of A and B.

A � B
S S

S S
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B
S
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An air-conditioning unit is fastened to a roof that slopes at an angle of
35° above the horizontal (Fig. 1.33). Its weight is a force on the air
conditioner that is directed vertically downward. In order that the
unit not crush the roof tiles, the component of the unit’s weight per-
pendicular to the roof cannot exceed 425 N. (One newton, or 1 N, is
the SI unit of force. It is equal to 0.2248 lb.) (a) What is the maxi-
mum allowed weight of the unit? (b) If the fasteners fail, the unit
slides 1.50 m along the roof before it comes to a halt against a ledge.
How much work does the weight force do on the unit during its slide
if the unit has the weight calculated in part (a)? As we described in
Section 1.10, the work done by a force on an object that undergoes
a displacement is 

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. This problem involves vectors and components. What are the

known quantities? Which aspect(s) of the weight vector (mag-
nitude, direction, and/or particular components) represent the
target variable for part (a)? Which aspect(s) must you know to
solve part (b)?

2. Make a sketch based on Fig. 1.33. Add x- and y-axes, choosing
the positive direction for each. Your axes don’t have to be hori-
zontal and vertical, but they do have to be mutually perpendicu-
lar. Make the most convenient choice.

3. Choose the equations you’ll use to determine the target 
variables.

EXECUTE
4. Use the relationship between the magnitude and direction of a

vector and its components to solve for the target variable in

W = F
S # sS.sS

F
S

part (a). Be careful: Is 35° the correct angle to use in the equa-
tion? (Hint: Check your sketch.)

5. Make sure your answer has the correct number of significant
figures.

6. Use the definition of the scalar product to solve for the target
variable in part (b). Again, make sure to use the correct number
of significant figures.

EVALUATE
7. Did your answer to part (a) include a vector component whose

absolute value is greater than the magnitude of the vector? Is
that possible?

8. There are two ways to find the scalar product of two vectors,
one of which you used to solve part (b). Check your answer by
repeating the calculation using the other way. Do you get the
same answer?

1.50 m

F
S

35°

1.33 An air-conditioning unit on a slanted roof.

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q1.1 How many correct experiments do we need to disprove a the-
ory? How many do we need to prove a theory? Explain.
Q1.2 A guidebook describes the rate of climb of a mountain trail
as 120 meters per kilometer. How can you express this as a number
with no units?
Q1.3 Suppose you are asked to compute the tangent of 5.00 meters.
Is this possible? Why or why not?
Q1.4 A highway contractor stated that in building a bridge deck he
poured 250 yards of concrete. What do you think he meant?
Q1.5 What is your height in centimeters? What is your weight in
newtons?
Q1.6 The U.S. National Institute of Standards and Technology
(NIST) maintains several accurate copies of the international stan-
dard kilogram. Even after careful cleaning, these national standard

kilograms are gaining mass at an average rate of about 
when compared every 10 years or so to the standard

international kilogram. Does this apparent change have any impor-
tance? Explain.
Q1.7 What physical phenomena (other than a pendulum or cesium
clock) could you use to define a time standard?
Q1.8 Describe how you could measure the thickness of a sheet of
paper with an ordinary ruler.
Q1.9 The quantity is a number with no dimen-
sions, since it is a ratio of two lengths. Describe two or three other
geometrical or physical quantities that are dimensionless.
Q1.10 What are the units of volume? Suppose another student tells
you that a cylinder of radius r and height h has volume given by

Explain why this cannot be right.pr 3h.

p = 3.14159 Á

1y = year2
1 mg>y

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.

BRIDGING PROBLEM Vectors on the Roof

www.masteringphysics.com
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Q1.11 Three archers each fire four arrows at a target. Joe’s four
arrows hit at points 10 cm above, 10 cm below, 10 cm to the left,
and 10 cm to the right of the center of the target. All four of
Moe’s arrows hit within 1 cm of a point 20 cm from the center,
and Flo’s four arrows all hit within 1 cm of the center. The contest
judge says that one of the archers is precise but not accurate,
another archer is accurate but not precise, and the third archer is
both accurate and precise. Which description goes with which
archer? Explain your reasoning.
Q1.12 A circular racetrack has a radius of 500 m. What is the dis-
placement of a bicyclist when she travels around the track from the
north side to the south side? When she makes one complete circle
around the track? Explain your reasoning.
Q1.13 Can you find two vectors with different lengths that have a
vector sum of zero? What length restrictions are required for three
vectors to have a vector sum of zero? Explain your reasoning.
Q1.14 One sometimes speaks of the “direction of time,” evolving
from past to future. Does this mean that time is a vector quantity?
Explain your reasoning.
Q1.15 Air traffic controllers give instructions to airline pilots telling
them in which direction they are to fly. These instructions are
called “vectors.” If these are the only instructions given, is the name
“vector” used correctly? Why or why not?
Q1.16 Can you find a vector quantity that has a magnitude of zero
but components that are different from zero? Explain. Can the
magnitude of a vector be less than the magnitude of any of its com-
ponents? Explain.
Q1.17 (a) Does it make sense to say that a vector is negative?
Why? (b) Does it make sense to say that one vector is the negative
of another? Why? Does your answer here contradict what you said
in part (a)?
Q1.18 If is the vector sum of and what must
be true about the directions and magnitudes of and if

What must be true about the directions and mag-
nitudes of and if 
Q1.19 If and are nonzero vectors, is it possible for and

both to be zero? Explain.
Q1.20 What does the scalar product of a vector with itself,
give? What about the vector product of a vector with
itself?
Q1.21 Let represent any nonzero vector. Why is a unit vec-
tor, and what is its direction? If is the angle that makes with the

explain why is called the direction cosine for
that axis.
Q1.22 Which of the following are legitimate mathematical opera-
tions: (a) (b) (c) 

(d) (e) In each case, give the reason
for your answer.
Q1.23 Consider the two repeated vector products 
and Give an example that illustrates the general
rule that these two vector products do not have the same magni-
tude or direction. Can you choose the vectors and such that
these two vector products are equal? If so, give an example.
Q1.24 Show that, no matter what and are, 
(Hint: Do not look for an elaborate mathematical proof. Rather
look at the definition of the direction of the cross product.)
Q1.25 (a) If does it necessarily follow that or 

Explain. (b) If does it necessarily follow that
or Explain.

Q1.26 If for a vector in the xy-plane, does it follow that
What can you say about and Ay?AxAx = -Ay?
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EXERCISES
Section 1.3 Standards and Units
Section 1.4 Unit Consistency and Conversions
1.1 . Starting with the definition find the num-
ber of (a) kilometers in 1.00 mile and (b) feet in 1.00 km.
1.2 .. According to the label on a bottle of salad dressing, the
volume of the contents is 0.473 liter (L). Using only the conver-
sions and express this volume
in cubic inches.
1.3 .. How many nanoseconds does it take light to travel 1.00 ft
in vacuum? (This result is a useful quantity to remember.)
1.4 .. The density of gold is What is this value in
kilograms per cubic meter?
1.5 . The most powerful engine available for the classic 1963
Chevrolet Corvette Sting Ray developed 360 horsepower and had
a displacement of 327 cubic inches. Express this displacement in
liters (L) by using only the conversions and

1.6 .. A square field measuring 100.0 m by 100.0 m has an area
of 1.00 hectare. An acre has an area of If a country lot
has an area of 12.0 acres, what is the area in hectares?
1.7 . How many years older will you be 1.00 gigasecond from
now? (Assume a 365-day year.)
1.8 . While driving in an exotic foreign land you see a speed limit
sign on a highway that reads 180,000 furlongs per fortnight. How
many miles per hour is this? (One furlong is and a fortnight
is 14 days. A furlong originally referred to the length of a plowed
furrow.)
1.9 . A certain fuel-efficient hybrid car gets gasoline mileage of
55.0 mpg (miles per gallon). (a) If you are driving this car in
Europe and want to compare its mileage with that of other European
cars, express this mileage in Use the conver-
sion factors in Appendix E. (b) If this car’s gas tank holds 45 L,
how many tanks of gas will you use to drive 1500 km?
1.10 . The following conversions occur frequently in physics and
are very useful. (a) Use and to con-
vert 60 mph to units of (b) The acceleration of a freely falling
object is Use to express this acceleration
in units of (c) The density of water is Convert
this density to units of 
1.11 .. Neptunium. In the fall of 2002, a group of scientists at
Los Alamos National Laboratory determined that the critical mass
of neptunium-237 is about 60 kg. The critical mass of a fissionable
material is the minimum amount that must be brought together to
start a chain reaction. This element has a density of 
What would be the radius of a sphere of this material that has a
critical mass?
1.12 . BIO (a) The recommended daily allowance (RDA) of the
trace metal magnesium is for males. Express this
quantity in (b) For adults, the RDA of the amino acid
lysine is 12 mg per kg of body weight. How many grams per day
should a 75-kg adult receive? (c) A typical multivitamin tablet can
contain 2.0 mg of vitamin (riboflavin), and the RDA is

How many such tablets should a person take each
day to get the proper amount of this vitamin, assuming that he gets
none from any other sources? (d) The RDA for the trace element
selenium is Express this dose in 

Section 1.5 Uncertainty and Significant Figures
1.13 .. Figure 1.7 shows the result of unacceptable error in the
stopping position of a train. (a) If a train travels 890 km from Berlin

mg>day.0.000070 g>day.

0.0030 g>day.
B2

mg>day.
410 mg>day

19.5 g>cm3.

kg>m3.
1.0 g>cm3.m>s2.

1 ft = 30.48 cm32 ft>s2.
ft>s.

1 h = 3600 s1 mi = 5280 ft

1L = liter2.km>L

1
8 mile,

43,600 ft2.

1 in. = 2.54 cm.
1 L = 1000 cm3

19.3 g>cm3.

1 in. = 2.54 cm,1 L = 1000 cm3

1 in. = 2.54 cm,
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to Paris and then overshoots the end of the track by 10 m, what is
the percent error in the total distance covered? (b) Is it correct to
write the total distance covered by the train as 890,010 m? Explain.
1.14 . With a wooden ruler you measure the length of a rectangu-
lar piece of sheet metal to be 12 mm. You use micrometer calipers
to measure the width of the rectangle and obtain the value 5.98
mm. Give your answers to the following questions to the correct
number of significant figures. (a) What is the area of the rectangle?
(b) What is the ratio of the rectangle’s width to its length? (c) What
is the perimeter of the rectangle? (d) What is the difference
between the length and width? (e) What is the ratio of the length to
the width?
1.15 .. A useful and easy-to-remember approximate value for the
number of seconds in a year is Determine the percent
error in this approximate value. (There are 365.24 days in one year.)

Section 1.6 Estimates and Orders of Magnitude
1.16 . How many gallons of gasoline are used in the United
States in one day? Assume that there are two cars for every three
people, that each car is driven an average of 10,000 mi per year,
and that the average car gets 20 miles per gallon.
1.17 .. BIO A rather ordinary middle-aged man is in the hospital
for a routine check-up. The nurse writes the quantity 200 on his
medical chart but forgets to include the units. Which of the follow-
ing quantities could the 200 plausibly represent? (a) his mass in
kilograms; (b) his height in meters; (c) his height in centimeters;
(d) his height in millimeters; (e) his age in months.
1.18 . How many kernels of corn does it take to fill a 2-L soft
drink bottle?
1.19 . How many words are there in this book?
1.20 . BIO Four astronauts are in a spherical space station. (a) If,
as is typical, each of them breathes about of air with each
breath, approximately what volume of air (in cubic meters) do
these astronauts breathe in a year? (b) What would the diameter (in
meters) of the space station have to be to contain all this air?
1.21 . BIO How many times does a typical person blink her eyes
in a lifetime?
1.22 . BIO How many times does a human heart beat during a
lifetime? How many gallons of blood does it pump? (Estimate that
the heart pumps of blood with each beat.)
1.23 . In Wagner’s opera Das Rheingold, the goddess Freia is
ransomed for a pile of gold just tall enough and wide enough to
hide her from sight. Estimate the monetary value of this pile. The
density of gold is and its value is about $10 per gram
(although this varies).
1.24 . You are using water to dilute small amounts of chemicals
in the laboratory, drop by drop. How many drops of water are in a
1.0-L bottle? (Hint: Start by estimating the diameter of a drop of
water.)
1.25 . How many pizzas are consumed each academic year by
students at your school?

Section 1.7 Vectors and Vector Addition
1.26 .. Hearing rattles from a snake, you make two rapid dis-
placements of magnitude 1.8 m and 2.4 m. In sketches (roughly to
scale), show how your two displacements might add up to give a
resultant of magnitude (a) 4.2 m; (b) 0.6 m; (c) 3.0 m.
1.27 .. A postal employee drives a delivery truck along the route
shown in Fig. E1.27. Determine the magnitude and direction of the
resultant displacement by drawing a scale diagram. (See also Exer-
cise 1.34 for a different approach to this same problem.)

19.3 g>cm3,

50 cm3

500 cm3

p * 107.

1.28 .. For the vectors and
in Fig. E1.28, use a scale

drawing to find the magnitude
and direction of (a) the vector
sum and (b) the vector
difference Use your
answers to find the magnitude
and direction of (c) 
and (d) (See also Exer-
cise 1.35 for a different ap-
proach to this problem.)
1.29 .. A spelunker is survey-
ing a cave. She follows a pas-
sage 180 m straight west, then
210 m in a direction east of
south, and then 280 m at east of north. After a fourth unmea-
sured displacement, she finds herself back where she started. Use a
scale drawing to determine the magnitude and direction of the
fourth displacement. (See also Problem 1.69 for a different
approach to this problem.)

Section 1.8 Components of Vectors
1.30 .. Let the angle be the angle that the vector makes with
the measured counterclockwise from that axis. Find 
the angle for a vector that has the following components: 
(a) (b) 
(c) (d) 

1.31 . Compute the x- and y-components of the vectors 
and in Fig. E1.28.
1.32 . Vector is in the direction clockwise from the

. The x-component of is . (a) What is the
of ? (b) What is the magnitude of ?

1.33 . Vector has y-component . makes an
angle of counterclockwise from the y-axis. (a) What is the
x-component of ? (b) What is the magnitude of ?
1.34 .. A postal employee drives a delivery truck over the route
shown in Fig. E1.27. Use the method of components to determine
the magnitude and direction of her resultant displacement. In a
vector-addition diagram (roughly to scale), show that the resultant
displacement found from your diagram is in qualitative agreement
with the result you obtained using the method of components.
1.35 . For the vectors and in Fig. E1.28, use the method of
components to find the magnitude and direction of (a) the vector
sum (b) the vector sum (c) the vector difference

(d) the vector difference 
1.36 . Find the magnitude and direction of the vector represented
by the following pairs of components: (a) Ax = -8.60 cm,
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(b) (c) 

1.37 .. A disoriented physics professor drives 3.25 km north, then
2.90 km west, and then 1.50 km south. Find the magnitude and direc-
tion of the resultant displacement, using the method of components.
In a vector-addition diagram (roughly to scale), show that the result-
ant displacement found from your diagram is in qualitative agree-
ment with the result you obtained using the method of components.
1.38 .. Two ropes in a vertical plane exert equal-magnitude
forces on a hanging weight but pull with an angle of 86.0° between
them. What pull does each one exert if their resultant pull is 372 N
directly upward?
1.39 .. Vector is 2.80 cm
long and is above the x-
axis in the first quadrant. Vector

is 1.90 cm long and is 
below the x-axis in the fourth
quadrant (Fig. E1.39). Use com-
ponents to find the magnitude
and direction of (a) 
(b) (c) In each
case, sketch the vector addition
or subtraction and show that
your numerical answers are in 
qualitative agreement with your sketch.

Section 1.9 Unit Vectors
1.40 . In each case, find the x- and y-components of vector 
(a) (b) (c) 

(d) where 
1.41 .. Write each vector in Fig. E1.28 in terms of the unit vec-
tors and 

1.42 .. Given two vectors and 
(a) find the magnitude of each vector; (b) write an expres-

sion for the vector difference using unit vectors; (c) find
the magnitude and direction of the vector difference (d) In
a vector diagram show and and also show that your
diagram agrees qualitatively with your answer in part (c).
1.43 .. (a) Write each vector
in Fig. E1.43 in terms of the
unit vectors and (b) Use unit
vectors to express the vector 

where
(c) Find the magnitude and direc-
tion of 
1.44 .. (a) Is the vector

a unit vector? Jus-
tify your answer. (b) Can a unit
vector have any components
with magnitude greater than
unity? Can it have any negative components? In each case justify
your answer. (c) If where a is a constant,
determine the value of a that makes a unit vector.

Section 1.10 Products of Vectors
1.45 . For the vectors and in Fig. E1.28, find the scalar
products (a) (b) (c) 
1.46 .. (a) Find the scalar product of the two vectors and 
given in Exercise 1.42. (b) Find the angle between these two vectors.
1.47 .. Find the angle between each of the following pairs of
vectors:
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1.48 .. Find the vector product (expressed in unit vectors)
of the two vectors given in Exercise 1.42. What is the magnitude
of the vector product?
1.49 . For the vectors and in Fig. E1.28, (a) find the magni-
tude and direction of the vector product (b) find the mag-
nitude and direction of 
1.50 . For the two vectors in Fig. E1.39, (a) find the magnitude
and direction of the vector product (b) find the magnitude
and direction of 
1.51 . For the two vectors and in Fig. E1.43, (a) find the
scalar product (b) find the magnitude and direction of 
the vector product 
1.52 . The vector is 3.50 cm long and is directed into this page.
Vector points from the lower right corner of this page to the
upper left corner of this page. Define an appropriate right-handed
coordinate system, and find the three components of the vector
product measured in In a diagram, show your coordi-
nate system and the vectors and 
1.53 . Given two vectors and 

do the following. (a) Find the mag-
nitude of each vector. (b) Write an expression for the vector differ-
ence using unit vectors. (c) Find the magnitude of the
vector difference Is this the same as the magnitude of

Explain.

PROBLEMS
1.54 . An acre, a unit of land measurement still in wide use, has a
length of one furlong and a width one-tenth of its length.
(a) How many acres are in a square mile? (b) How many square
feet are in an acre? See Appendix E. (c) An acre-foot is the volume
of water that would cover 1 acre of flat land to a depth of 1 foot.
How many gallons are in 1 acre-foot?
1.55 .. An Earthlike Planet. In January 2006 astronomers
reported the discovery of a planet comparable in size to the earth
orbiting another star and having a mass about 5.5 times the earth’s
mass. It is believed to consist of a mixture of rock and ice, similar
to Neptune. If this planet has the same density as Neptune

what is its radius expressed (a) in kilometers and (b)
as a multiple of earth’s radius? Consult Appendix F for astronomi-
cal data.
1.56 .. The Hydrogen Maser. You can use the radio waves
generated by a hydrogen maser as a standard of frequency. The fre-
quency of these waves is 1,420,405,751.786 hertz. (A hertz is another
name for one cycle per second.) A clock controlled by a hydro-
gen maser is off by only 1 s in 100,000 years. For the following
questions, use only three significant figures. (The large number of
significant figures given for the frequency simply illustrates the
remarkable accuracy to which it has been measured.) (a) What is
the time for one cycle of the radio wave? (b) How many cycles
occur in 1 h? (c) How many cycles would have occurred during the
age of the earth, which is estimated to be (d) By
how many seconds would a hydrogen maser clock be off after a
time interval equal to the age of the earth?
1.57 . BIO Breathing Oxygen. The density of air under stan-
dard laboratory conditions is and about 20% of that
air consists of oxygen. Typically, people breathe about of air
per breath. (a) How many grams of oxygen does a person breathe
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in a day? (b) If this air is stored uncompressed in a cubical tank,
how long is each side of the tank?
1.58 ... A rectangular piece of aluminum is cm long
and cm wide. (a) Find the area of the rectangle and
the uncertainty in the area. (b) Verify that the fractional uncertainty
in the area is equal to the sum of the fractional uncertainties in the
length and in the width. (This is a general result; see Challenge
Problem 1.98.)
1.59 ... As you eat your way through a bag of chocolate chip
cookies, you observe that each cookie is a circular disk with a
diameter of cm and a thickness of cm.
(a) Find the average volume of a cookie and the uncertainty in the
volume. (b) Find the ratio of the diameter to the thickness and the
uncertainty in this ratio.
1.60 . BIO Biological tissues are typically made up of 98% water.
Given that the density of water is estimate the
mass of (a) the heart of an adult human; (b) a cell with a diameter
of (c) a honey bee.
1.61 . BIO Estimate the number of atoms in your body. (Hint:
Based on what you know about biology and chemistry, what are
the most common types of atom in your body? What is the mass of
each type of atom? Appendix D gives the atomic masses for differ-
ent elements, measured in atomic mass units; you can find the
value of an atomic mass unit, or 1 u, in Appendix E.)
1.62 ... How many dollar bills would you have to stack to reach
the moon? Would that be cheaper than building and launching a
spacecraft? (Hint: Start by folding a dollar bill to see how many
thicknesses make 1.0 mm.)
1.63 ... How much would it cost to paper the entire United
States (including Alaska and Hawaii) with dollar bills? What
would be the cost to each person in the United States?
1.64 . Stars in the Universe. Astronomers frequently say that
there are more stars in the universe than there are grains of sand on
all the beaches on the earth. (a) Given that a typical grain of sand is
about 0.2 mm in diameter, estimate the number of grains of sand
on all the earth’s beaches, and hence the approximate number of
stars in the universe. It would be helpful to consult an atlas and do
some measuring. (b) Given that a typical galaxy contains about
100 billion stars and there are more than 100 billion galaxies in the
known universe, estimate the number of stars in the universe and
compare this number with your result from part (a).
1.65 ... Two workers pull horizontally on a heavy box, but one
pulls twice as hard as the other. The larger pull is directed at 25.0°
west of north, and the resultant of these two pulls is 460.0 N
directly northward. Use vector components to find the magnitude
of each of these pulls and the direction of the smaller pull.
1.66 .. Three horizontal ropes
pull on a large stone stuck in the
ground, producing the vector
forces and shown in 
Fig. P1.66. Find the magnitude
and direction of a fourth force on
the stone that will make the vec-
tor sum of the four forces zero.
1.67 .. You are to program a
robotic arm on an assembly line
to move in the xy-plane. Its first
displacement is its second
displacement is of magnitude 6.40 cm and direction meas-
ured in the sense from the toward the The result-
ant of the two displacements should also have a
magnitude of 6.40 cm, but a direction measured in the sense22.0°
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from the toward the (a) Draw the vector-addition
diagram for these vectors, roughly to scale. (b) Find the components
of (c) Find the magnitude and direction of 
1.68 ... Emergency Landing. A plane leaves the airport in
Galisteo and flies 170 km at of north and then changes
direction to fly 230 km at of east, after which it makes
an immediate emergency landing in a pasture. When the airport
sends out a rescue crew, in which direction and how far should this
crew fly to go directly to this plane?
1.69 ... As noted in Exercise 1.29, a spelunker is surveying a
cave. She follows a passage 180 m straight west, then 210 m in a
direction of south, and then 280 m at of north.
After a fourth unmeasured displacement she finds herself back
where she started. Use the method of components to determine 
the magnitude and direction of the fourth displacement. Draw the
vector-addition diagram and show that it is in qualitative agree-
ment with your numerical solution.
1.70 .. (a) Find the magnitude and direction of the vector that
is the sum of the three vectors and in Fig. E1.28. In a dia-
gram, show how is formed from these three vectors. (b) Find the
magnitude and direction of the vector In a dia-
gram, show how is formed from these three vectors.
1.71 .. A rocket fires two engines simultaneously. One produces
a thrust of 480 N directly forward, while the other gives a 513-N
thrust at above the forward direction. Find the magnitude
and direction (relative to the forward direction) of the resultant
force that these engines exert on the rocket.
1.72 .. A sailor in a small sailboat encounters shifting winds. She
sails 2.00 km east, then 3.50 km southeast, and then an additional
distance in an unknown direction. Her final position is 5.80 km
directly east of the starting point (Fig. P1.72). Find the magnitude
and direction of the third leg of the journey. Draw the vector-
addition diagram and show that it is in qualitative agreement with
your numerical solution.
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1.73 ... BIO Dislocated Shoulder. A patient with a dislocated
shoulder is put into a traction apparatus as shown in Fig. P1.73.
The pulls and have equal magnitudes and must combine to
produce an outward traction force of 5.60 N on the patient’s arm.
How large should these pulls be?
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1.74 ... On a training flight, a
student pilot flies from Lincoln,
Nebraska, to Clarinda, Iowa,
then to St. Joseph, Missouri, and
then to Manhattan, Kansas 
(Fig. P1.74). The directions are
shown relative to north: is
north, is east, is south,
and is west. Use the method
of components to find (a) the
distance she has to fly from 
Manhattan to get back to Lincoln,
and (b) the direction (relative to
north) she must fly to get there.
Illustrate your solutions with a
vector diagram.
1.75 .. Equilibrium. We say
an object is in equilibrium if all
the forces on it balance (add up
to zero). Figure P1.75 shows a
beam weighing 124 N that is
supported in equilibrium by a
100.0-N pull and a force at
the floor. The third force on the
beam is the 124-N weight that acts vertically downward. (a) Use
vector components to find the magnitude and direction of (b)
Check the reasonableness of your answer in part (a) by doing a
graphical solution approximately to scale.
1.76 ... Getting Back. An explorer in the dense jungles of
equatorial Africa leaves his hut. He takes 40 steps northeast, then
80 steps north of west, then 50 steps due south. Assume his
steps all have equal length. (a) Sketch, roughly to scale, the three
vectors and their resultant. (b) Save the explorer from becoming
hopelessly lost in the jungle by giving him the displacement,
calculated using the method of components, that will return him to
his hut.
1.77 ... A graphic artist is creating a new logo for her company’s
website. In the graphics program she is using, each pixel in an
image file has coordinates where the origin is at the
upper left corner of the image, the points to the right, and
the points down. Distances are measured in pixels. (a) The
artist draws a line from the pixel location to the location

She wishes to draw a second line that starts at
is 250 pixels long, and is at an angle of measured

clockwise from the first line. At which pixel location should this
second line end? Give your answer to the nearest pixel. (b) The
artist now draws an arrow that connects the lower right end of the
first line to the lower right end of the second line. Find the length
and direction of this arrow. Draw a diagram showing all three lines.
1.78 ... A ship leaves the island of Guam and sails 285 km at

of west. In which direction must it now head and how
far must it sail so that its resultant displacement will be 115 km
directly east of Guam?
1.79 .. BIO Bones and Muscles. A patient in therapy has a
forearm that weighs 20.5 N and that lifts a 112.0-N weight. These
two forces have direction vertically downward. The only other
significant forces on his forearm come from the biceps muscle
(which acts perpendicularly to the forearm) and the force at the
elbow. If the biceps produces a pull of 232 N when the forearm is
raised above the horizontal, find the magnitude and direction
of the force that the elbow exerts on the forearm. (The sum of the
elbow force and the biceps force must balance the weight of the
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arm and the weight it is carrying, so their vector sum must be
132.5 N, upward.)
1.80 ... You are hungry and decide to go to your favorite neigh-
borhood fast-food restaurant. You leave your apartment and take
the elevator 10 flights down (each flight is 3.0 m) and then go 15 m
south to the apartment exit. You then proceed 0.2 km east, turn
north, and go 0.1 km to the entrance of the restaurant. (a) Deter-
mine the displacement from your apartment to the restaurant. Use
unit vector notation for your answer, being sure to make clear your
choice of coordinates. (b) How far did you travel along the path
you took from your apartment to the restaurant, and what is the
magnitude of the displacement you calculated in part (a)?
1.81 .. While following a treasure map, you start at an old oak
tree. You first walk 825 m directly south, then turn and walk 1.25 km
at 30.0° west of north, and finally walk 1.00 km at 40.0° north of
east, where you find the treasure: a biography of Isaac Newton!
(a) To return to the old oak tree, in what direction should you head
and how far will you walk? Use components to solve this problem.
(b) To see whether your calculation in part (a) is reasonable, check
it with a graphical solution drawn roughly to scale.
1.82 .. A fence post is 52.0 m from where you are standing, in a
direction north of east. A second fence post is due south from
you. What is the distance of the second post from you, if the dis-
tance between the two posts is 80.0 m?
1.83 .. A dog in an open field runs 12.0 m east and then 28.0 m in
a direction west of north. In what direction and how far must
the dog then run to end up 10.0 m south of her original starting
point?
1.84 ... Ricardo and Jane are standing under a tree in the middle
of a pasture. An argument ensues, and they walk away in different
directions. Ricardo walks 26.0 m in a direction west of north.
Jane walks 16.0 m in a direction south of west. They then
stop and turn to face each other. (a) What is the distance between
them? (b) In what direction should Ricardo walk to go directly
toward Jane?
1.85 ... John, Paul, and George are standing in a strawberry
field. Paul is 14.0 m due west of John. George is 36.0 m from Paul,
in a direction south of east from Paul’s location. How far is
George from John? What is the direction of George’s location from
that of John?
1.86 ... You are camping with two friends, Joe and Karl. Since
all three of you like your privacy, you don’t pitch your tents close
together. Joe’s tent is 21.0 m from yours, in the direction 
south of east. Karl’s tent is 32.0 m from yours, in the direction

north of east. What is the distance between Karl’s tent and
Joe’s tent?
1.87 .. Vectors and have scalar product and their vec-
tor product has magnitude . What is the angle between these
two vectors?
1.88 .. Bond Angle in Methane. In the methane molecule,

each hydrogen atom is at a corner of a regular tetrahedron
with the carbon atom at the center. In coordinates where one of the

bonds is in the direction of an adjacent 
bond is in the direction. Calculate the angle between
these two bonds.
1.89 .. Vector has magnitude 12.0 m and vector has magni-
tude 16.0 m. The scalar product is . What is the mag-
nitude of the vector product between these two vectors?
1.90 .. When two vectors and are drawn from a common
point, the angle between them is (a) Using vector techniques,
show that the magnitude of their vector sum is given by

2A2 + B2 + 2AB cos f
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(b) If and have the same magnitude, for which value of will
their vector sum have the same magnitude as or 
1.91 .. A cube is placed so that
one corner is at the origin and
three edges are along the x-, y-,
and z-axes of a coordinate sys-
tem (Fig. P1.91). Use vectors to
compute (a) the angle between
the edge along the z-axis (line
ab) and the diagonal from the
origin to the opposite corner
(line ad ), and (b) the angle
between line ac (the diagonal of
a face) and line ad.
1.92 .. Vector has magnitude 6.00 m and vector has magni-
tude 3.00 m. The vector product between these two vectors has
magnitude . What are the two possible values for the scalar
product of these two vectors? For each value of , draw a
sketch that shows and and explain why the vector products in
the two sketches are the same but the scalar products differ.
1.93 .. The scalar product of vectors and is . 
Vector has magnitude 9.00 m and direction west of south.
If vector has direction south of east, what is the magnitude
of ?
1.94 ... Obtain a unit vector perpendicular to the two vectors
given in Exercise 1.53.
1.95 .. You are given vectors and

A third vector lies in the xy-plane. Vector 
is perpendicular to vector and the scalar product of with is
15.0. From this information, find the components of vector 
1.96 .. Two vectors and have magnitudes and

Their vector product is 
What is the angle between and 
1.97 .. Later in our study of physics we will encounter quantities
represented by (a) Prove that for any three 
vectors and (b) Calculate 

for the three vectors with magnitude and
angle measured in the sense from the toward 

the with and and with magni-
tude 6.00 and in the Vectors and are in the 
xy-plane.

CHALLENGE PROBLEMS
1.98 ... The length of a rectangle is given as and its width
as (a) Show that the uncertainty in its area A is

Assume that the uncertainties l and w are small, so
that the product lw is very small and you can ignore it. (b) Show
that the fractional uncertainty in the area is equal to the sum of the
fractional uncertainty in length and the fractional uncertainty in
width. (c) A rectangular solid has dimensions and

Find the fractional uncertainty in the volume, and show
that it equals the sum of the fractional uncertainties in the length,
width, and height.
1.99 ... Completed Pass. At Enormous State University
(ESU), the football team records its plays using vector displace-
ments, with the origin taken to be the position of the ball before the
play starts. In a certain pass play, the receiver starts at

where the units are yards, is to the right, and ın+1.0ın � 5.0≥n,
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is downfield. Subsequent displacements of the receiver are 
(in motion before the snap), (breaks downfield),

(zigs), and (zags). Meanwhile, the
quarterback has dropped straight back to a position How
far and in which direction must the quarterback throw the ball?
(Like the coach, you will be well advised to diagram the situation
before solving it numerically.)
1.100 ... Navigating in the Solar System. The Mars Polar
Lander spacecraft was launched on January 3, 1999. On December
3, 1999, the day Mars Polar Lander touched down on the Martian
surface, the positions of the earth and Mars were given by these
coordinates:

-7.0 ≥n.
+12.0ın � 18.0≥n-6.0ın � 4.0 ≥n

+11.0 ≥n+9.0ın
≥n

x y z

Earth 0.3182 AU 0.9329 AU 0.0000 AU

Mars 1.3087 AU �0.4423AU �0.0414 AU

Figure P1.91

x
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b c
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a

In these coordinates, the sun is at the origin and the plane of the
earth’s orbit is the xy-plane. The earth passes through the 
once a year on the autumnal equinox, the first day of autumn in the
northern hemisphere (on or about September 22). One AU, or
astronomical unit, is equal to km, the average dis-
tance from the earth to the sun. (a) In a diagram, show the posi-
tions of the sun, the earth, and Mars on December 3, 1999. (b) Find
the following distances in AU on December 3, 1999: (i) from the
sun to the earth; (ii) from the sun to Mars; (iii) from the earth to
Mars. (c) As seen from the earth, what was the angle between the
direction to the sun and the direction to Mars on December 3,
1999? (d) Explain whether Mars was visible from your location at
midnight on December 3, 1999. (When it is midnight at your loca-
tion, the sun is on the opposite side of the earth from you.)
1.101 ... Navigating in the Big Dipper. All the stars of the
Big Dipper (part of the constellation Ursa Major) may appear to be
the same distance from the earth, but in fact they are very far from
each other. Figure P1.101 shows the distances from the earth to
each of these stars. The distances are given in light-years (ly), the
distance that light travels in one year. One light-year equals

. (a) Alkaid and Merak are apart in the
earth’s sky. In a diagram, show the relative positions of Alkaid,
Merak, and our sun. Find the distance in light-years from Alkaid to
Merak. (b) To an inhabitant of a planet orbiting Merak, how many
degrees apart in the sky would Alkaid and our sun be?

25.6o9.461 * 1015 m

1.496 * 108

+x-axis

Figure P1.101

Mizar
73 ly

Megrez
81 ly

Dubhe
105 ly

Merak
77 ly

Phad
80 ly

Alioth
64 ly

Alkaid
138 ly

1.102 ... The vector called the position vec-
tor, points from the origin to an arbitrary point in space
with coordinates Use what you know about vectors to
prove the following: All points that satisfy the equation

where A, B, and C are constants, lie in a
plane that passes through the origin and that is perpendicular to the
vector Sketch this vector and the plane.Aın � B ≥n � CkN .

Ax + By + Cz = 0,
1x, y, z2

1x, y, z2.
10, 0, 02

rS � xın � y ≥n � zkN ,



34 CHAPTER 1 Units, Physical Quantities, and Vectors

Chapter Opening Question ?
Take the to point east and the to point north. Then
what we are trying to find is the y-component of the velocity vec-
tor, which has magnitude and is at an angle 
measured from the toward the From Eqs. (1.6)
we have So the
thunderstorm moves 16 km north in 1 h.

Test Your Understanding Questions
1.5 Answer: (ii)

When we multiply or divide, the number with the
fewest significant figures controls the number of significant figures
in the result.
1.6 The answer depends on how many students are enrolled at
your campus.
1.7 Answers: (ii), (iii), and (iv) The vector has the same
magnitude as the vector so is the sum of
one vector of magnitude 3 m and one of magnitude 4 m. This sum
has magnitude 7 m if and are parallel and magnitude 1 m if

and are antiparallel. The magnitude of is 5 m if 
and are perpendicular, so that the vectors and 
form a 3–4–5 right triangle. Answer (i) is impossible because the
magnitude of the sum of two vectors cannot be greater than the
sum of the magnitudes; answer (v) is impossible because the sum
of two vectors can be zero only if the two vectors are antiparallel
and have the same magnitude; and answer (vi) is impossible
because the magnitude of a vector cannot be negative.
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1.8 Answers: (a) yes, (b) no Vectors and can have the
same magnitude but different components if they point in different
directions. If they have the same components, however, they are
the same vector and so must have the same magnitude.

1.9 Answer: all have the same magnitude The four vectors 
and all point in different directions, but all have the same

magnitude:

1.10 Answers: (a) (b) or
(c) (d) (e) (a) The scalar product
is zero only if and are perpendicular. (b) The vector product is
zero only if and are either parallel or antiparallel. (c) The
scalar product is equal to the product of the magnitudes

only if and are parallel. (d) The scalar product
is equal to the negative of the product of the magnitudes

only if and are antiparallel. (e) The magni-
tude of the vector product is equal to the product of the magni-
tudes only if and are
perpendicular.

Bridging Problem
Answers: (a)

(b) 4.5 * 102 N # m
5.2 * 102 N
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